A Comprehensive Review of Applications and Environmental Risks of Waste Plastics in Asphalt Pavements
Abstract
1. Introduction
2. Waste Plastic Types and Modification Effects
2.1. Classification and Properties of Waste Plastics
2.2. Modification Mechanisms and Effects
3. Comparison of Modification Techniques and Properties
4. Environmental Impact Assessment
4.1. Toxic Emissions During Production
4.2. Microplastic Generation
4.3. Ecological Impacts
4.4. Human Health Risk
5. Mitigation and Sustainable Solutions
5.1. Optimization of Waste Plastic Types and Processing Methods
5.2. Enhancement of Recycling and Pre-Treatment Processes for Waste Plastics
5.3. Compatibilized Blending for Optimization
5.4. Risk Control During High-Temperature Processing
5.5. Degradation and Spread Control of Microplastics
6. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kan, M.; Wang, C.; Zhu, B.; Chen, W.Q.; Liu, Y.; Ren, Y.; Xu, M. Seven decades of plastic flows and stocks in the United States and pathways toward zero plastic pollution by 2050. J. Ind. Ecol. 2023, 27, 1538–1552. [Google Scholar] [CrossRef]
- Browning, S.; Beymer-Farris, B.; Seay, J.R. Addressing the challenges associated with plastic waste disposal and management in developing countries. Curr. Opin. Chem. Eng. 2021, 32, 100682. [Google Scholar] [CrossRef]
- Geyer, R.; Jambeck, J.R.; Law, K.L. Production, use, and fate of all plastics ever made. Sci. Adv. 2017, 3, e1700782. [Google Scholar] [CrossRef] [PubMed]
- Jambeck, J.R.; Geyer, R.; Wilcox, C.; Siegler, T.R.; Perryman, M.; Andrady, A.; Narayan, R.; Law, K.L. Plastic waste inputs from land into the ocean. Science 2015, 347, 768–771. [Google Scholar] [CrossRef] [PubMed]
- Lamba, P.; Kaur, D.P.; Raj, S.; Sorout, J. Recycling/reuse of plastic waste as construction material for sustainable development: A review. Environ. Sci. Pollut. Res. 2022, 29, 86156–86179. [Google Scholar] [CrossRef] [PubMed]
- Sridharan, S.; Kumar, M.; Singh, L.; Bolan, N.S.; Saha, M. Microplastics as an emerging source of particulate air pollution: A critical review. J. Hazard. Mater. 2021, 418, 126245. [Google Scholar] [CrossRef] [PubMed]
- Du, M.; Peng, X.; Zhang, H.; Ye, C.; Dasgupta, S.; Li, J.; Li, J.; Liu, S.; Xu, H.; Chen, C. Geology, environment, and life in the deepest part of the world’s oceans. Innovation 2021, 2, 100109. [Google Scholar] [CrossRef] [PubMed]
- Ghanem, H.; Chahal, S.; Khatib, J.; Elkordi, A. Experimental and Numerical Investigation of the Flexural Behavior of Mortar Beams Strengthened with Recycled Plastic Mesh. Sustainability 2023, 15, 5640. [Google Scholar] [CrossRef]
- Al-Tulaian, B.; Al-Shannag, M.; Al-Hozaimy, A. Recycled plastic waste fibers for reinforcing Portland cement mortar. Constr. Build. Mater. 2016, 127, 102–110. [Google Scholar] [CrossRef]
- Lee, J.U.; Hong, J.-Y. Comparison of surface modification methods for improving the compatibility of recycled plastic film-based aggregates. Polymers 2021, 13, 3956. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.-P.; Guo, Y.-X.; Wu, M.-Y.; Xiang, K.; Sun, S.-R. Review on structural damage rehabilitation and performance assessment of asphalt pavements. Rev. Adv. Mater. Sci. 2021, 60, 438–449. [Google Scholar] [CrossRef]
- Fernandes, S.R.M.; Silva, H.M.R.D.; Oliveira, J.R.M. Recycled stone mastic asphalt mixtures incorporating high rates of waste materials. Constr. Build. Mater. 2018, 187, 1–13. [Google Scholar] [CrossRef]
- Mashaan, N.S.; Chegenizadeh, A.; Nikraz, H.; Rezagholilou, A. Investigating the engineering properties of asphalt binder modified with waste plastic polymer. Ain Shams Eng. J. 2021, 12, 1569–1574. [Google Scholar] [CrossRef]
- Dalhat, M.A.; Al-Abdul Wahhab, H.I. Performance of recycled plastic waste modified asphalt binder in Saudi Arabia. Int. J. Pavement Eng. 2015, 18, 349–357. [Google Scholar] [CrossRef]
- Joohari, I.B.; Giustozzi, F. Chemical and high-temperature rheological properties of recycled plastics-polymer modified hybrid bitumen. J. Clean. Prod. 2020, 276, 123064. [Google Scholar] [CrossRef]
- Abdy, C.; Zhang, Y.; Wang, J.; Yang, Y.; Artamendi, I.; Allen, B. Pyrolysis of polyolefin plastic waste and potential applications in asphalt road construction: A technical review. Resour. Conserv. Recycl. 2022, 180, 106213. [Google Scholar] [CrossRef]
- Victory, W. A review on the utilization of waste material in asphalt pavements. Environ. Sci. Pollut. Res. 2022, 29, 27279–27282. [Google Scholar] [CrossRef] [PubMed]
- Le, V.-G.; Nguyen, M.-K.; Nguyen, H.-L.; Lin, C.; Hadi, M.; Hung, N.T.Q.; Hoang, H.-G.; Nguyen, K.N.; Tran, H.-T.; Hou, D. A comprehensive review of micro-and nano-plastics in the atmosphere: Occurrence, fate, toxicity, and strategies for risk reduction. Sci. Total Environ. 2023, 904, 166649. [Google Scholar] [CrossRef] [PubMed]
- Ugoeze, K.; Amogu, E.; Oluigbo, K.; Nwachukwu, N. Environmental and public health impacts of plastic wastes due to healthcare and food products packages: A Review. J. Environ. Sci. Public Health 2021, 5, 1–31. [Google Scholar]
- Zhang, L.; Yang, Y.; Lin, Y.; Chen, H. Human Health, Environmental Quality and Governance Quality: Novel Findings and Implications From Human Health Perspective. Front. Public Health 2022, 10, 890741. [Google Scholar] [CrossRef] [PubMed]
- Eze, C.G.; Nwankwo, C.E.; Dey, S.; Sundaramurthy, S.; Okeke, E.S. Food chain microplastics contamination and impact on human health: A review. Environ. Chem. Lett. 2024, 22, 1889–1927. [Google Scholar] [CrossRef]
- Nkwachukwu, O.I.; Chima, C.H.; Ikenna, A.O.; Albert, L. Focus on potential environmental issues on plastic world towards a sustainable plastic recycling in developing countries. Int. J. Ind. Chem. 2013, 4, 34. [Google Scholar] [CrossRef]
- Dubois, C.J.; Brown, H.; Serrat, C. Wet Processed Plastics in Asphalt. In Recycling Waste Plastics in Asphalt Pavements; National Academy of Sciences: Washington, DC, USA, 2020; p. 23. [Google Scholar]
