Impacts of Various Straw Mulching Strategies on Soil Water, Nutrients, Thermal Regimes, and Yield in Wheat–Soybean Rotation Systems
Abstract
1. Introduction
2. Materials and Methods
2.1. Overview of the Study Area
2.2. Experimental Design
2.3. Measurement Indicators
2.3.1. Soil Mass Water Content
2.3.2. Soil Temperature Measurement
2.3.3. Crop Dry Matter and Yield
2.3.4. Soil Nutrients
2.3.5. Soil Bulk Density
2.3.6. Coefficient of Variation
2.3.7. Structural Equation Modeling
2.4. Data Processing
3. Results
3.1. Effect of Straw Mulching on Soil Water Content
3.1.1. Changes in Soil Profile Water Content Under Winter Wheat Cultivation
3.1.2. Changes in Soil Profile Water Content Under Soybean Cultivation
3.2. Effect of Straw Mulching on Soil Temperature
3.3. Effects of Straw Mulching on Soil Nutrients
3.4. Effect of Straw Mulching on Crop Dry Matter, Yield, and Yield Components
3.4.1. Effect of Straw Mulching on Crop Dry Matter
3.4.2. Effects of Straw Mulching on Crop Yield and Their Components
3.5. Crop Yield Drivers
3.5.1. Wheat Yield Drivers
3.5.2. Soybean Yield Drivers
4. Discussion
4.1. Effects of Straw Return Patterns on Soil Water, Nutrients, and Temperature
4.2. Effects of Straw Return Patterns on Crop Dry Matter Accumulation, Yield, and Yield Components
4.3. Drivers of Wheat and Soybean Yield Under Straw Return
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fischer, K.; Vico, G.; Röcklinsberg, H.; Liljenström, H.; Bommarco, R. Progress towards Sustainable Agriculture Hampered by Siloed Scientific Discourses. Nat. Sustain. 2025, 8, 66–74. [Google Scholar] [CrossRef]
- Teng, J.; Hou, R.; Dungait, J.A.J.; Zhou, G.; Kuzyakov, Y.; Zhang, J.; Tian, J.; Cui, Z.; Zhang, F.; Delgado-Baquerizo, M. Conservation Agriculture Improves Soil Health and Sustains Crop Yields after Long-Term Warming. Nat. Commun. 2024, 15, 8785. [Google Scholar] [CrossRef] [PubMed]
- Futa, B.; Gmitrowicz-Iwan, J.; Skersienė, A.; Šlepetienė, A.; Parašotas, I. Innovative Soil Management Strategies for Sustainable Agriculture. Sustainability 2024, 16, 9481. [Google Scholar] [CrossRef]
- Chen, L.; Sun, S.; Yao, B.; Peng, Y.; Gao, C.; Qin, T.; Zhou, Y.; Sun, C.; Quan, W. Effects of Straw Return and Straw Biochar on Soil Properties and Crop Growth: A Review. Front. Plant Sci. 2022, 13, 986763. [Google Scholar] [CrossRef] [PubMed]
- Bogunović, I.; Hrelja, I.; Kisić, I.; Dugan, I.; Krevh, V.; Defterdarović, J.; Filipović, V.; Filipović, L.; Pereira, P. Straw Mulch Effect on Soil and Water Loss in Different Growth Phases of Maize Sown on Stagnosols in Croatia. Land 2023, 12, 765. [Google Scholar] [CrossRef]
- Fan, D.; Jia, G.; Wang, Y.; Yu, X. The Effectiveness of Mulching Practices on Water Erosion Control: A Global Meta-Analysis. Geoderma 2023, 438, 116643. [Google Scholar] [CrossRef]
