Impacts of Land Use and Hydrological Regime on the Spatiotemporal Distribution of Ecosystem Services in a Large Yangtze River-Connected Lake Region
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection and Processing
2.3. Methods
2.3.1. Quantification of Ecosystem Services
2.3.2. Post-Classification Comparison
2.3.3. Geographical Detectors
2.3.4. Interaction Effect Model
2.4. Model Validation
3. Results
3.1. Variations in Land Use and Hydrology
3.2. Changes to Ecosystem Services
3.3. Relationship Between Ecosystem Services and Land Use and Hydrological Factors
4. Discussion
4.1. Spatiotemporal Heterogeneity of Ecosystem Services
4.2. Ecological Service Responses to Land-Use Change
4.3. Modulation Effects of Hydrological Fluctuations on Ecosystem Services
4.4. Implications for Lake Region Management
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bennett, E.M.; Peterson, G.D.; Gordon, L.J. Understanding relationships among multiple ecosystem services. Ecol. Lett. 2009, 12, 1394–1404. [Google Scholar] [CrossRef]
- Sterner, R.W.; Keeler, B.; Polasky, S.; Poudel, R.; Rhude, K.; Rogers, M. Ecosystem services of Earth’s largest freshwater lakes. Ecosyst. Serv. 2020, 41, 101046. [Google Scholar] [CrossRef]
- Chaplin-Kramer, R.; Sharp, R.P.; Weil, C.; Bennett, E.M.; Pascual, U.; Arkema, K.K.; Brauman, K.A.; Bryant, B.P.; Guerry, A.D.; Haddad, N.M.; et al. Global modeling of nature’s contributions to people. Science 2019, 366, 255–258. [Google Scholar] [CrossRef] [PubMed]
- MA (Millennium Ecosystem Assessment). Ecosystems and their services. In Ecosystems and Human Well-Being: A Framework for Assessment; Island Press: Washington, DC, USA, 2003. [Google Scholar]
- Zhang, J.; Wang, M.; Liu, K.; Chen, S.; Zhao, Z. Social-ecological system sustainability in China from the perspective of supply-demand balance for ecosystem services. J. Clean. Prod. 2025, 27, 145039. [Google Scholar] [CrossRef]
- Feng, Z.; Jin, X.; Chen, T.; Wu, J. Understanding trade-offs and synergies of ecosystem services to support the decision-making in the Beijing-Tianjin-Hebei region. Land Use Policy 2021, 106, 105446. [Google Scholar] [CrossRef]
- Dai, X.; Wang, L.; Huang, C.; Fang, L.; Wang, S.; Wang, L. Spatio-temporal variations of ecosystem services in the urban agglomerations in the middle reaches of the Yangtze River, China. Ecol. Indicat. 2020, 115, 106394. [Google Scholar] [CrossRef]
- Lawler, J.J.; Lewis, D.J.; Nelson, E.; Plantinga, A.J.; Polasky, S.; Withey, J.C.; Helmers, D.P.; Martinuzzi, S.; Pennington, D.; Radeloff, V.C. Projected land-use change impacts on ecosystem services in the United States. Proc. Natl. Acad. Sci. USA 2014, 111, 7492–7497. [Google Scholar] [CrossRef]
- Qin, J.; Ye, H.; Lin, K.; Qi, S.; Hu, B.; Luo, J. Assessment of water-related ecosystem services based on multi-scenario land use changes: Focusing on the Poyang Lake Basin of southern China. Ecol. Indic. 2024, 158, 111549. [Google Scholar] [CrossRef]
- Liu, W.; Zhan, J.; Zhao, F.; Yan, H.; Zhang, F.; Wei, X. Impacts of urbanization-induced land-use changes on ecosystem services: A case study of the Pearl River Delta Metropolitan Region, China. Ecol. Indic. 2019, 98, 228–238. [Google Scholar] [CrossRef]
- Jin, T.; Zhang, P.; Zhou, N.; Li, S. Unveiling the spatiotemporal heterogeneity and driving mechanisms of carbon storage changes in response to land use/land cover changes under different future scenarios: Insights from the GMOP-SEM model. J. Clean. Prod. 2025, 487, 144622. [Google Scholar] [CrossRef]