- Ren, Y.; Shi, L.; Bardow, A.; Geyer, R.; Suh, S. Life-cycle environmental implications of China’s ban on post-consumer plastics import. Resour. Conserv. Recycl. 2020, 156, 104699. [Google Scholar] [CrossRef]
- Kumi-Larbi, A.J.; Yunana, D.; Kamsouloum, P.; Webster, M.; Wilson, D.C.; Cheeseman, C. Recycling waste plastics in developing countries: Use of low-density polyethylene water sachets to form plastic bonded sand blocks. Waste Manag. 2018, 80, 112–118. [Google Scholar] [CrossRef] [PubMed]
- Jordan, J.L.; Casem, D.T.; Bradley, J.M.; Dwivedi, A.K.; Brown, E.N.; Jordan, C.W. Mechanical properties of low density polyethylene. J. Dyn. Behav. Mater. 2016, 2, 411–420. [Google Scholar] [CrossRef]
- Hapuwatte, B.; Hartwell, A.; Triebe, M.J.; Chatterjee, A.; Mathur, N.; Figola, D.; Morris, K. Recovery pathway assessment of recycled HDPE for circular economy: Shorter-life vs longer-life products. ScienceDirect 2024, 122, 366–371. [Google Scholar] [CrossRef]
- Awad, A.H.; El Gamasy, R.; Abd El Wahab, A.; Abdellatif, M.H. Mechanical and Physical Properties of PP and HDPE. Eng. Sci 2019, 4, 34. [Google Scholar] [CrossRef]
- Guezzout, Z.; Boublia, A.; Haddaoui, N. Enhancing thermal and mechanical properties of polypropylene-nitrile butadiene rubber nanocomposites through graphene oxide functionalization. J. Polym. Res. 2023, 30, 207. [Google Scholar] [CrossRef]
- Shubhra, Q.T.H.; Alam, A.K.M.M.; Quaiyyum, M.A. Mechanical properties of polypropylene composites: A review. J. Thermoplast. Compos. Mater. 2013, 26, 362–391. [Google Scholar] [CrossRef]
- Tullo, A.H. Is ammonia the fuel of the future. Chem. Eng. News 2021, 99, 14–19. [Google Scholar]
- Meides, N.; Menzel, T.; Poetzschner, B.r.; Löder, M.G.J.; Mansfeld, U.; Strohriegl, P.; Altstaedt, V.; Senker, J.R. Reconstructing the environmental degradation of polystyrene by accelerated weathering. Environ. Sci. Technol. 2021, 55, 7930–7938. [Google Scholar] [CrossRef] [PubMed]
- Kudzin, M.H.; Piwowarska, D.; Festinger, N.; Chruściel, J.J. Risks associated with the presence of polyvinyl chloride in the environment and methods for its disposal and utilization. Materials 2024, 17, 173. [Google Scholar] [CrossRef] [PubMed]
- Titow, W.V. PVC Plastics: Properties, Processing, and Applications; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Aldagari, S.; Kabir, S.F.; Lamanna, A.; Fini, E.H. Functionalized waste plastic granules to enhance sustainability of bituminous composites. Resour. Conserv. Recycl. 2022, 183, 106353. [Google Scholar] [CrossRef]
- Girija, B.G.; Sailaja, R.R.N.; Madras, G. Thermal degradation and mechanical properties of PET blends. Polym. Degrad. Stab. 2005, 90, 147–153. [Google Scholar] [CrossRef]
- Costa, L.M.B.; Silva, H.M.R.D.; Oliveira, J.R.M.; Fernandes, S.R.M. Incorporation of Waste Plastic in Asphalt Binders to Improve their Performance in the Pavement. Chin. Soc. Pavement Eng. 2013, 6, 457–464. [Google Scholar] [CrossRef]
- Liang, M.; Xin, X.; Fan, W.; Zhang, J.; Jiang, H.; Yao, Z. Comparison of rheological properties and compatibility of asphalt modified with various polyethylene. Int. J. Pavement Eng. 2021, 22, 11–20. [Google Scholar] [CrossRef]
- Khan, I.M.; Kabir, S.; Alhussain, M.A.; Almansoor, F.F. Asphalt Design Using Recycled Plastic and Crumb-rubber Waste for Sustainable Pavement Construction. Procedia Eng. 2016, 145, 1557–1564. [Google Scholar] [CrossRef]
- Li, E.; Xu, W.; Zhang, Y. Performance Study of waste pe-modified high-grade asphalt. Polymers 2023, 15, 3200. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Han, Y.; Guangxun, E.; Sun, Y.; Wang, L.; Liu, X.; Ren, J.; Lin, Z. Recycling of waste polyethylene in asphalt and its performance enhancement methods: A critical literature review. J. Clean. Prod. 2024, 451, 142072. [Google Scholar] [CrossRef]
- Moghadas Nejad, F.; Azarhoosh, A.; Hamedi, G.H. Effect of high density polyethylene on the fatigue and rutting performance of hot mix asphalt–a laboratory study. Road Mater. Pavement Des. 2014, 15, 746–756. [Google Scholar] [CrossRef]
- Suksiripattanapong, C.; Uraikhot, K.; Tiyasangthong, S.; Wonglakorn, N.; Tabyang, W.; Jomnonkwao, S.; Phetchuay, C. Performance of asphalt concrete pavement reinforced with high-density polyethylene plastic waste. Infrastructures 2022, 7, 72. [Google Scholar] [CrossRef]
- Ibrahim, A.-H. Laboratory investigation of aged HDPE-modified asphalt mixes. Int. J. Pavement Res. Technol. 2019, 12, 364–369. [Google Scholar] [CrossRef]
- Oyelere, A.; Wu, S.; Hsiao, K.-T.; Kang, M.-W.; Dizbay-Onat, M.; Cleary, J.; Venkiteshwaran, K.; Wang, J.; Bao, Y. Evaluation of cracking susceptibility of asphalt binders modified with recycled high-density polyethylene and polypropylene microplastics. Constr. Build. Mater. 2024, 438, 136811. [Google Scholar] [CrossRef]
- Al-Hadidy, A.I. Engineering behavior of aged polypropylene-modified asphalt pavements. Constr. Build. Mater. 2018, 191, 187–192. [Google Scholar] [CrossRef]
- Ahmedzade, P.; Demirelli, K.; Günay, T.; Biryan, F.; Alqudah, O. Effects of Waste Polypropylene Additive on the Properties of Bituminous Binder. Procedia Manuf. 2015, 2, 165–170. [Google Scholar] [CrossRef]
- Fang, C.; Jiao, L.; Hu, J.; Yu, Q.; Guo, D.; Zhou, X.; Yu, R. Viscoelasticity of Asphalt Modified with Packaging Waste Expended Polystyrene. J. Mater. Sci. Technol. 2014, 30, 939–943. [Google Scholar] [CrossRef]
- Vila-Cortavitarte, M.; Lastra-González, P.; Calzada-Pérez, M.Á.; Indacoechea-Vega, I. Analysis of the influence of using recycled polystyrene as a substitute for bitumen in the behaviour of asphalt concrete mixtures. J. Clean. Prod. 2018, 170, 1279–1287. [Google Scholar] [CrossRef]
- Lastra-González, P.; Calzada-Perez, M.A.; Castro-Fresno, D.; Vega-Zamanillo, Á.; Indacoechea-Vega, I. Comparative analysis of the performance of asphalt concretes modified by dry way with polymeric waste. Constr. Build. Mater. 2016, 112, 1133–1140. [Google Scholar] [CrossRef]