- Brezinscak, L.; Bogunovic, I. Optimizing Tillage and Straw Management for Improved Soil Physical Properties and Yield. Land 2025, 14, 376. [Google Scholar] [CrossRef]
- Xu, J.; Song, F.; Wang, Z.; Qi, Z.; Liu, M.; Guan, S.; Sun, J.; Li, S.; Zhao, J. Effects of Different Straw Return Methods on the Soil Structure, Organic Carbon Content and Maize Yield of Black Soil Farmland. Agronomy 2024, 14, 2011. [Google Scholar] [CrossRef]
- Abdelghany, A.M.; Farouk, A.S.; Alwakel, E.S.; Ebaid, M.; Naser, M.; Lamlom, S.F.; Shehab, A.A. Improving Maize Yield in Newly Reclaimed Soils: Effects of Irrigation, Mulching, and Foliar Treatments. BMC Plant Biol. 2025, 25, 634. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Wang, L.; Chang, L.; Khan, I.; Nadeem, F.; Rehman, A.; Suo, R. Evaluating the Influence of Straw Mulching and Intercropping on Nitrogen Uptake, Crop Growth, and Yield Performance in Maize and Soybean. Front. Plant Sci. 2023, 14, 1280382. [Google Scholar] [CrossRef] [PubMed]
- Akhtar, K.; Wang, W.; Djalovic, I.; Prasad, P.V.V.; Ren, G.; Ain, N.U.; Riaz, M.; Feng, Y.; Yang, G.; Wen, R. Combining Straw Mulch with Nitrogen Fertilizer Improves Soil and Plant Physio-Chemical Attributes, Physiology, and Yield of Maize in the Semi-Arid Region of China. Plants 2023, 12, 3308. [Google Scholar] [CrossRef] [PubMed]
- Qin, W.; Hu, C.; Oenema, O. Soil Mulching Significantly Enhances Yields and Water and Nitrogen Use Efficiencies of Maize and Wheat: A Meta-Analysis. Sci. Rep. 2015, 5, 16210. [Google Scholar] [CrossRef] [PubMed]
- Yin, W.; Fan, Z.; Hu, F.; Fan, H.; He, W.; Zhao, C.; Yu, A.; Chai, Q. No-Tillage with Straw Mulching Promotes Wheat Production via Regulating Soil Drying-Wetting Status and Reducing Soil-Air Temperature Variation at Arid Regions. Eur. J. Agron. 2023, 145, 126778. [Google Scholar] [CrossRef]
- de Freitas, V.F.; Cerezini, P.; Hungria, M.; Nogueira, M.A. Strategies to Deal with Drought-Stress in Biological Nitrogen Fixation in Soybean. Appl. Soil Ecol. 2022, 172, 104352. [Google Scholar] [CrossRef]
- Liu, W.; He, C.; Han, S.; Lin, B.; Liu, W.; Dang, Y.P.; Zhao, X.; Zhang, H. Enhancing Soil Ecosystem Multifunctionality through Combined Conservation Tillage and Legume-Based Crop Rotation in the North China Plain. Agric. Ecosyst. Environ. 2025, 379, 109355. [Google Scholar] [CrossRef]
- Ousayd, L.; Epule, T.E.; Belaqziz, S.; Ongoma, V.; Amazirh, A.; Chehbouni, A. The Impact of Precipitation, Temperature, and Soil Moisture on Wheat Yield Gap Quantification: Evidence from Morocco. Agric. Food Secur. 2025, 13, 55. [Google Scholar] [CrossRef]
