Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,150)

Search Parameters:
Keywords = soil bacterial structure

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 3604 KiB  
Article
Analysis of the Differences in Rhizosphere Microbial Communities and Pathogen Adaptability in Chili Root Rot Disease Between Continuous Cropping and Rotation Cropping Systems
by Qiuyue Zhao, Xiaolei Cao, Lu Zhang, Xin Hu, Xiaojian Zeng, Yingming Wei, Dongbin Zhang, Xin Xiao, Hui Xi and Sifeng Zhao
Microorganisms 2025, 13(8), 1806; https://doi.org/10.3390/microorganisms13081806 (registering DOI) - 1 Aug 2025
Abstract
In chili cultivation, obstacles to continuous cropping significantly compromise crop yield and soil health, whereas crop rotation can enhance the microbial environment of the soil and reduce disease incidence. However, its effects on the diversity of rhizosphere soil microbial communities are not clear. [...] Read more.
In chili cultivation, obstacles to continuous cropping significantly compromise crop yield and soil health, whereas crop rotation can enhance the microbial environment of the soil and reduce disease incidence. However, its effects on the diversity of rhizosphere soil microbial communities are not clear. In this study, we analyzed the composition and characteristics of rhizosphere soil microbial communities under chili continuous cropping (CC) and chili–cotton crop rotation (CR) using high-throughput sequencing technology. CR treatment reduced the alpha diversity indices (including Chao1, Observed_species, and Shannon index) of bacterial communities and had less of an effect on fungal community diversity. Principal component analysis (PCA) revealed distinct compositional differences in bacterial and fungal communities between the treatments. Compared with CC, CR treatment has altered the structure of the soil microbial community. In terms of bacterial communities, the relative abundance of Firmicutes increased from 12.89% to 17.97%, while the Proteobacteria increased by 6.8%. At the genus level, CR treatment significantly enriched beneficial genera such as RB41 (8.19%), Lactobacillus (4.56%), and Bacillus (1.50%) (p < 0.05). In contrast, the relative abundances of Alternaria and Fusarium in the fungal community decreased by 6.62% and 5.34%, respectively (p < 0.05). Venn diagrams and linear discriminant effect size analysis (LEfSe) further indicated that CR facilitated the enrichment of beneficial bacteria, such as Bacillus, whereas CC favored enrichment of pathogens, such as Firmicutes. Fusarium solani MG6 and F. oxysporum LG2 are the primary chili root-rot pathogens. Optimal growth occurs at 25 °C, pH 6: after 5 days, MG6 colonies reach 6.42 ± 0.04 cm, and LG2 5.33 ± 0.02 cm, peaking in sporulation (p < 0.05). In addition, there are significant differences in the utilization spectra of carbon and nitrogen sources between the two strains of fungi, suggesting their different ecological adaptability. Integrated analyses revealed that CR enhanced soil health and reduced the root rot incidence by optimizing the structure of soil microbial communities, increasing the proportion of beneficial bacteria, and suppressing pathogens, providing a scientific basis for microbial-based soil management strategies in chili cultivation. Full article
(This article belongs to the Section Microbiomes)
Show Figures

Figure 1

16 pages, 1477 KiB  
Article
Co-Inoculation Between Bacteria and Algae from Biological Soil Crusts and Their Effects on the Growth of Poa annua and Sandy Soils Quality
by Lin Peng, Xuqiang Xie, Man Chen, Fengjie Qiao, Xingyu Liu, Yutong Zhao, Xiawei Peng and Fangchun Liu
Microorganisms 2025, 13(8), 1778; https://doi.org/10.3390/microorganisms13081778 - 30 Jul 2025
Viewed by 26
Abstract
Microorganisms (bacteria and algae) are important components of biological soil crusts, which exhibit crucial functions in promoting plant growth, maintaining soil structure, and improving soil nutrient content. To determine the effects of combined inoculation on the growth of Poa annua and sandy soils, [...] Read more.
Microorganisms (bacteria and algae) are important components of biological soil crusts, which exhibit crucial functions in promoting plant growth, maintaining soil structure, and improving soil nutrient content. To determine the effects of combined inoculation on the growth of Poa annua and sandy soils, four species of bacteria and algae were isolated and identified from biological soil crusts (during different developmental stages in a karst rocky desertification area). The soil quality was evaluated based on a soil quality index (SQI), growth indicators of Poa annua, soil physicochemical properties, and a stability analysis of aggregates. With the application of nutrient-poor sandy soils as the substrate, different treatment inoculation solutions were inoculated onto Poa annua. The results revealed that bacteria–algal co-inoculation reduces soil acidity, enhances soil nutrient content and aggregate stability, improves soil quality, and protects plant growth. Notably, compared with the single application of bacterial solution and algal solution, the combined application of bacteria–algal solution significantly improves the sandy soil quality. Full article
Show Figures