- Ziari, H.; Nasiri, E.; Amini, A.; Ferdosian, O. The effect of EAF dust and waste PVC on moisture sensitivity, rutting resistance, and fatigue performance of asphalt binders and mixtures. Constr. Build. Mater. 2019, 203, 188–200. [Google Scholar] [CrossRef]
- Al-Shawabkeh, A.F.; Awwad, M.T.; Ikhries, I.I.; Abu-Hamatteh, Z.S.; Al-Najdawi, N.A. Assessing recycled polyvinyl chloride reinforced modified asphalt mixtures for sustainable paving applications. J. Clean. Prod. 2025, 486, 144583. [Google Scholar] [CrossRef]
- Fakhri, M.; Shahryari, E.; Ahmadi, T. Investigate the use of recycled polyvinyl chloride (PVC) particles in improving the mechanical properties of stone mastic asphalt (SMA). Constr. Build. Mater. 2022, 326, 126780. [Google Scholar] [CrossRef]
- Fahmy, E.A.; Youssef, A.M.; Ali, E.E.; Algabry, A.; Elbagalati, O. Evaluation of asphalt mixtures modified with polyethylene terephthalate (PET). Innov. Infrastruct. Solut. 2024, 9, 434. [Google Scholar] [CrossRef]
- Modarres, A.; Hamedi, H. Effect of waste plastic bottles on the stiffness and fatigue properties of modified asphalt mixes. Mater. Des. 2014, 61, 8–15. [Google Scholar] [CrossRef]
- Mashaan, N.; Chegenizadeh, A.; Nikraz, H. Laboratory properties of waste PET plastic-modified asphalt mixes. Recycling 2021, 6, 49. [Google Scholar] [CrossRef]
- Abdullah, A.Z.; Zhang, H.; Song, H.; Wongwuttanasatian, T. Effect of EVA Dosage and Type on the Properties of High Dose Desulfurized Rubber Modified Asphalt. E3S Web Conf. 2024, 597, 02003. [Google Scholar] [CrossRef]
- He, W.; Zhao, Z.; Yuan, J.; Xiao, F. Recent development of ethylene–vinyl acetate modified asphalt. Constr. Build. Mater. 2023, 363, 129800. [Google Scholar] [CrossRef]
- Ren, X.; Sha, A.; Jiang, W.; Wu, W.; Jiao, W.; Li, J.; Li, J. Effect of EVA on the rheological properties of SBR-modified asphalt binder and its behavioral evolution during the thermo-oxidative aging process. Constr. Build. Mater. 2024, 454, 139159. [Google Scholar] [CrossRef]
- Ranieri, M.; Costa, L.; Oliveira, J.R.M.; RD Silva, H.M.; Celauro, C. Asphalt surface mixtures with improved performance using waste polymers via dry and wet processes. J. Mater. Civ. Eng. 2017, 29, 04017169. [Google Scholar] [CrossRef]
- Huang, Y.; Bird, R.N.; Heidrich, O. A review of the use of recycled solid waste materials in asphalt pavements. Resour. Conserv. Recycl. 2007, 52, 58–73. [Google Scholar] [CrossRef]
- Bennert, T.; Ericson, C.; Haas, E.; Wass, E.; Tulanowski, D.; Cytowicz, N. Assessment of plastic waste modification to asphalt materials using the wet process. Transp. Res. Rec. 2024, 2679, 1144–1158. [Google Scholar] [CrossRef]
- Movilla-Quesada, D.; Raposeiras, A.C.; Silva-Klein, L.T.; Lastra-González, P.; Castro-Fresno, D. Use of plastic scrap in asphalt mixtures added by dry method as a partial substitute for bitumen. Waste Manag. 2019, 87, 751–760. [Google Scholar] [CrossRef] [PubMed]
- Attaelmanan, M.; Feng, C.P.; Al-Hadidy, A. Laboratory evaluation of HMA with high density polyethylene as a modifier. Constr. Build. Mater. 2011, 25, 2764–2770. [Google Scholar] [CrossRef]
- González, V.; Martínez-Boza, F.; Gallegos, C.; Pérez-Lepe, A.; Páez, A. A study into the processing of bitumen modified with tire crumb rubber and polymeric additives. Fuel Process. Technol. 2012, 95, 137–143. [Google Scholar] [CrossRef]
- Rossi, C.O.; Spadafora, A.; Teltayev, B.; Izmailova, G.; Amerbayev, Y.; Bortolotti, V. Polymer modified bitumen: Rheological properties and structural characterization. Colloids Surf. A Physicochem. Eng. Asp. 2015, 480, 390–397. [Google Scholar] [CrossRef]
- Presti, D.L. Recycled tyre rubber modified bitumens for road asphalt mixtures: A literature review. Constr. Build. Mater. 2013, 49, 863–881. [Google Scholar] [CrossRef]
- Ahmadinia, E.; Zargar, M.; Karim, M.R.; Abdelaziz, M.; Shafigh, P. Using waste plastic bottles as additive for stone mastic asphalt. Mater. Des. 2011, 32, 4844–4849. [Google Scholar] [CrossRef]
- Zoorob, S.; Suparma, L.B. Laboratory design and investigation of the properties of continuously graded Asphaltic concrete containing recycled plastics aggregate replacement (Plastiphalt). Cem. Concr. Compos. 2000, 22, 233–242. [Google Scholar] [CrossRef]
- Yin, J.; Wu, W. Utilization of waste nylon wire in stone matrix asphalt mixtures. Waste Manag. 2018, 78, 948–954. [Google Scholar] [CrossRef] [PubMed]
- Mehta, D.; Saboo, N.; Abraham, S.M.; Diwaker, U. A review on the use of waste plastics in hot mix asphalt. Mech. Time-Depend. Mater. 2024, 28, 2265–2308. [Google Scholar] [CrossRef]
- Li, Y.; Zhao, C.; Li, R.; Zhang, H.; He, Y.; Pei, J.; Lyu, L. Dry-process reusing the waste tire rubber and plastic in asphalt: Modification mechanism and mechanical properties. Constr. Build. Mater. 2025, 458, 139759. [Google Scholar] [CrossRef]
- Ashish, P.K.; Sreeram, A.; Xu, X.; Chandrasekar, P.; Jagadeesh, A.; Adwani, D.; Padhan, R.K. Closing the Loop: Harnessing waste plastics for sustainable asphalt mixtures–A comprehensive review. Constr. Build. Mater. 2023, 400, 132858. [Google Scholar] [CrossRef]
- Yin, F.; Fortunatus, M.; Moraes, R.; Elwardany, M.D.; Tran, N.; Planche, J.-P. Performance evaluation of asphalt mixtures modified with recycled polyethylene via the wet process. Transp. Res. Rec. 2021, 2675, 491–502. [Google Scholar] [CrossRef]
- Li, J.; Yan, G.; He, Z.; Chen, D.; Xu, Y.; Hu, R. Direct-Injection Asphalt Modification Scheme and Its Energy-Saving Effect Analysis. Urban Roads Bridges Flood Control. 2010, 12, 152–155. [Google Scholar]
- Enfrin, M.; Giustozzi, F. Recent advances in the construction of sustainable asphalt roads with recycled plastic. Polym. Int. 2022, 71, 1376–1383. [Google Scholar] [CrossRef]
- Singh, A.; Gupta, A. Upcycling of plastic waste in bituminous mixes using dry process: Review of laboratory to field performance. Constr. Build. Mater. 2024, 425, 136005. [Google Scholar] [CrossRef]