- Serafin-Andrzejewska, M.; Jama-Rodzeńska, A.; Helios, W.; Kozak, M.; Lewandowska, S.; Zalewski, D.; Kotecki, A. Influence of Nitrogen Fertilization, Seed Inoculation and the Synergistic Effect of These Treatments on Soybean Yields under Conditions in South-Western Poland. Sci. Rep. 2024, 14, 6672. [Google Scholar] [CrossRef] [PubMed]
- Hu, C.; Zheng, C.; Sadras, V.O.; Ding, M.; Yang, X.; Zhang, S. Effect of Straw Mulch and Seeding Rate on the Harvest Index, Yield and Water Use Efficiency of Winter Wheat. Sci. Rep. 2018, 8, 8167. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Wei, T.; Wang, H.; Wang, M.; Meng, X.; Mou, S.; Zhang, R.; Jia, Z.; Han, Q. Effects of Straw Mulch on Soil Water and Winter Wheat Production in Dryland Farming. Sci. Rep. 2015, 5, 10725. [Google Scholar] [CrossRef] [PubMed]
- Heinemann, H.; Durand-Maniclas, F.; Seidel, F.; Ciulla, F.; Bárcena, T.G.; Camenzind, M.; Corrado, S.; Csűrös, Z.; Czakó, Z.; Eylenbosch, D.; et al. Optimising Root and Grain Yield Through Variety Selection in Winter Wheat Across a European Climate Gradient. Eur. J. Soil Sci. 2025, 76, e70077. [Google Scholar] [CrossRef]
- Liu, S.; Begum, N.; An, T.; Zhao, T.; Xu, B.; Zhang, S.; Deng, X.; Lam, H.-M.; Nguyen, H.T.; Siddique, K.H.M.; et al. Characterization of Root System Architecture Traits in Diverse Soybean Genotypes Using a Semi-Hydroponic System. Plants 2021, 10, 2781. [Google Scholar] [CrossRef] [PubMed]
- Fan, J.; McConkey, B.; Wang, H.; Janzen, H. Root Distribution by Depth for Temperate Agricultural Crops. Field Crops Res. 2016, 189, 68–74. [Google Scholar] [CrossRef]
- Luo, W.; Zai, X.; Sun, J.; Li, D.; Li, Y.; Li, G.; Wei, G.; Chen, W. Coupling Root Diameter With Rooting Depth to Reveal the Heterogeneous Assembly of Root-Associated Bacterial Communities in Soybean. Front. Microbiol. 2021, 12, 783563. [Google Scholar] [CrossRef] [PubMed]
- Han, G.; Tan, J.; Wang, X.; Li, H.; Shang, Q.; Tian, J. Response of Soil Temperature to Soil Moisture Content and Meteorological Elements with Gravel-Sand Mulching. Land 2025, 14, 853. [Google Scholar] [CrossRef]
- Siatwiinda, S.M.; Ros, G.H.; Yerokun, O.A.; de Vries, W. Options to Reduce Ranges in Critical Soil Nutrient Levels Used in Fertilizer Recommendations by Accounting for Site Conditions and Methodology: A Review. Agron. Sustain. Dev. 2024, 44, 9. [Google Scholar] [CrossRef]
- Tama, R.A.Z.; Hoque, M.M.; Liu, Y.; Alam, M.J.; Yu, M. An Application of Partial Least Squares Structural Equation Modeling (PLS-SEM) to Examining Farmers’ Behavioral Attitude and Intention towards Conservation Agriculture in Bangladesh. Agriculture 2023, 13, 503. [Google Scholar] [CrossRef]
- Sarstedt, M.; Ringle, C.M. Structural Equation Models: From Paths to Networks (Westland 2019). Psychometrika 2020, 85, 841–844. [Google Scholar] [CrossRef]