Figure 1

17 pages, 1268 KiB  
Article
Community Composition and Diversity of β-Glucosidase Genes in Soils by Amplicon Sequence Variant Analysis
by Luis Jimenez
Genes 2025, 16(8), 900; https://doi.org/10.3390/genes16080900 - 28 Jul 2025
Viewed by 101
Abstract
Cellulose, the most abundant organic polymer in soil, is degraded by the action of microbial communities. Cellulolytic taxa are widespread in soils, enhancing the biodegradation of cellulose by the synergistic action of different cellulase enzymes. β-glucosidases are the last enzymes responsible for the [...] Read more.
Cellulose, the most abundant organic polymer in soil, is degraded by the action of microbial communities. Cellulolytic taxa are widespread in soils, enhancing the biodegradation of cellulose by the synergistic action of different cellulase enzymes. β-glucosidases are the last enzymes responsible for the degradation of cellulose by producing glucose from the conversion of the disaccharide cellobiose. Different soils from the states of Delaware, Maryland, New Jersey, and New York were analyzed by direct DNA extraction, PCR analysis, and next generation sequencing of amplicon sequences coding for β-glucosidase genes. To determine the community structure and diversity of microorganisms carrying β-glucosidase genes, amplicon sequence variant analysis was performed. Results showed that the majority of β-glucosidase genes did not match any known phylum or genera with an average of 84% of sequences identified as unclassified. The forest soil sample from New York showed the highest value with 95.62%. When identification was possible, the bacterial phyla Pseudomonadota, Actinomycetota, and Chloroflexota were found to be dominant microorganisms with β-glucosidase genes in soils. The Delaware soil showed the highest diversity with phyla and genera showing the presence of β-glucosidase gene sequences in bacteria, fungi, and plants. However, the Chloroflexota genus Kallotanue was detected in 3 out of the 4 soil locations. When phylogenetic analysis of unclassified β-glucosidase genes was completed, most sequences aligned with the Chloroflexota genus Kallotenue and the Pseudomonadota species Sphingomonas paucimobilis. Since most sequences did not match known phyla, there is tremendous potential to discover new enzymes for possible biotechnological and pharmaceutical applications. Full article
(This article belongs to the Section Microbial Genetics and Genomics)
Show Figures