- Wu, S.; Montalvo, L. Repurposing waste plastics into cleaner asphalt pavement materials: A critical literature review. J. Clean. Prod. 2021, 280, 124355. [Google Scholar] [CrossRef]
- Boom, Y.J.; Enfrin, M.; Grist, S.; Giustozzi, F. Fuming and emissions of waste plastics in bitumen at high temperature. In Plastic Waste for Sustainable Asphalt Roads; Elsevier: Amsterdam, The Netherlands, 2022; pp. 235–257. [Google Scholar]
- Usman, I.U.; Kunlin, M. Influence of Polyethylene Terephthalate (PET) utilization on the engineering properties of asphalt mixtures: A review. Constr. Build. Mater. 2024, 411, 134439. [Google Scholar] [CrossRef]
- Rochman, C.M.; Manzano, C.; Hentschel, B.T.; Simonich, S.L.; Hoh, E. Polystyrene plastic: A source and sink for polycyclic aromatic hydrocarbons in the marine environment. Environ. Sci. Technol. 2013, 47, 13976–13984. [Google Scholar] [CrossRef] [PubMed]
- Boom, Y.J.; Enfrin, M.; Grist, S.; Giustozzi, F. Recycled plastic modified bitumen: Evaluation of VOCs and PAHs from laboratory generated fumes. Sci. Total Environ. 2022, 832, 155037. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Qin, Y.; Zhang, X.; Shan, B.; Liu, C. Emission characteristics, environmental impacts, and health risks of volatile organic compounds from asphalt materials: A state-of-the-art review. Energy Fuels 2024, 38, 4787–4802. [Google Scholar] [CrossRef]
- Ge, L.; Li, J.; Lin, Z.; Zhang, X.; Yao, Y.; Cheng, G.; Jiang, Y. Risk substance identification of asphalt VOCs integrating machine learning and network pharmacology. Transp. Res. Part D Transp. Environ. 2024, 136, 104434. [Google Scholar] [CrossRef]
- Guangxiong, J.; Bingguo, L.; Guolin, L.; Chao, Y.; Fang, P.; Siyu, G.; Shenghui, G.; Wang, C.; Keren, H. Research Progress on Gas Generation from Waste Plastics Through Pyrolysis. Korean J. Chem. Eng. 2024, 41, 2477–2493. [Google Scholar] [CrossRef]
- Boom, Y.J.; Enfrin, M.; Grist, S.; Giustozzi, F. Analysis of possible carcinogenic compounds in recycled plastic modified asphalt. Sci. Total Environ. 2023, 858, 159910. [Google Scholar] [CrossRef] [PubMed]
- Nizamuddin, S.; Boom, Y.J.; Giustozzi, F. Sustainable polymers from recycled waste plastics and their virgin counterparts as bitumen modifiers: A comprehensive review. Polymers 2021, 13, 3242. [Google Scholar] [CrossRef] [PubMed]
- Royer, S.-J.; Ferrón, S.; Wilson, S.T.; Karl, D.M. Production of methane and ethylene from plastic in the environment. PLoS ONE 2018, 13, e0200574. [Google Scholar] [CrossRef] [PubMed]
- Knaak, J.B.; Dary, C.; Zhang, X.; Gerlach, R.; Tornero-Velez, R.; Chang, D.; Goldsmith, R.; Blancato, J.; Whitacre, D. Reviews of Environmental Contamination and Toxicology; Springer Science: Berlin/Heidelberg, Germany, 2012; Volume 219, pp. 1–265. [Google Scholar]
- Yan, Y.; Zhu, F.; Zhu, C.; Chen, Z.; Liu, S.; Wang, C.; Gu, C. Dibutyl phthalate release from polyvinyl chloride microplastics: Influence of plastic properties and environmental factors. Water Res. 2021, 204, 117597. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y. Pollution Characteristics and Human Health Risk Assessment of Imported Recylced Plastic Particles. Master’s Thesis, Shenyang Architecture University, Shenyang, China, 2022. [Google Scholar]
- Fernandes, S.R.; Silva, H.M.; Oliveira, J.R. Carbon dioxide emissions and heavy metal contamination analysis of stone mastic asphalt mixtures produced with high rates of different waste materials. J. Clean. Prod. 2019, 226, 463–470. [Google Scholar] [CrossRef]
- Duarte, G.M.; Faxina, A.L. Asphalt concrete mixtures modified with polymeric waste by the wet and dry processes: A literature review. Constr. Build. Mater. 2021, 312, 125408. [Google Scholar] [CrossRef]
- Li, Y.; Feng, J.; Wu, S.; Chen, A.; Kuang, D.; Bai, T.; Gao, Y.; Zhang, J.; Li, L.; Wan, L. Review of ultraviolet ageing mechanisms and anti-ageing methods for asphalt binders. J. Road Eng. 2022, 2, 137–155. [Google Scholar] [CrossRef]
- Vethaak, A.D.; Legler, J. Microplastics and human health. Science 2021, 371, 672–674. [Google Scholar] [CrossRef] [PubMed]
- Syafei, A.D.; Nurasrin, N.R.; Assomadi, A.F.; Boedisantoso, R. Microplastic pollution in the ambient air of Surabaya, Indonesia. Curr. World Environ. 2019, 14, 290–298. [Google Scholar] [CrossRef]
- Arabani, M.; Pedram, M. Laboratory investigation of rutting and fatigue in glassphalt containing waste plastic bottles. Constr. Build. Mater. 2016, 116, 378–383. [Google Scholar] [CrossRef]
- Choudhary, R.; Kumar, A.; Murkute, K. Properties of waste polyethylene terephthalate (PET) modified asphalt mixes: Dependence on PET size, PET content, and mixing process. Period. Polytech. Civ. Eng. 2018, 62, 685–693. [Google Scholar] [CrossRef]
- Smyth, K.; Tan, S.; Van Seters, T.; Henderson, V.; Passeport, E.; Drake, J. Pavement wear generates microplastics in stormwater runoff. J. Hazard. Mater. 2025, 481, 136495. [Google Scholar] [CrossRef] [PubMed]
- Fang, C.; Zhang, M.; Zhang, Z.; Zhou, S. UV-aging resistance of packaging waste PE modified asphalts. Polym.-Plast. Technol. Eng. 2009, 48, 945–949. [Google Scholar] [CrossRef]
- Fang, C.; Zhou, S.; Zhang, M.; Zhao, S. Modification of waterproofing asphalt by PVC packaging waste. J. Vinyl Addit. Technol. 2009, 15, 229–233. [Google Scholar] [CrossRef]
- Fang, C.; Li, T.; Zhang, Z.; Wang, X. Combined modification of asphalt by waste PE and rubber. Polym. Compos. 2008, 29, 1183–1187. [Google Scholar] [CrossRef]
- Maul, J.; Frushour, B.G.; Kontoff, J.R.; Eichenauer, H.; Ott, K.-H.; Schade, C. Polystyrene and styrene copolymers. Ullmann’s Encycl. Ind. Chem. 2007, 29, 475–522. [Google Scholar]
- Enfrin, M.; Myszka, R.; Giustozzi, F. Paving roads with recycled plastics: Microplastic pollution or eco-friendly solution? J. Hazard. Mater. 2022, 437, 129334. [Google Scholar] [CrossRef] [PubMed]
- Humagain, S. Acid Rain (Formation and Effects). 2019. Available online: https://onlinesciencenotes.com/acid-rain-formation-and-effects/ (accessed on 21 May 2025).