- Tang, Y.; Yuan, Y.; Tian, B. Analysis of the Driving Mechanism of Land Comprehensive Carrying Capacity from the Perspective of Urban Renewal. Land 2023, 12, 1377. [Google Scholar] [CrossRef]
- Bocean, C.G. A Longitudinal Analysis of the Impact of Digital Technologies on Sustainable Food Production and Consumption in the European Union. Foods 2024, 13, 1281. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Jiao, Y.; Dou, W.; Zhang, W.; Pei, W. Compensation Effect and Mechanism of Nitrogen Reduction Combined with Biochar Application on Soil Fertility and Rice Yield. Trans. Chin. Soc. Agric. Mach. 2024, 55, 391–401. [Google Scholar]
- Maaz, T.M.; Heck, R.H.; Glazer, C.T.; Loo, M.K.; Zayas, J.R.; Krenz, A.; Beckstrom, T.; Crow, S.E.; Deenik, J.L. Measuring the Immeasurable: A Structural Equation Modeling Approach to Assessing Soil Health. Sci. Total Environ. 2023, 870, 161900. [Google Scholar] [CrossRef] [PubMed]
- Chang, F.; Wang, X.; Song, J.; Zhang, H.; Yu, R.; Wang, J.; Liu, J.; Wang, S.; Ji, H.; Li, Y. Maize Straw Application as an Interlayer Improves Organic Carbon and Total Nitrogen Concentrations in the Soil Profile: A Four-Year Experiment in a Saline Soil. J. Integr. Agric. 2023, 22, 1870–1882. [Google Scholar] [CrossRef]
- Li, M.; Wang, W.; Wang, X.; Yao, C.; Wang, Y.; Wang, Z.; Zhou, W.; Chen, E.; Chen, W. Effect of Straw Mulching and Deep Burial Mode on Water and Salt Transport Regularity in Saline Soils. Water 2023, 15, 3227. [Google Scholar] [CrossRef]
- Chen, J.; Xie, X.; Zheng, X.; Xue, J.; Miao, C.; Du, Q.; Xu, Y. Effect of Straw Mulch on Soil Evaporation during Freeze–Thaw Periods. Water 2019, 11, 1689. [Google Scholar] [CrossRef]
- Li, H.; Liu, P.; Zhang, H.; Liu, X.; Chang, L.; Sun, W. Corn Straw Mulching Mechanized No-Tillage Approach Optimizes Farmland Soil Temperature to Increase Potato Yield in Regions of Northwestern China. Agronomy 2024, 14, 2483. [Google Scholar] [CrossRef]
- Dahiya, R.; Ingwersen, J.; Streck, T. The Effect of Mulching and Tillage on the Water and Temperature Regimes of a Loess Soil: Experimental Findings and Modeling. Soil Tillage Res. 2007, 96, 52–63. [Google Scholar] [CrossRef]
- Iqbal, R.; Raza, M.A.S.; Valipour, M.; Saleem, M.F.; Zaheer, M.S.; Ahmad, S.; Toleikiene, M.; Haider, I.; Aslam, M.U.; Nazar, M.A. Potential Agricultural and Environmental Benefits of Mulches—A Review. Bull. Natl. Res. Cent. 2020, 44, 75. [Google Scholar] [CrossRef]
- Li, Y.; Chai, S.; Chai, Y.; Li, R.; Lan, X.; Ma, J.; Cheng, H.; Chang, L. Effects of Mulching on Soil Temperature and Yield of Winter Wheat in the Semiarid Rainfed Area. Field Crops Res. 2021, 271, 108244. [Google Scholar] [CrossRef]
- Noor, M.A.; Nawaz, M.M.; Ma, W.; Zhao, M. Wheat Straw Mulch Improves Summer Maize Productivity and Soil Properties. Ital. J. Agron. 2021, 16, 1623. [Google Scholar] [CrossRef]