- Huang, C.; Huang, X.; Peng, C.; Zhou, Z.; Teng, M.; Wang, P. Land use/cover change in the Three Gorges Reservoir area, China: Reconciling the land use conflicts between development and protection. Catena 2019, 175, 388–399. [Google Scholar] [CrossRef]
- Li, B.; Yang, G.; Wan, R.R.; Lai, X.J.; Wagner, P.D. Impacts of hydrological alteration on ecosystem services changes of a large river-connected lake (Poyang Lake), China. J. Environ. Manage. 2022, 310, 114750. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Wang, L.; Yu, D.; Yao, R.; Lia, C.; He, Q. Four decades of wetland changes in Dongting Lake using Landsat observations during 1978–2018. J. Hydrol. 2020, 587, 124954. [Google Scholar] [CrossRef]
- Vilbaste, S.; Jarvalt, A.; Kalpus, K.; Noges, T.; Pall, P.; Piirsoo, K.; Tuvikene, L.; Noges, P. Ecosystem services of Lake Vortsjarv under multiple stress: A case study. Hydrobiologia 2016, 780, 145–159. [Google Scholar] [CrossRef]
- Peng, H.; Tang, Z.; Chen, Z.; Wu, Y.; Yuan, Y.; Shi, Q.; Li, L.; Chen, H. Geospatial perspective for monitoring SDG 6.6.1 based on spatial and temporal analysis of lake water storage variations in Dongting Lake, China. J. Hydrol.-Reg. Stud. 2025, 57, 102175. [Google Scholar] [CrossRef]
- Li, B.; Wan, R.; Yang, G.; Wang, S.; Wagner, P.D. Exploring the spatiotemporal water quality variations and their influencing factors in a large floodplain lake in China. Ecol. Indicat. 2020, 115, 106454. [Google Scholar] [CrossRef]
- Deng, C.; Shen, X.; Liu, C.; Liu, Y. Spatiotemporal characteristics and socio-ecological drivers of ecosystem service interactions in the Dongting Lake Ecological Economic Zone. Ecol. Indicat. 2024, 167, 112734. [Google Scholar] [CrossRef]
- Huang, Y.; Chen, X.; Zhu, L. Exploring Trade-Offs/Synergies and Drivers of Ecosystem Services in the Dongting Lake Area, China. Sustainability 2025, 17, 1650. [Google Scholar] [CrossRef]
- Zhang, J.; Yang, F.; Duan, N.; Zheng, B.; Xiong, S.; Xu, Y. Spatial transition and obstacle factor diagnosis based on the evaluation of the quality of arable land use in plain Lake Areas: A case study of the Dongting Lake region. Ecol. Indic. 2024, 169, 112881. [Google Scholar] [CrossRef]
- Yuan, L.; Geng, M.; Li, F.; Xie, Y.; Tian, T.; Chen, Q. Spatiotemporal characteristics and drivers of ecosystem service interactions in the Dongting Lake Basin. Sci. Total Environ. 2024, 926, 172012. [Google Scholar] [CrossRef]
- Geng, M.; Qian, Z.; Jiang, H.; Huang, B.; Huang, S.; Deng, B. Assessing the impact of water-sediment factors on water quality to guide river-connected lake water environment improvement. Sci. Total Environ. 2024, 912, 168866. [Google Scholar] [CrossRef]
- Xie, Y.H.; Chen, X.S. Effects of three-gorge project on succession of wetland vegetation in Dongting Lake. Res. Agric. Mod. 2008, 29, 684–687, (In Chinese with English abstract). [Google Scholar]
- Liu, H.; Zhou, Q. Accuracy analysis of remote sensing change detection by rule-based rationality evaluation with post-classification comparison. Int. J. Remote Sens. 2004, 25, 1037–1050. [Google Scholar] [CrossRef]
- Huiping, Z.; Hong, J.; Qinghua, H. Landscape and Water Quality Change Detection in Urban Wetland: A Post-classification Comparison Method with IKONOS Data. Procedia Environ. Sci. 2011, 10, 1726–1731. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, T.; Fu, B. A measure of spatial stratified heterogeneity. Ecol. Indic. 2016, 67, 250–256. [Google Scholar] [CrossRef]