Figure 1

13 pages, 1075 KiB  
Article
Response of Typical Artificial Forest Soil Microbial Community to Revegetation in the Loess Plateau, China
by Xiaohua Liu, Tianxing Wei, Dehui Fan, Huaxing Bi and Qingke Zhu
Agronomy 2025, 15(8), 1821; https://doi.org/10.3390/agronomy15081821 - 28 Jul 2025
Viewed by 142
Abstract
This study aims to analyze the differences in soil bacterial community structure under different vegetation restoration types, and to explore the role of microorganisms in the process of vegetation restoration on the soil ecosystem of the Grain for Green area in the Loess [...] Read more.
This study aims to analyze the differences in soil bacterial community structure under different vegetation restoration types, and to explore the role of microorganisms in the process of vegetation restoration on the soil ecosystem of the Grain for Green area in the Loess Plateau. High-throughput sequencing technology was used to analyze the alpha diversity of soil bacteria, community structure characteristics, and the correlation between soil environmental factors and bacterial communities in different artificial Hippophae rhamnoides forests. Soil microbial C and N show a decreasing trend with an increase in the 0–100 cm soil layers. The results indicated that the bacterial communities comprised 24 phyla, 55 classes, 110 orders, 206 families, 348 genera, 680 species, and 1989 OTUs. Additionally, the richness indices and diversity indices of the bacterial community in arbor shrub mixed forest are higher than those in shrub pure forest, and the indices of shrub forest on sunny slope are higher than those on shady slope. Across all samples, the dominant groups were Actinobacteria (37.27% on average), followed by Proteobacteria (23.91%), Acidobacteria (12.75%), and Chloroflexi (12.27%). Soil nutrient supply, such as TOC, TN, AN, AP, and AK, had crucial roles in shaping the composition and diversity of the bacterial communities. The findings reveal that vegetation restoration significantly affected soil bacterial community richness and diversity. Furthermore, based on the results, our data provide a starting point for establishing soil bacterial databases in the Loess Plateau, as well as for the plants associated with the vegetation restoration. Full article
Show Figures

Figure 1

18 pages, 4241 KiB  
Article
Distribution Patterns and Assembly Mechanisms of Rhizosphere Soil Microbial Communities in Schisandra sphenanthera Across Altitudinal Gradients
by Weimin Li, Luyao Yang, Xiaofeng Cong, Zhuxin Mao and Yafu Zhou
Biology 2025, 14(8), 944; https://doi.org/10.3390/biology14080944 - 27 Jul 2025
Viewed by 180
Abstract
To investigate the characteristics of rhizosphere soil microbial communities associated with Schisandra sphenanthera across different altitudinal gradients and to reveal the driving factors of microbial community dynamics, this study collected rhizosphere soil samples at four elevations: 900 m (HB1), 1100 m (HB2), 1300 [...] Read more.
To investigate the characteristics of rhizosphere soil microbial communities associated with Schisandra sphenanthera across different altitudinal gradients and to reveal the driving factors of microbial community dynamics, this study collected rhizosphere soil samples at four elevations: 900 m (HB1), 1100 m (HB2), 1300 m (HB3), and 1500 m (HB4). High-throughput sequencing and molecular ecological network analysis were employed to analyze the microbial community composition and species interactions. A null model was applied to elucidate community assembly mechanisms. The results demonstrated that bacterial communities were dominated by Proteobacteria, Acidobacteriota, Actinobacteriota, and Chloroflexi. The relative abundance of Proteobacteria increased with elevation, while that of Acidobacteriota and Actinobacteriota declined. Fungal communities were primarily composed of Ascomycota and Basidiomycota, with both showing elevated relative abundances at higher altitudes. Diversity indices revealed that HB2 exhibited the highest bacterial Chao, Ace, and Shannon indices but the lowest Simpson index. For fungi, HB3 displayed the highest Chao and Ace indices, whereas HB4 showed the highest Shannon index and the lowest Simpson index. Ecological network analysis indicated stronger bacterial competition at lower elevations and enhanced cooperation at higher elevations, contrasting with fungal communities that exhibited increased competition at higher altitudes. Altitude and soil nutrients were negatively correlated with soil carbon content, while plant nutrients and fungal diversity positively correlated with soil carbon. Null model analysis suggested that deterministic processes dominated bacterial community assembly, whereas stochastic processes governed fungal assembly. These findings highlight significant altitudinal shifts in the microbial community structure and assembly mechanisms in S. sphenanthera rhizosphere soils, driven by the synergistic effects of soil nutrients, plant growth, and fungal diversity. This study provides critical insights into microbial ecology and carbon cycling in alpine ecosystems, offering a scientific basis for ecosystem management and conservation. Full article
(This article belongs to the Section Ecology)
Show Figures