- Tang, M.; Liu, R.; Li, H.; Gao, X.; Wu, P.; Zhang, C. Optimizing Soil Moisture Conservation and Temperature Regulation in Rainfed Jujube Orchards of China’s Loess Hilly Areas Using Straw and Branch Mulching. Agronomy 2023, 13, 2121. [Google Scholar] [CrossRef]
- Liu, Z.; Zhang, M.; Wang, Z.; Shen, Y.; Zhang, D.; Zhang, S.; Qi, X.; Zhang, X.; Sun, T.; Tian, S.; et al. Responses of Soil Nutrients, Enzyme Activities, and Maize Yield to Straw and Plastic Film Mulching in Coastal Saline-Alkaline. Plant Soil Environ. 2024, 70, 40–47. [Google Scholar] [CrossRef]
- Liu, R.; Borjigin, Q.; Gao, J.; Yu, X.; Hu, S.; Li, R. Effects of Different Straw Return Methods on Soil Properties and Yield Potential of Maize. Sci. Rep. 2024, 14, 28682. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Reichel, R.; Xu, Z.; Vereecken, H.; Brüggemann, N. Return of Crop Residues to Arable Land Stimulates N2O Emission but Mitigates NO3− Leaching: A Meta-Analysis. Agron. Sustain. Dev. 2021, 41, 66. [Google Scholar] [CrossRef]
- Piccolo, M.d.C.; Victoria, R.L. Dinâmica do Nitrogênio Incorporado na Forma Orgânica em Solos de Várzea e Terra Firme na Amazônia Central. Master’s Thesis, Universidade de São Paulo, São Paulo, Brazil, 1989. [Google Scholar]
- Yu, C.; Xie, X.; Yang, H.; Yang, L.; Li, W.; Wu, K.; Zhang, W.; Feng, C.; Li, D.; Wu, Z.; et al. Effect of Straw and Inhibitors on the Fate of Nitrogen Applied to Paddy Soil. Sci. Rep. 2020, 10, 21582. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Li, J.; Jiao, X.; Jiang, H.; Liu, Y.; Wang, X.; Ma, C. The Fate and Challenges of the Main Nutrients in Returned Straw: A Basic Review. Agronomy 2024, 14, 698. [Google Scholar] [CrossRef]
- Amadou, I.; Houben, D.; Faucon, M.P. Unravelling the Role of Rhizosphere Microbiome and Root Traits in Organic Phosphorus Mobilization for Sustainable Phosphorus Fertilization. A Review. Agronomy 2021, 11, 2267. [Google Scholar] [CrossRef]
- Yang, H.; Wu, G.; Mo, P.; Chen, S.; Wang, S.; Xiao, Y.; Ma, H.; Wen, T.; Guo, X.; Fan, G. The Combined Effects of Maize Straw Mulch and No-Tillage on Grain Yield and Water and Nitrogen Use Efficiency of Dry-Land Winter Wheat (Triticum aestivum L.). Soil Tillage Res. 2020, 197, 104485. [Google Scholar] [CrossRef]
- Huang, Y.; Yan, Y.; Ma, Y.; Zhang, X.; Zhao, Q.; Men, M.; Huang, Y.; Peng, Z. The Effect of Low-Temperature Straw-Degrading Microbes on Winter Wheat Growth and Soil Improvement under Straw Return. Front. Microbiol. 2024, 15, 1391632. [Google Scholar] [CrossRef] [PubMed]
- Feng, S.; Shi, C.; Wang, P.; Chang, S.; Liu, C.; Shen, C.; Li, S.; Hu, T.; Ru, Z. Optimizing Wheat Planting Density by Adjusting Population Structure and Stabilizing Stem Strength to Achieve High and Stable Yields. Agronomy 2024, 14, 1853. [Google Scholar] [CrossRef]