- Zhang, P.; Zhang, S.; Zou, Y.; Wu, T.; Li, F.; Deng, Z.; Zhang, H.; Song, Y.; Xie, Y. Integrating suitable habitat dynamics under typical hydrological regimes as guides for the conservation and restoration of different waterbird groups. J. Environ. Manag. 2023, 345, 118451. [Google Scholar] [CrossRef] [PubMed]
- Loiselle, A.; Proulx, R.; Larocque, M.; Pellerin, S. Synergies and trade-offs among ecosystems functions and services for three types of lake-edge wetlands. Ecol. Indic. 2023, 154, 110547. [Google Scholar] [CrossRef]
- Huang, Y.; Chen, X.S.; Zhu, L.L. Differential responses of ecosystem stability to climatic and anthropogenic factors in connected and isolated lake basins on the Yangtze River. J. Environ. Manag. 2024, 359, 121014. [Google Scholar] [CrossRef]
- Zhang, M.; Fan, S.; Li, X.; Li, Y.; Li, K.; Xu, Y.; Dong, L. Supporting function of vegetation in urban riparian ecological corridors for ground-dwelling faunal diversity in Beijing, China. Sci. Total Environ. 2024, 921, 171150. [Google Scholar] [CrossRef]
- Fentaw, G.; Beneberu, G.; Wondie, A.; Eneyew, B.G. Ecosystem services of wetlands in the upper Abbay River basin, Ethiopia. Ecol. Indic. 2025, 171, 113142. [Google Scholar] [CrossRef]
- Dai, E.; Zhao, Z.; Jia, L.; Jiang, X. Contribution of ecosystem services improvement on achieving Sustainable development Goals under ecological engineering projects on the Qinghai-Tibet Plateau. Ecol. Eng. 2024, 199, 107146. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhou, M. Optimization of land use structure integrating ecosystem service function and economic development—A case study in Dongting Lake Ecological and Economic Zone, China. Environ. Sustain. Indic. 2025, 26, 100604. [Google Scholar] [CrossRef]
- Ma, J.; Chen, W.; Chen, M.; Zhong, K.; Yao, N. Water level fluctuations associated with hydrological connectivity consolidate the food web stability of the largest Chinese freshwater lake via mediating trophodynamics and trophic structure. Ecol. Indic. 2023, 153, 110372. [Google Scholar] [CrossRef]
- Li, D.; Ning, Z.; Chen, G.; Li, Y.; Cui, B.; Wang, Q.; Xie, T. The effect of land use and land cover on soil carbon storage in the Yellow River Delta, China: Implications for wetland restoration and adaptive management. J. Environ. Manag. 2024, 367, 122097. [Google Scholar] [CrossRef]
- Li, W.; Chen, X.; Zheng, J.; Zhang, F.; Yan, Y.; Hai, W. Effectiveness and driving mechanisms of ecological conservation and restoration in Sichuan Province, China. Ecol. Indic. 2025, 172, 113238. [Google Scholar] [CrossRef]
- Benabderrazik, K.; Kopainsky, B.; Tazi, L.; Joerin, J.; Six, J. Agricultural intensification can no longer ignore water conservation-Asystemic modelling approach to the case of tomato producers in Morocco. Agric. Water Manag. 2021, 256, 107082. [Google Scholar] [CrossRef]
- Kok, S.; Clec’h, S.; Penning, W.E.; Buijse, A.D.; Hein, L. Trade-offs in ecosystem services under various river management strategies of the Rhine Branches. Ecosyst. Serv. 2025, 72, 101692. [Google Scholar] [CrossRef]
- Li, B.; Yang, G.; Wan, R.; Hamilton, D.P.; Wang, X. Unravelling the spatiotemporal trade-offs and synergies among hydrological ecosystem services in a large floodplain lake. Ecol. Indic. 2025, 172, 113255. [Google Scholar] [CrossRef]