- Zhang, X.; Zheng, M.; Liang, Y.; Liu, G.; Zhu, Q.; Gao, L.; Liu, W.; Xiao, K.; Sun, X. Particle size distributions and gas–particle partitioning of polychlorinated dibenzo-p-dioxins and dibenzofurans in ambient air during haze days and normal days. Sci. Total Environ. 2016, 573, 876–882. [Google Scholar] [CrossRef] [PubMed]
- Staniaszek, Z.; Griffiths, P.T.; Folberth, G.A.; O’Connor, F.M.; Abraham, N.L.; Archibald, A.T. The role of future anthropogenic methane emissions in air quality and climate. npj Clim. Atmos. Sci. 2022, 5, 21. [Google Scholar] [CrossRef]
- Afrasiabi, S.; Darghlou, M.F.; Mohammadi, Y.; Leili, M. Effects of short and long-term exposure to benzene, toluene, ethylbenzene, and xylenes (BTEX) in indoor environment air on human health: A systematic review and meta-analysis. J. Air Pollut. Health 2024, 5. [Google Scholar] [CrossRef]
- Yao, L.; Leng, Z.; Lan, J.; Chen, R.; Jiang, J. Environmental and economic assessment of collective recycling waste plastic and reclaimed asphalt pavement into pavement construction: A case study in Hong Kong. J. Clean. Prod. 2022, 336, 130405. [Google Scholar] [CrossRef]
- Salehi, S.; Arashpour, M.; Kodikara, J.; Guppy, R. Comparative life cycle assessment of reprocessed plastics and commercial polymer modified asphalts. J. Clean. Prod. 2022, 337, 130464. [Google Scholar] [CrossRef]
- Shen, H.; Huang, Y.; Wang, R.; Zhu, D.; Li, W.; Shen, G.; Wang, B.; Zhang, Y.; Chen, Y.; Lu, Y.; et al. Global atmospheric emissions of polycyclic aromatic hydrocarbons from 1960 to 2008 and future predictions. Environ. Sci. Technol. 2013, 47, 6415–6424. [Google Scholar] [CrossRef] [PubMed]
- Sakshi; Singh, S.K.; Haritash, A.K. Polycyclic aromatic hydrocarbons: Soil pollution and remediation. Int. J. Environ. Sci. Technol. 2019, 16, 6489–6512. [Google Scholar] [CrossRef]
- Mo, J.; Feng, J.; He, W.; Liu, Y.; Cao, N.; Tang, Y.; Gu, S. Effects of polycyclic aromatic hydrocarbons fluoranthene on the soil aggregate stability and the possible underlying mechanism. Environ. Sci. Pollut. Res. 2023, 30, 10245–10255. [Google Scholar] [CrossRef] [PubMed]
- Thavamani, P.; Malik, S.; Beer, M.; Megharaj, M.; Naidu, R. Microbial activity and diversity in long-term mixed contaminated soils with respect to polyaromatic hydrocarbons and heavy metals. J. Environ. Manag. 2012, 99, 10–17. [Google Scholar] [CrossRef] [PubMed]
- Sposito, G. The Chemistry of Soils; Oxford University Press: Oxford, UK, 2008. [Google Scholar]
- Bergmann, J.; Verbruggen, E.; Heinze, J.; Xiang, D.; Chen, B.; Joshi, J.; Rillig, M.C. The interplay between soil structure, roots, and microbiota as a determinant of plant–soil feedback. Ecol. Evol. 2016, 6, 7633–7644. [Google Scholar] [CrossRef] [PubMed]
- Fei, Y.; Huang, S.; Zhang, H.; Tong, Y.; Wen, D.; Xia, X.; Wang, H.; Luo, Y.; Barceló, D. Response of soil enzyme activities and bacterial communities to the accumulation of microplastics in an acid cropped soil. Sci. Total Environ. 2020, 707, 135634. [Google Scholar] [CrossRef] [PubMed]
- Huerta Lwanga, E.; Gertsen, H.; Gooren, H.; Peters, P.; Salánki, T.; Van Der Ploeg, M.; Besseling, E.; Koelmans, A.A.; Geissen, V. Microplastics in the terrestrial ecosystem: Implications for Lumbricus terrestris (Oligochaeta, Lumbricidae). Environ. Sci. Technol. 2016, 50, 2685–2691. [Google Scholar] [CrossRef] [PubMed]
- Qi, Y.; Yang, X.; Pelaez, A.M.; Lwanga, E.H.; Beriot, N.; Gertsen, H.; Garbeva, P.; Geissen, V. Macro-and micro-plastics in soil-plant system: Effects of plastic mulch film residues on wheat (Triticum aestivum) growth. Sci. Total Environ. 2018, 645, 1048–1056. [Google Scholar] [CrossRef] [PubMed]
- Horton, A.A.; Walton, A.; Spurgeon, D.J.; Lahive, E.; Svendsen, C. Microplastics in freshwater and terrestrial environments: Evaluating the current understanding to identify the knowledge gaps and future research priorities. Sci. Total Environ. 2017, 586, 127–141. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Wang, Q.; Jiang, N.; Lv, H.; Liang, C.; Yang, H.; Yao, X.; Wang, J. Occurrence, source, ecological risk, and mitigation of phthalates (PAEs) in agricultural soils and the environment: A review. Environ. Res. 2023, 220, 115196. [Google Scholar] [CrossRef] [PubMed]
- Mine, B.T.; Bruno Andreas, W.; Corina, P.; Lars, G.; Melanie, B.; Bernhard, B. The effects of plastic pollution on marine ecosystems. Res. Mar. Sci. 2023, 8, 173–186. [Google Scholar]
- Meaza, I.; Toyoda, J.H.; Wise, J.P., Sr. Microplastics in Sea Turtles, Marine Mammals and Humans: A One Environmental Health Perspective. Front. Environ. Sci 2020, 8, 575614. [Google Scholar] [CrossRef] [PubMed]
- Mercogliano, R.; Avio, C.G.; Regoli, F.; Anastasio, A.; Colavita, G.; Santonicola, S. Occurrence of Microplastics in Commercial Seafood under the Perspective of the Human Food Chain. A Review. J. Agric. Food Chem. 2020, 68, 5296–5301. [Google Scholar] [CrossRef] [PubMed]
- Gregory, M.R. Environmental implications of plastic debris in marine settings—Entanglement, ingestion, smothering, hangers-on, hitch-hiking and alien invasions. Philos. Trans. R. Soc. B Biol. Sci. 2009, 364, 2013–2025. [Google Scholar] [CrossRef] [PubMed]
- Sigler, M. The effects of plastic pollution on aquatic wildlife: Current situations and future solutions. Water Air Soil Pollut. 2014, 225, 2184. [Google Scholar] [CrossRef]
- Yu, R.-S.; Singh, S. Microplastic Pollution: Threats and Impacts on Global Marine Ecosystems. Sustainability 2023, 15, 13252. [Google Scholar] [CrossRef]