- Li, R.; Chai, S.; Chai, Y.; Li, Y.; Chang, L.; Cheng, H. Straw Strip Mulching: A Sustainable Technology for Saving Water and Improving Efficiency in Dryland Winter Wheat Production. J. Integr. Agric. 2022, 21, 3556–3568. [Google Scholar] [CrossRef]
- Li, Y.; Abalos, D.; Arthur, E.; Feng, H.; Siddique, K.H.M.; Chen, J. Different Straw Return Methods Have Divergent Effects on Winter Wheat Yield, Yield Stability, and Soil Structural Properties. Soil Tillage Res. 2024, 238, 105992. [Google Scholar] [CrossRef]
- Du, C.; Li, L.; Effah, Z. Effects of Straw Mulching and Reduced Tillage on Crop Production and Environment: A Review. Water 2022, 14, 2471. [Google Scholar] [CrossRef]
- Yu, J.; Hou, P.; Gao, Q.; Tan, Q.; Jiang, D.; Dai, T.; Tian, Z. Optimizing Nitrogen Fertilizer and Straw Management Promote Root Extension and Nitrogen Uptake to Improve Grain Yield and Nitrogen Use Efficiency of Winter Wheat (Triticum aestivum L.). Arch. Agron. Soil Sci. 2024, 70, 1–17. [Google Scholar] [CrossRef]
- Li, F.; Zhang, G.; Chen, J.; Song, Y.; Geng, Z.; Li, K.; Siddique, K.H.M. Straw Mulching for Enhanced Water Use Efficiency and Economic Returns from Soybean Fields in the Loess Plateau China. Sci. Rep. 2022, 12, 17111. [Google Scholar] [CrossRef] [PubMed]
- Carciochi, W.D.; Schwalbert, R.; Andrade, F.H.; Corassa, G.M.; Carter, P.; Gaspar, A.P.; Schmidt, J.; Ciampitti, I.A. Soybean Seed Yield Response to Plant Density by Yield Environment in North America. Agron. J. 2019, 111, 1923–1932. [Google Scholar] [CrossRef]
- Chu, G.; Zhang, J.; Xu, B.; Wang, C. Topping at the Seedling Stage Changes the Plant Morphology and Yield of Unbranched Type Soybean. Proc. Bulg. Acad. Sci. 2023, 76, 629–636. [Google Scholar] [CrossRef]
- Tan, D.; Fan, Y.; Liu, J.; Zhao, J.; Ma, Y.; Li, Q. Winter Wheat Grain Yield and Quality Response to Straw Mulching and Planting Pattern. Agric. Res. 2019, 8, 548–552. [Google Scholar] [CrossRef]
- Huang, C.; Wu, Y.; Ye, Y.; Li, Y.; Ma, J.; Ma, J.; Yan, J.; Chang, L.; Wang, Z.; Wang, Y.; et al. Straw Strip Mulching Increases Winter Wheat Yield by Optimizing Water Consumption Characteristics in a Semi-Arid Environment. Water 2022, 14, 1894. [Google Scholar] [CrossRef]
- Wu, G.; Ling, J.; Liu, Z.X.; Xu, Y.P.; Chen, X.M.; Wen, Y.; Zhou, S.L. Soil Warming and Straw Return Impacts on Winter Wheat Phenology, Photosynthesis, Root Growth, and Grain Yield in the North China Plain. Field Crops Res. 2022, 283, 108545. [Google Scholar] [CrossRef]
- Akhtar, K.; Wang, W.; Ren, G.; Khan, A.; Feng, Y.; Yang, G.; Wang, H. Integrated Use of Straw Mulch with Nitrogen Fertilizer Improves Soil Functionality and Soybean Production. Environ. Int. 2019, 132, 105092. [Google Scholar] [CrossRef] [PubMed]