- Hopkins, K.G.; Welles, J.S.; Pindilli, E.J.; Noe, G.B.; Claggett, P.R.; Ahmed, L.; Metes, M.J. Societal benefits of floodplains in the Chesapeake Bay and Delaware River watersheds: Sediment, nutrient, and flood regulation ecosystem services. J. Environ. Manag. 2023, 345, 118747. [Google Scholar] [CrossRef]
- Yue, C.; Xu, M.; Ciais, P.; Tao, S.; Shen, H.; Chang, J.; Li, W.; Deng, L.; He, J.; Leng, Y.; et al. Contributions of ecological restoration policies to China’s land carbon balance. Nat. Commun. 2024, 15, 9708. [Google Scholar] [CrossRef]
- Perez-Mendez, N.; Alcaraz, C.; Catala-Forner, M. Ecological restoration of field margins enhances biodiversity and multiple ecosystem services in rice agroecosystems. Agric. Ecosyst. Environ. 2025, 382, 109484. [Google Scholar] [CrossRef]
- Song, W.; Deng, X. Land-use/land-cover change and ecosystem service provision in China. Sci. Total Environ. 2017, 576, 705–719. [Google Scholar] [CrossRef] [PubMed]
- Hasan, S.S.; Zhen, L. Impact of land use change on ecosystem services: A review. Environ. Dev. 2020, 34, 100527. [Google Scholar] [CrossRef]
- Feng, X.; Li, Y.; Wang, X.; Yang, J.; Yu, J.; Wang, S.; Wu, N.; Xiao, F. Impacts of land use transitions on ecosystem services: A research framework coupled with structure, function, and dynamics. Sci. Total Environ. 2023, 901, 166366. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Luo, Y.; Liu, G.; Ouyang, Z.; Zheng, H. Effects of land use change on ecosystem services: A case study in Miyun reservoir watershed. Acta Ecol. Sin. 2013, 33, 726–736. [Google Scholar] [CrossRef]
- Xie, C.; Wang, K.; Chen, H.; Zhang, M. Effects of land use change on the ecosystem services value in the Dongting Lake Area. Resour. Environ. Yangtze Basin 2006, 15, 191–195, (In Chinese with English abstract). [Google Scholar]
- Xue, Y.; Kong, X.; Mao, Z.; Zhang, C.; Xue, B.; Shi, X.; Gu, X. Hydrological variation drives changes in food web structure and ecosystem function with potential hysteresis in a large temperate shallow lake. J. Hydrol. 2025, 650, 132463. [Google Scholar] [CrossRef]
- Yang, Y.; Roderick, M.; Zhang, S.; McVicar, T.; Donohue, R.J. Hydrologic implications of vegetation response to elevated CO2 in climate projections. Nat. Clim. Change 2019, 9, 44–48. [Google Scholar] [CrossRef]
- Zhou, S.; Yu, B.; Lintner, B.R.; Findell, K.L.; Zhang, Y. Projected increase in global runoff dominated by land surface changes. Nat. Clim. Change 2023, 13, 442–449. [Google Scholar] [CrossRef]
- Wang, X.; Liu, H.; Jia, Y.; Wang, J.; Wei, X.; Wang, Y.; Wang, X.; Ji, Y.; Dang, L.; Hu, P. A technical framework for determining water consumption thresholds in the semi-arid Xiliao River Plain based on terrestrial water balance. J. Hydrol. Reg. Stud. 2025, 58, 102261. [Google Scholar] [CrossRef]
- Xiao, L.; Robinson, M.; O’Connor, M. Woodland’s role in natural flood management: Evidence from catchment studies in Britain and Ireland. Sci. Total Environ. 2022, 813, 151877. [Google Scholar] [CrossRef]
- Berton, R.; Rahmani, V. Partial Duration Series of Wet and Dry Years Can Improve Flood Estimates in the Context of a Nonstationary Climate and Anthropogenic Disturbances. Hydroecol. Eng. 2024, 1, 1004. [Google Scholar] [CrossRef]
- Mashizi, A.K.; Sharafatmandrad, M. Management of soil-related ecosystem services in semi-arid regions of Iran using key environmental drivers. J. Environ. Manag. 2025, 381, 125181. [Google Scholar] [CrossRef]