Graphical abstract

14 pages, 1849 KiB  
Article
Climate-Driven Microbial Communities Regulate Soil Organic Carbon Stocks Along the Elevational Gradient on Alpine Grassland over the Qinghai–Tibet Plateau
by Xiaomei Mo, Jinhong He, Guo Zheng, Xiangping Tan and Shuyan Cui
Agronomy 2025, 15(8), 1810; https://doi.org/10.3390/agronomy15081810 - 26 Jul 2025
Viewed by 212
Abstract
The Qinghai–Tibet Plateau, a region susceptible to global change, stores substantial amounts of soil organic carbon (SOC) in its alpine grassland. However, little is known about how SOC is regulated by soil microbial communities, which vary with elevation, mean annual temperature (MAT), and [...] Read more.
The Qinghai–Tibet Plateau, a region susceptible to global change, stores substantial amounts of soil organic carbon (SOC) in its alpine grassland. However, little is known about how SOC is regulated by soil microbial communities, which vary with elevation, mean annual temperature (MAT), and mean annual precipitation (MAP). This study integrates phospholipid fatty acid (PLFA) analysis to simultaneously resolve microbial biomass, community composition, and membrane lipid adaptations along an elevational gradient (2861–5090 m) on the Qinghai–Tibet Plateau. This study found that microbial PLFAs increased significantly with rising MAP, while the relationship with MAT was nonlinear. PLFAs of different microbial groups all had a positive effect on SOC storage. At higher altitudes (characterized by lower MAP and lower MAT), Gram-positive bacteria dominated bacterial communities, and fungi dominated the overall microbial community, highlighting microbial structural adaptations as key regulators of carbon storage. Saturated fatty acids with branches of soil microbial membrane dominated across sites, but their prevalence over unsaturated fatty acids decreased at high elevations. These findings establish a mechanistic link between climate-driven microbial community restructuring and SOC vulnerability on the QTP, providing a predictive framework for carbon–climate feedbacks in alpine systems under global warming. Full article
(This article belongs to the Special Issue Soil Carbon Sequestration for Mitigating Climate Change in Grasslands)
Show Figures

Figure 1

17 pages, 3481 KiB  
Article
Influence of Ziziphus lotus (Rhamnaceae) Plants on the Spatial Distribution of Soil Bacterial Communities in Semi-Arid Ecosystems
by Nabil Radouane, Zakaria Meliane, Khaoula Errafii, Khadija Ait Si Mhand, Salma Mouhib and Mohamed Hijri
Microorganisms 2025, 13(8), 1740; https://doi.org/10.3390/microorganisms13081740 - 25 Jul 2025
Viewed by 296
Abstract
Ziziphus lotus (L.) Lam. (Rhamnaceae), a key shrub species native to North Africa, is commonly found in arid and semi-arid regions. Renowned for its resilience under harsh conditions, it forms vegetation clusters that influence the surrounding environment. These clusters create microhabitats that promote [...] Read more.
Ziziphus lotus (L.) Lam. (Rhamnaceae), a key shrub species native to North Africa, is commonly found in arid and semi-arid regions. Renowned for its resilience under harsh conditions, it forms vegetation clusters that influence the surrounding environment. These clusters create microhabitats that promote biodiversity, reduce soil erosion, and improve soil fertility. However, in agricultural fields, Z. lotus is often regarded as an undesirable species. This study investigated the bacterial diversity and community composition along spatial gradients around Z. lotus patches in barley-planted and non-planted fields. Using 16S rRNA gene sequencing, 84 soil samples were analyzed from distances of 0, 3, and 6 m from Z. lotus patches. MiSeq sequencing generated 143,424 reads, representing 505 bacterial ASVs across 22 phyla. Alpha-diversity was highest at intermediate distances (3 m), while beta-diversity analyses revealed significant differences in community composition across distances (p = 0.035). Pseudomonadota dominated close to the shrub (44% at 0 m) but decreased at greater distances, whereas Bacillota and Actinobacteriota displayed distinct spatial patterns. A core microbiome comprising 44 ASVs (8.7%) was shared across all distances, with the greatest number of unique ASVs identified at 3 m. Random forest analysis highlighted Skermanella and Rubrobacter as key discriminatory taxa. These findings emphasize the spatial structuring of bacterial communities around Z. lotus patches, demonstrating the shrub’s substantial influence on bacterial dynamics in arid ecosystems. Full article
Show Figures