- Hasanuzzaman, M.; Bhuyan, M.H.M.B.; Nahar, K.; Hossain, M.S.; Mahmud, J.A.; Hossen, M.S.; Masud, A.A.C.; Moumita; Fujita, M. Potassium: A Vital Regulator of Plant Responses and Tolerance to Abiotic Stresses. Agronomy 2018, 8, 31. [Google Scholar] [CrossRef]
Experimental Treatment | Growth Stage | Average | Cv (%) | ||||
---|---|---|---|---|---|---|---|
Regreening Stage | Jointing Stage | Flowering Stage | Grain-Filling Stage | Maturity Stage | |||
CK | 7.64 ± 0.52 a | 16.40 ± 0.55 a | 20.40 ± 0.91 a | 22.97 ± 1.55 a | 28.29 ± 1.31 a | 19.14 a | 40.48% |
T1S1 | 6.21 ± 0.31 b | 15.96 ± 0.06 ab | 20.01 ± 0.61 a | 22.22 ± 0.43 a | 27.44 ± 0.69 ab | 18.37 ab | 43.34% |
T1S2 | 5.25 ± 0.40 c | 15.36 ± 0.75 b | 20.10 ± 0.66 a | 21.79 ± 0.72 a | 26.16 ± 0.86 bc | 17.73 bcd | 45.01% |
T1S3 | 5.39 ± 0.49 bc | 14.39 ± 0.40 c | 19.88 ± 0.74 a | 21.54 ± 0.96 a | 25.60 ± 0.80 c | 17.36 cd | 44.97% |
T2S1 | 7.84 ± 0.55 a | 15.87 ± 0.24 ab | 19.82 ± 0.44 a | 21.89 ± 0.52 a | 26.48 ± 0.31 bc | 18.38 ab | 38.24% |
T2S2 | 7.65 ± 0.60 a | 15.21 ± 0.43 b | 19.95 ± 0.37 a | 21.93 ± 0.49 a | 26.61 ± 0.41 bc | 18.27 abc | 39.49% |
T2S3 | 7.71 ± 0.57 a | 13.98 ± 0.15 c | 18.55 ± 0.40 b | 20.09 ± 0.51 b | 24.05 ± 0.29 d | 16.87 d | 37.14% |
Range | 2.59 | 2.42 | 1.85 | 2.88 | 4.24 | ||
Cv (%) | 17.31% | 5.89% | 3.86% | 4.96% | 5.40% |
Experimental Treatment | Growth Stage | Average | Cv (%) | ||||
---|---|---|---|---|---|---|---|
Fourth Trifoliate Leaf Stage | Full-Bloom Stage | Full-Pod Stage | Full-Seed Stage | Full-Maturity Stage | |||
CK | 35.63 ± 1.40 a | 32.00 ± 0.70 a | 29.20 ± 0.54 ab | 22.09 ± 1.27 a | 19.67 ± 0.73 a | 27.71 a | 24.21% |
D1S1 | 33.90 ± 0.35 ab | 31.30 ± 0.66 ab | 29.38 ± 0.39 a | 22.38 ± 0.35 a | 20.09 ± 0.49 a | 27.41 ab | 21.60% |
D1S2 | 31.90 ± 0.69 cd | 30.40 ± 0.44 cd | 28.68 ± 0.36 ab | 22.34 ± 0.45 a | 20.09 ± 0.26 a | 26.68 bc | 19.42% |
D1S3 | 31.13 ± 0.32 d | 29.63 ± 0.32 d | 28.48 ± 0.05 b | 22.13 ± 0.34 a | 19.92 ± 0.39 a | 26.26 c | 18.79% |
D2S1 | 33.27 ± 0.65 bc | 30.57 ± 0.21 bc | 28.86 ± 0.16 ab | 22.26 ± 0.51 a | 20.41 ± 0.31 a | 27.06 abc | 20.34% |
D2S2 | 31.80 ± 1.28 cd | 30.03 ± 0.31 cd | 28.60 ± 0.20 b | 21.95 ± 0.67 a | 20.14 ± 0.47 a | 26.51 bc | 19.46% |
D2S3 | 30.90 ± 1.48 d | 29.63 ± 0.45 d | 28.49 ± 0.61 b | 22.11 ± 0.53 a | 20.48 ± 0.58 a | 26.32 c | 17.90% |
Range | 4.73 | 2.37 | 0.90 | 0.43 | 0.81 | ||
Cv (%) | 5.58% | 3.00% | 1.60% | 2.48% | 2.41% |
Experimental Treatment | Yield (kg·ha−1) | Spike Density (Spikes·m−2) | Grain Number per Spike | Thousand-Grain Weight (g) |
---|---|---|---|---|
CK | 5432.70 ± 1088.25 cd | 259.67 ± 27.65 b | 41.03 ± 2.22 bc | 46.58 ± 0.44 a |
T1S1 | 6325.47 ± 447.40 bc | 284.33 ± 24.34 ab | 43.45 ± 1.30 b | 51.11 ± 2.13 a |