- Gao, Y.; Xie, Y.; Zou, D. Hydrological regime change and its ecological responses in East Dongting Lake, China. Ecohydrol. Hydrobiol. 2019, 20, 142–150. [Google Scholar] [CrossRef]
- Peng, Y.; He, G.; Wang, G.Z.; Cao, H.J. Surface Water Changes in Dongting Lake from 1975 to 2019 Based on Multisource Remote-Sensing Images. Remote Sens. 2021, 13, 1827. [Google Scholar] [CrossRef]
Es | Validation Data | Method | Key Metrics |
---|---|---|---|
CP | Landsat-8 NDVI yield | Remote sensing inversion | R2 = 0.72, RMSE = 0.61 t/km2 |
AP | Sentinel-2 aquaculture area | Remote sensing inversion | Accuracy = 68%, Bias = 13% |
WY | Runoff data from Chenglingji Hydrological Station | Field observation | NSE = 0.70, R2 = 0.75 |
SR | RUSLE-based soil erosion estimates [21] | Peer study reference | Spatial overlap = 70% |
FR | 2016/2020 flood storage measurements | Field observation | Relative error = 13% |
WP | TP concentration data from 7 wetland monitoring stations | Field observation | Output deviation (±10%) |
NPP | Landsat-8 CASA model | Remote sensing inversion | R2 = 0.80, RMSE = 45 gC/m2 |
HQ | Wintering waterbird habitat suitability index [27] | Peer study reference | Kappa coefficient = 0.75 |
Year | Type | 2020 | ||||||
---|---|---|---|---|---|---|---|---|
Cultivated Land | Forest Land | Grassland | Waters | Construction Land | Unused Land | Total | ||
2000 | cultivated land | 11,500 | 3540 | 89 | 1086 | 781 | 64 | 17,060 |
forest land | 3400 | 16,510 | 306 | 309 | 272 | 1 | 20,798 | |
grassland | 89 | 335 | 298 | 48 | 8 | 2 | 780 | |
waters | 1205 | 346 | 5 | 2846 | 91 | 444 | 4937 | |
construction land | 426 | 89 | 2 | 97 | 267 | 4 | 885 | |
unused land | 36 | 1 | 0 | 254 | 4 | 420 | 715 | |
total | 16,656 | 20,821 | 700 | 4640 | 1423 | 935 | 45,175 |
Ecosystem Service | CP | AP | WY | SR | FR | WP | NPP | HQ |
---|---|---|---|---|---|---|---|---|
β3 | 22.878 | 14.997 | 44.559 | 62.013 | 0.496 | 0.062 | 496.556 | 0.050 |
p-value (β3) | 0.037 | 0.049 | 0.049 | 0.042 | 0.054 | 0.081 | 0.076 | 0.079 |
ρ | 0.09 | 0.05 | 0.18 | 0.12 | 0.07 | 0.03 | 0.22 | 0.06 |
p-value (ρ) | 0.21 | 0.33 | 0.03 | 0.17 | 0.29 | 0.41 | 0.02 | 0.35 |
θ3 | 3.21 | 1.87 | 8.74 | 15.32 | 0.11 | 0.02 | 42.18 | 0.01 |
p-value (θ3) | 0.15 | 0.28 | 0.09 | 0.08 | 0.35 | 0.47 | 0.11 | 0.52 |
R2 | 0.753 | 0.301 | 0.876 | 0.240 | 0.424 | 0.310 | 0.244 | 0.440 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, Y.; Chen, X.; Zhuo, Y.; Zhu, L. Impacts of Land Use and Hydrological Regime on the Spatiotemporal Distribution of Ecosystem Services in a Large Yangtze River-Connected Lake Region. Water 2025, 17, 2337. https://doi.org/10.3390/w17152337
Huang Y, Chen X, Zhuo Y, Zhu L. Impacts of Land Use and Hydrological Regime on the Spatiotemporal Distribution of Ecosystem Services in a Large Yangtze River-Connected Lake Region. Water. 2025; 17(15):2337. https://doi.org/10.3390/w17152337
Chicago/Turabian StyleHuang, Ying, Xinsheng Chen, Ying Zhuo, and Lianlian Zhu. 2025. "Impacts of Land Use and Hydrological Regime on the Spatiotemporal Distribution of Ecosystem Services in a Large Yangtze River-Connected Lake Region" Water 17, no. 15: 2337. https://doi.org/10.3390/w17152337
APA StyleHuang, Y., Chen, X., Zhuo, Y., & Zhu, L. (2025). Impacts of Land Use and Hydrological Regime on the Spatiotemporal Distribution of Ecosystem Services in a Large Yangtze River-Connected Lake Region. Water, 17(15), 2337. https://doi.org/10.3390/w17152337