Figure 1

15 pages, 1328 KiB  
Article
Effects of Ridge-Furrow Film Mulching Patterns on Soil Bacterial Diversity in a Continuous Potato Cropping System
by Shujuan Jiao, Yichen Kang, Weina Zhang, Yuhui Liu, Hong Li, Wenlin Li and Shuhao Qin
Agronomy 2025, 15(8), 1784; https://doi.org/10.3390/agronomy15081784 - 24 Jul 2025
Viewed by 190
Abstract
Soil bacteria drive biogeochemical cycles and influence disease suppression, playing pivotal roles in sustainable agriculture. Using Illumina MiSeq sequencing, we assessed how six ridge-furrow film mulching patterns affect soil bacterial diversity in a continuous potato system. The Shannon index showed significantly higher diversity [...] Read more.
Soil bacteria drive biogeochemical cycles and influence disease suppression, playing pivotal roles in sustainable agriculture. Using Illumina MiSeq sequencing, we assessed how six ridge-furrow film mulching patterns affect soil bacterial diversity in a continuous potato system. The Shannon index showed significantly higher diversity in fully mulched treatments (T2–T3) versus controls (CK), suggesting mulching enhances microbial community richness. This result suggests that complete mulching combined with ridge planting (T2) may significantly enhance bacterial proliferation in soil. The bacterial communities were predominantly composed of Acidobacteria, Pseudomonadota, Bacteroidota, Chloroflexota, and Planctomycetota. Among these, Acidobacteria showed the highest abundance, with ridge planting patterns favoring greater Acidobacteria richness compared to furrow planting. In contrast, Pseudomonadota exhibited higher abundance under half-mulching conditions than under complete mulching. At class level, Acidobacteria and Proteobacteria emerged as the most abundant groups, with Proteobacteria constituting 22.6–35.7% of total microbial populations. Notably, Proteobacteria demonstrated particular dominance under the complete mulching with ridge planting pattern (T2). At the genus level, Subgroup_6_norank represented the most dominant taxon among the 439 identified bacterial genera, accounting for 14.0–20.2% of communities across all treatments, with half-mulching ridge planting (T4) showing the highest relative abundance. Our findings demonstrate that different ridge-furrow film mulching patterns significantly influence soil microbial diversity. While traditional non-mulched (CK) and mulched flat plots (T1) exhibited similar impacts on bacterial community structure, other treatments displayed distinct taxonomic profiles. Complete mulching patterns, particularly ridge planting (T2), appear most conducive to microbial development, suggesting their potential to enhance soil biogeochemical cycling in continuous cropping systems. These results provide valuable insights for optimizing mulching practices to improve soil health in agricultural ecosystems. Full article
Show Figures

Figure 1

16 pages, 2018 KiB  
Article
Optimizing Maize Production and Soil Microbiome Structure Through Reduced Chemical Nitrogen Supplemented with Organic Fertilizer
by Jian Zhang, Yaoyao Li, Jiawei Yuan, Lu Wang, Guoying Wei and Zhejun Liang
Plants 2025, 14(15), 2275; https://doi.org/10.3390/plants14152275 - 24 Jul 2025
Viewed by 234
Abstract
This study investigated the effects of reduced nitrogen combined with an organic fertilizer on maize yield, soil microbial communities, and enzyme activities to optimize fertilization strategies. A field experiment on cinnamon soil in Yuncheng, Shanxi, was conducted and included six treatments: no fertilizer [...] Read more.
This study investigated the effects of reduced nitrogen combined with an organic fertilizer on maize yield, soil microbial communities, and enzyme activities to optimize fertilization strategies. A field experiment on cinnamon soil in Yuncheng, Shanxi, was conducted and included six treatments: no fertilizer (CK), conventional N (NC0, 180 kg N/ha), sole organic fertilizer (CN0, 3000 kg/ha), and reduced-N + organic fertilizer (CN1: 90 kg N/ha + 3000 kg/ha; CN2: 135 kg N/ha + 3000 kg/ha; and CN3: 180 kg N/ha + 3000 kg/ha). We analyzed yield components, soil nutrients, urease and invertase activities, and bacterial community structure (16S rRNA sequencing). The key results are as follows: CN1 achieved the highest yield (9764.87 kg/ha), which was 46.8% higher than CK. CN2 maintained comparable yields while delivering higher enzyme activities and microbial abundance, positioning this strategy as suitable for soil remediation. Co-application enriched two beneficial phyla, Proteobacteria and Planctomycetota (19% in CN2), with Proteobacteria positively correlating with urease activity and alkali-hydrolyzable N (p < 0.05), while Verrucomicrobiota negatively correlated with urease activity. In conclusion, 25–50% N reduction with an organic fertilizer (3000 kg/ha) synergistically enhances yield, soil enzymes, and beneficial microbiota, supporting sustainable high-yield agriculture with improved soil fertility. Full article
(This article belongs to the Section Plant–Soil Interactions)
Show Figures