T1S2 | 5176.93 ± 98.73 cd | 283.67 ± 61.16 ab | 41.31 ± 0.31 bc | 50.65 ± 1.57 a |
T1S3 | 4596.17 ± 736.67 d | 246.33 ± 27.79 b | 38.42 ± 1.43 c | 50.05 ± 3.78 a |
T2S1 | 6347.30 ± 712.58 bc | 290.33 ± 11.85 ab | 41.35 ± 0.69 bc | 48.20 ± 0.91 a |
T2S2 | 7148.20 ± 754.63 ab | 334.00 ± 30.20 a | 41.48 ± 3.36 bc | 50.16 ± 2.51 a |
T2S3 | 7901.93 ± 780.57 a | 348.00 ± 45.21 a | 47.19 ± 0.28 a | 51.61 ± 5.49 a |
Experimental Treatment | Yield (kg·ha−1) | Number of Pods per Plant | Hundred-Grain Weight (g) |
---|---|---|---|
CK | 2467.50 ± 526.08 b | 30.94 ± 4.83 abc | 30.53 ± 1.71 a |
D1S1 | 2908.20 ± 232.02 ab | 31.32 ± 3.29 abc | 31.59 ± 3.04 a |
D1S2 | 3105.73 ± 407.88 ab | 35.47 ± 2.02 ab | 31.94 ± 0.73 a |
D1S3 | 3164.60 ± 369.04 ab | 38.05 ± 10.39 a | 32.10 ± 1.69 a |
D2S1 | 3171.97 ± 16.61 ab | 24.68 ± 1.57 c | 31.54 ± 2.02 a |
D2S2 | 3708.93 ± 741.47 a | 28.44 ± 3.63 abc | 32.94 ± 2.79 a |
D2S3 | 3202.80 ± 341.50 ab | 25.51 ± 5.26 bc | 31.29 ± 0.57 a |
Parameters | Soil Temperature | Soil Water Content | Bulk Density | Available Potassium | Available Phosphorus | Soil Organic Carbon |
---|---|---|---|---|---|---|
Total effect | −0.853 | 0.657 | −0.465 | 0.675 | 0.300 | 0.236 |
Direct effect | −0.944 | 0.361 | −0.278 | 0.385 | 0.254 | 0.212 |
Indirect effect | 0.091 | 0.296 | −0.187 | 0.290 | 0.046 | 0.024 |
Parameters | Soil Water Content | Available Potassium | Available Phosphorus | Available Nitrogen | Soil Organic Carbon |
---|---|---|---|---|---|
Total effect | 0.288 | 0.670 | 0.190 | −0.164 | 0.548 |
Direct effect | 0.061 | 0.082 | 0.183 | 0.000 | 0.201 |
Indirect effect | 0.227 | 0.588 | 0.007 | −0.164 | 0.347 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liao, C.; Tang, M.; Zhang, C.; Deng, M.; Li, Y.; Feng, S. Impacts of Various Straw Mulching Strategies on Soil Water, Nutrients, Thermal Regimes, and Yield in Wheat–Soybean Rotation Systems. Plants 2025, 14, 2233. https://doi.org/10.3390/plants14142233
Liao C, Tang M, Zhang C, Deng M, Li Y, Feng S. Impacts of Various Straw Mulching Strategies on Soil Water, Nutrients, Thermal Regimes, and Yield in Wheat–Soybean Rotation Systems. Plants. 2025; 14(14):2233. https://doi.org/10.3390/plants14142233
Chicago/Turabian StyleLiao, Chaoyu, Min Tang, Chao Zhang, Meihua Deng, Yan Li, and Shaoyuan Feng. 2025. "Impacts of Various Straw Mulching Strategies on Soil Water, Nutrients, Thermal Regimes, and Yield in Wheat–Soybean Rotation Systems" Plants 14, no. 14: 2233. https://doi.org/10.3390/plants14142233
APA StyleLiao, C., Tang, M., Zhang, C., Deng, M., Li, Y., & Feng, S. (2025). Impacts of Various Straw Mulching Strategies on Soil Water, Nutrients, Thermal Regimes, and Yield in Wheat–Soybean Rotation Systems. Plants, 14(14), 2233. https://doi.org/10.3390/plants14142233