- Tato, T.; Salgueiro-González, N.; León, V.M.; González, S.; Beiras, R. Ecotoxicological evaluation of the risk posed by bisphenol A, triclosan, and 4-nonylphenol in coastal waters using early life stages of marine organisms (Isochrysis galbana, Mytilus galloprovincialis, Paracentrotus lividus, and Acartia clausi). Environ. Pollut. 2018, 232, 173–182. [Google Scholar] [CrossRef] [PubMed]
- Mohammadi, R.; Ameri, M. A systematic review on sustainable utilization of plastic waste in asphalt: Assessing environmental and health impact, performance, and economic viability. Environ. Sci. Pollut. Res. 2024, 31, 62676–62701. [Google Scholar] [CrossRef] [PubMed]
- Bharadwaaj, S.K.; Jaudan, M.; Kushwaha, P.; Saxena, A.; Saha, B. Exploring cutting-edge approaches in plastic recycling for a greener future. Results Eng. 2024, 23, 102704. [Google Scholar] [CrossRef]
- Bai, L.; Geng, X.; Liu, X. Review of polycyclic aromatic hydrocarbons pollution characteristics and carcinogenic risk assessment in global cooking environments. Environ. Pollut. 2024, 361, 124816. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Zhou, X.; Wang, C.; Zhou, H. Environmental and human health impacts of volatile organic compounds: A perspective review. Chemosphere 2023, 313, 137489. [Google Scholar] [CrossRef] [PubMed]
- Xu, F.; Zhao, Y.; Li, K. Using waste plastics as asphalt modifier: A review. Materials 2021, 15, 110. [Google Scholar] [CrossRef] [PubMed]
- Lindberg, H.K.; Väänänen, V.; Järventaus, H.; Suhonen, S.; Nygren, J.; Hämeilä, M.; Valtonen, J.; Heikkilä, P.; Norppa, H. Genotoxic effects of fumes from asphalt modified with waste plastic and tall oil pitch. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2008, 653, 82–90. [Google Scholar] [CrossRef] [PubMed]
- Lee, B.-K. Sources, distribution and toxicity of polyaromatic hydrocarbons (PAHs) in particulate matter. In Air Pollution; IntechOpen: London, UK, 2010. [Google Scholar]
- Rani, B.; Singh, U.; Chuhan, A.K.; Sharma, D.; Maheshwari, R. Photochemical smog pollution and its mitigation measures. J. Adv. Sci. Res. 2011, 2, 28–33. [Google Scholar]
- Kamrin, M.A. Workshop on the health effects of HCl in ambient air. Regul. Toxicol. Pharmacol. 1992, 15, 73–82. [Google Scholar] [CrossRef] [PubMed]
- Väänänen, V.; Elovaara, E.; Nykyri, E.; Santonen, T.; Heikkilä, P. Road pavers’ occupational exposure to asphalt containing waste plastic and tall oil pitch. J. Environ. Monit. 2006, 8, 89–99. [Google Scholar] [CrossRef] [PubMed]
- Lamplugh, A.; Harries, M.; Xiang, F.; Trinh, J.; Hecobian, A.; Montoya, L.D. Occupational exposure to volatile organic compounds and health risks in Colorado nail salons. Environ. Pollut. 2019, 249, 518–526. [Google Scholar] [CrossRef] [PubMed]
- Krismanuel, H.; Hairunisa, N. The effects of air pollution on respiratory problems: A literature review. Poltekita J. Ilmu Kesehat. 2024, 18, 1–15. [Google Scholar] [CrossRef]
- Choi, Y.-H.; Lee, J.-Y.; Moon, K.W. Exposure to volatile organic compounds and polycyclic aromatic hydrocarbons is associated with the risk of non-alcoholic fatty liver disease in Korean adolescents: Korea National Environmental Health Survey (KoNEHS) 2015–2017. Ecotoxicol. Environ. Saf. 2023, 251, 114508. [Google Scholar] [CrossRef] [PubMed]
- Salehpour, S.; Amani, R.; Nili-Ahmadabadi, A. Volatile organic compounds as a preventive health challenge in the petrochemical industries. Int. J. Prev. Med. 2019, 10, 194. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.; Yin, H.; He, X.; Chen, F.; Ali, A.; Mehta, Y.; Yan, B. Environmental impacts of reclaimed asphalt pavement on leaching of metals into groundwater. Transp. Res. Part D Transp. Environ. 2020, 85, 102415. [Google Scholar] [CrossRef] [PubMed]
- Ren, Z.; Gui, X.; Xu, X.; Zhao, L.; Qiu, H.; Cao, X. Microplastics in the soil-groundwater environment: Aging, migration, and co-transport of contaminants—A critical review. J. Hazard. Mater. 2021, 419, 126455. [Google Scholar] [CrossRef] [PubMed]
- Yee, M.S.-L.; Hii, L.-W.; Looi, C.K.; Lim, W.-M.; Wong, S.-F.; Kok, Y.-Y.; Tan, B.-K.; Wong, C.-Y.; Leong, C.-O. Impact of microplastics and nanoplastics on human health. Nanomaterials 2021, 11, 496. [Google Scholar] [CrossRef] [PubMed]
- Hahladakis, J.N.; Velis, C.A.; Weber, R.; Iacovidou, E.; Purnell, P. An overview of chemical additives present in plastics: Migration, release, fate and environmental impact during their use, disposal and recycling. J. Hazard. Mater. 2018, 344, 179–199. [Google Scholar] [CrossRef] [PubMed]
- Lü, H.; Mo, C.-H.; Zhao, H.-M.; Xiang, L.; Katsoyiannis, A.; Li, Y.-W.; Cai, Q.-Y.; Wong, M.-H. Soil contamination and sources of phthalates and its health risk in China: A review. Environ. Res. 2018, 164, 417–429. [Google Scholar] [CrossRef] [PubMed]
- Tashla, T.; Žuža, M.; Kenjveš, T.; Prodanović, R.; Soleša, D.; Bursić, V.; Petrović, A.; Pelić, D.L.; Bošković, J.; Puvača, N. Fish as an important bio-indicator of environmental pollution with persistent organic pollutants and heavy metals. J. Agron. 2018, 28, 273–283. [Google Scholar]
- Net, S.; Sempéré, R.; Delmont, A.; Paluselli, A.; Ouddane, B. Occurrence, fate, behavior and ecotoxicological state of phthalates in different environmental matrices. Environ. Sci. Technol. 2015, 49, 4019–4035. [Google Scholar] [CrossRef] [PubMed]
- Teeguarden, J.G.; Hanson-Drury, S. A systematic review of Bisphenol A “low dose” studies in the context of human exposure: A case for establishing standards for reporting “low-dose” effects of chemicals. Food Chem. Toxicol. 2013, 62, 935–948. [Google Scholar] [CrossRef] [PubMed]
- U.S. Environmental Protection Agency. National Primary Drinking Water Regulations; U.S. Environmental Protection Agency: Washington, DC, USA, 2025. Available online: https://www.epa.gov/ground-water-and-drinking-water/national-primary-drinking-water-regulations (accessed on 6 July 2025).
- World Health Organization. WHO Guidelines for Indoor Air Quality: Selected Pollutants; World Health Organization: Geneva, Switzerland, 2010; Available online: https://www.who.int/publications/i/item/9789289002134 (accessed on 6 July 2025).
- U.S. Environmental Protection Agency. Integrated Risk Information System; U.S. Environmental Protection Agency: Washington, DC, USA, 2025. Available online: https://www.epa.gov/iris (accessed on 6 July 2025).
- U.S. Environmental Protection Agency. Acute Exposure Guideline Levels for Airborne Chemicals; U.S. Environmental Protection Agency: Washington, DC, USA, 2025. Available online: https://www.epa.gov/aegl (accessed on 6 July 2025).
- World Health Organization. Dietary and Inhalation Exposure to Nano- and Microplastic Particles and Potential Implications for Human Health; World Health Organization: Geneva, Switzerland, 2023; Available online: https://www.who.int/publications/i/item/9789240054608 (accessed on 6 July 2025).
- Audy, R.; Enfrin, M.; Boom, Y.J.; Giustozzi, F. Selection of recycled waste plastic for incorporation in sustainable asphalt pavements: A novel multi-criteria screening tool based on 31 sources of plastic. Sci. Total Environ. 2022, 829, 154604. [Google Scholar] [CrossRef] [PubMed]
- Abuaddous, M.; Taamneh, M.M.; Rabab’ah, S.R. The potential use of recycled polyethylene terephthalate (RPET) plastic waste in asphalt binder. Int. J. Pavement Res. Technol. 2021, 14, 579–587. [Google Scholar] [CrossRef]
- Fang, C.; Liu, P.; Yu, R.; Liu, X. Preparation process to affect stability in waste polyethylene-modified bitumen. Constr. Build. Mater. 2014, 54, 320–325. [Google Scholar] [CrossRef]
- Padhan, R.K.; Mohanta, C.; Sreeram, A.; Gupta, A. Rheological evaluation of bitumen modified using antistripping additives synthesised from waste polyethylene terephthalate (PET). Int. J. Pavement Eng. 2020, 21, 1083–1091. [Google Scholar] [CrossRef]
- Vargas, M.A.; Vargas, M.A.; Sánchez-Sólis, A.; Manero, O. Asphalt/polyethylene blends: Rheological properties, microstructure and viscosity modeling. Constr. Build. Mater. 2013, 45, 243–250. [Google Scholar] [CrossRef]
- Ahmedzade, P.; Fainleib, A.; Günay, T.; Grygoryeva, O. Modification of bitumen by electron beam irradiated recycled low density polyethylene. Constr. Build. Mater. 2014, 69, 1–9. [Google Scholar] [CrossRef]
- Chen, L.; Shen, X.; Zhang, Y.F. Recent advances in self-healing polymer-modified asphalt utilizing dynamic covalent bonds. J. Polym. Res. 2025, 32, 21. [Google Scholar] [CrossRef]
- Vargas, C.; El Hanandeh, A. Systematic literature review, meta-analysis and artificial neural network modelling of plastic waste addition to bitumen. J. Clean. Prod. 2021, 280, 124369. [Google Scholar] [CrossRef]
- Yan, K.; Hong, Z.; You, L.; Ou, J.; Miljković, M. Influence of ethylene-vinyl acetate on the performance improvements of low-density polyethylene-modified bitumen. J. Clean. Prod. 2021, 278, 123865. [Google Scholar] [CrossRef]
- Yu, H.; Li, S.; Qian, G.; Gong, X.; Wang, K. Experiment evaluation on the surface treatment of phosphorus slag (PS) micropowder for asphalt modification. Constr. Build. Mater. 2020, 262, 119931. [Google Scholar] [CrossRef]
- Peng, B.; Tang, X.F. Study on anti aging performance of nano material composite plastic modified asphalt and pavement performance of its mixture. Highw. Eng. 2025, 50, 214–220. [Google Scholar]
- Desseaux, S.; dos Santos, S.; Geiger, T.; Tingaut, P.; Zimmermann, T.; Partl, M.N.; Poulikakos, L.D. Improved mechanical properties of bitumen modified with acetylated cellulose fibers. Compos. Part B Eng. 2018, 140, 139–144. [Google Scholar] [CrossRef]
- Chen, Y.; Xu, S.; Tebaldi, G.; Romeo, E. Role of mineral filler in asphalt mixture. Road Mater. Pavement Des. 2022, 23, 247–286. [Google Scholar] [CrossRef]
- Mei, M.; Pan, P.; Hu, X.D. Effect of seashell powder on the road performance of asphalt and asphalt mixture. Highw. Eng. 2024, 49, 118–123. [Google Scholar]
- Zhang, X.; Zhang, J.; Li, J.; Zhu, H.; Ou, L.; Shan, B. Rheological and anti-aging properties of modified asphalt with surface-modified calcium sulfate whiskers. Constr. Build. Mater. 2025, 489, 142205. [Google Scholar] [CrossRef]
- Liang, M.; Sun, C.; Yao, Z.; Jiang, H.; Zhang, J.; Ren, S. Utilization of wax residue as compatibilizer for asphalt with ground tire rubber/recycled polyethylene blends. Constr. Build. Mater. 2020, 230, 116966. [Google Scholar] [CrossRef]
- Zhang, Z.; Jiang, Z.; Shangguan, W. Low-temperature catalysis for VOCs removal in technology and application: A state-of-the-art review. Catal. Today 2016, 264, 270–278. [Google Scholar] [CrossRef]
- Rowland, R.G.; Dong, J.; Migdal, C.A. Antioxidants. In Lubricant Additives; CRC Press: Boca Raton, FL, USA, 2017; pp. 3–36. [Google Scholar]
- Asawakosinchai, A.; Jubsilp, C.; Rimdusit, S. Organic based heat stabilizers for PVC: A safer and more environmentally friendly alternatives. Key Eng. Mater. 2015, 659, 321–326. [Google Scholar]
- Tian, X.; Bian, X.; Zeng, Z.; Xu, J.; Dai, A.; Ke, L.; Zeng, Y.; Wu, Q.; Liu, Y.; Cobb, K. Production of monocyclic aromatic hydrocarbons by segmented in situ and ex situ two-stage coupled catalytic co-pyrolysis of biomass and waste plastics. Green Chem. 2022, 24, 9191–9202. [Google Scholar] [CrossRef]
- García-Haba, E.; Benito-Kaesbach, A.; Hernández-Crespo, C.; Sanz-Lazaro, C.; Martín, M.; Andrés-Doménech, I. Removal and fate of microplastics in permeable pavements: An experimental layer-by-layer analysis. Sci. Total Environ. 2024, 929, 172627. [Google Scholar] [CrossRef] [PubMed]
- Lv, L.; Yan, X.; Feng, L.; Jiang, S.; Lu, Z.; Xie, H.; Sun, S.; Chen, J.; Li, C. Challenge for the detection of microplastics in the environment. Water Environ. Res. 2021, 93, 5–15. [Google Scholar] [CrossRef] [PubMed]
- Saghafi, M.; Tabatabaee, N.; Nazarian, S. Performance evaluation of slurry seals containing reclaimed asphalt pavement. Transp. Res. Rec. 2019, 2673, 358–368. [Google Scholar] [CrossRef]
Types | Melting Point (°C) | Main Sources | Mechanical Properties | Environmental Considerations | Ref |
---|---|---|---|---|---|
LDPE | 110–120 | Plastic wraps and bags; soft drink and water bottles; trays and containers | Low stiffness and strength; high ductility | Generally low toxicity; limited recycling options. | [25,26] |
HDPE | 135 | Plastic bottles and packaging; plastic chairs/stools; toys; playground equipment | Moderate stiffness; low strength and ductility | Widely recyclable and has a low environmental impact. | [27,28] |
PP | 160–170 | Straws; furniture; reusable plastic containers; plastic moldings | Medium stiffness; low strength; high ductility; chemical resistance | Less commonly recycled, leading to potential waste issues | [29,30] |
PS | 230–240 | Disposable utensils; CD and DVD casings; carry-out containers; foam beverage cups | High stiffness and strength; very low ductility | Often not recyclable; can break into microplastics | [31,32] |
PVC | 160–210 | Pipes; construction materials; sign boards | High stiffness; medium strength and ductility | Potential release of toxic substances. | [33,34] |
PET | 250 | Soft drink and water bottles; food packaging | High stiffness and strength; medium ductility | Highly recyclable; potential microplastic pollution. | [35,36] |
Type | Compatibility (Molecular Structure/ Melting Point) | High-Temperature Stability (Complex Modulus (G *), Phase Angle (δ)) | Low-Temperature Crack Resistance (BBR Test Values/ MCI/Brittleness) | Anti-Fatigue Property (Aging Index/ Fatigue Life (Nf)) | Ref |
---|---|---|---|---|---|
LDPE | ↑ | ↑↑ | ↓ | ↑ | [38,39,40,41] |
HDPE | ↓ | ↑↑ | ↓ | ↑ | [42,43,44,45] |
PP | ↑ | ↑↑ | ↓ | ↑ | [46,47] |
PS | ↓ | ↑ | ↓ | ↓ | [48,49,50] |
PVC | ↓ | ↑ | ↑ | ↑ | [51,52,53] |
PET | ↓ | ↑↑ | ↓ | ↑ | [54,55,56] |
EVA | ↑↑ | ↑↑ | ↑ | ↑↑ | [57,58,59] |
Aspect | Wet Process | Dry Process |
---|---|---|
Process Description | Waste plastics are first melted and blended with asphalt before being mixed with aggregates. | Waste plastics are first added to hot aggregates and then mixed with asphalt. |
Plastic Types | Soluble in specific solvents or compatible with asphalt. | Requires high melting points (>180 °C) and thermal stability. |
Performance Outcomes | Extended compatibility and service life; greater resistance to fatigue and permanent plastic deformation; uncertain long-term storage stability. | Improved Marshall stability, ITS values, and TSR; relatively low compatibility and durability |
Processing Conditions | Complex and stringent processing procedure; specialized equipment; higher costs. | Simpler processing procedure; general equipment; more cost-effective. |
Environmental Impacts | Higher energy consumption; more likely to promote the degradation of microplastics. | Lower energy consumption and microplastics; may generate more dust and airborne particles. |
Substance | Specific Compounds | Emissions Volume | Emission Scenarios | Associated Risks | References |
---|---|---|---|---|---|
PAHs | Pyrene; acenaphthene; phenanthrene; fluorene | 0.4–6.7 µg/m3 | Whole stages of production | Carcinogenic; respiratory irritation | [79,80,81,82] |
Volatile Organic Compounds (VOCs) | Benzene; styrene; trichloroethylene; tetrachloroethylene | 0.2–4.5 µg/m3 | High-temperature processing | Air contamination; endocrine disruption | [83,84,85,86] |
Chlorinated Compounds | HCl; other chlorinated gases | Massive | Thermal degradation | Damage to instruments and the environment | [87] |
Greenhouse Gases | Methane; ethylene | 10–5100 pmol g−1d−1 | Exposure to solar radiation | Contributes to climate change | [88] |
Plastic Additives | Phthalates; bisphenol A | 1–2 mg/L | Long-term use | Endocrine disruption | [89,90] |
Heavy Metals | Chromium; copper; lead; nickel; zinc | 0.25–0.51 mg/kg | Degradation over lifecycle | Environmental contamination; toxicity | [91,92] |
Pollutant | Exposure Pathway | Health Risks and Regulatory Threshold | Guideline Level | Source |
---|---|---|---|---|
PAHs | Respiratory; dermal; digestible | Carcinogenicity (0.2 µg/L) | MCL | EPA NPDWR [151] |
VOCs | Respiratory; Dermal | Hematotoxicity (1.7 µg/m3); neurotoxicity (5 mg/m3); carcinogenicity (5 µg/m3) respiratory irritation (0.1 mg/m3) | RfC; MCL | WHO; EPA IRIS; EPA NPDWR [151,152,153] |
HCL | Respiratory | Upper-airway irritation (2 mg/m3) | AEGL-1 | EPA AEGL [154] |
Heavy Metals | Digestible | Carcinogenicity (10 µg/L); neurodevelopmental effects (15 µg/L) | Action Level | EPA NPDWR [151] |
Plastic Additives | Digestible | Reproductive/developmental toxicity (20 µg/kg); endocrine disruption (50 µg/kg) | RfC | EPA IRIS [153] |
Microplastics | Digestible | Physical damage; apoptosis; inflammation; oxidative stress and immune responses (no guideline) | Under review | WHO [155] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pan, J.; Li, J.; Shan, B.; Yao, Y.; Huang, C. A Comprehensive Review of Applications and Environmental Risks of Waste Plastics in Asphalt Pavements. Materials 2025, 18, 3441. https://doi.org/10.3390/ma18153441
Pan J, Li J, Shan B, Yao Y, Huang C. A Comprehensive Review of Applications and Environmental Risks of Waste Plastics in Asphalt Pavements. Materials. 2025; 18(15):3441. https://doi.org/10.3390/ma18153441
Chicago/Turabian StylePan, Ju, Jue Li, Bailin Shan, Yongsheng Yao, and Chao Huang. 2025. "A Comprehensive Review of Applications and Environmental Risks of Waste Plastics in Asphalt Pavements" Materials 18, no. 15: 3441. https://doi.org/10.3390/ma18153441
APA StylePan, J., Li, J., Shan, B., Yao, Y., & Huang, C. (2025). A Comprehensive Review of Applications and Environmental Risks of Waste Plastics in Asphalt Pavements. Materials, 18(15), 3441. https://doi.org/10.3390/ma18153441