Figure 1

24 pages, 11000 KiB  
Article
Differences and Influencing Factors of Soil Bacterial Communities Under Different Forest Types on the Southern Slope of the Qilian Mountains
by Shuang Ji, Huichun Xie, Shaobo Du, Shaoxiong Zhang, Zhiqiang Dong, Hongye Li and Xunxun Qiu
Biology 2025, 14(8), 927; https://doi.org/10.3390/biology14080927 - 23 Jul 2025
Viewed by 188
Abstract
Understanding the distribution patterns of soil bacterial community structure and diversity across different forest types is essential for elucidating the mechanisms underlying microbial community assembly and its ecological drivers, particularly under the pressures of climate change. In this study, we examined six forest [...] Read more.
Understanding the distribution patterns of soil bacterial community structure and diversity across different forest types is essential for elucidating the mechanisms underlying microbial community assembly and its ecological drivers, particularly under the pressures of climate change. In this study, we examined six forest types—including four monocultures and two mixed-species stands—to systematically evaluate the structural composition, diversity metrics, and functional potential of soil bacterial communities. Significant differences in microbial structure and functional composition were observed among forest types. Mixed forests exhibited higher soil nutrient levels, more complex structures, and greater water retention capacity, resulting in significantly higher bacterial and functional diversity compared to monoculture forests. Bacterial diversity was greater in subsurface layers than in surface layers. Surface communities in monoculture forests showed relatively high structural heterogeneity, whereas deeper communities in mixed forests displayed more pronounced differentiation. The dominant bacterial phyla were mainly related to carbon and nitrogen metabolism, compound degradation, and anaerobic photosynthesis. Surface bacterial communities were primarily influenced by catalase activity, alkali-hydrolysable nitrogen, bulk density, and pH, whereas subsurface communities were largely controlled by pH, with supplementary regulation by nitrogen and potassium availability. Therefore, forest type and soil depth jointly influence the diversity, composition, and functional attributes of soil microbial communities by modulating soil physicochemical conditions. Full article
(This article belongs to the Section Microbiology)
Show Figures

Figure 1

21 pages, 5490 KiB  
Article
Impact of Reduced Chemical Fertilizer and Organic Amendments on Yield, Nitrogen Use Efficiency, and Soil Microbial Dynamics in Chinese Flowering Cabbage
by Jiaxin Xu, Jianshe Li, Xia Zhao, Zhen Liu, Hao Xu, Kai Cao and Lin Ye
Horticulturae 2025, 11(7), 859; https://doi.org/10.3390/horticulturae11070859 - 21 Jul 2025
Viewed by 260
Abstract
(1) Background: The escalating issue of soil degradation caused by excessive chemical fertilizer application poses significant threats to the sustainable development of Chinese flowering cabbage (Brassica campestris L. ssp. chinensis (L.) var. utilis Tsen et Lee) production. This research aimed to identify [...] Read more.
(1) Background: The escalating issue of soil degradation caused by excessive chemical fertilizer application poses significant threats to the sustainable development of Chinese flowering cabbage (Brassica campestris L. ssp. chinensis (L.) var. utilis Tsen et Lee) production. This research aimed to identify the impacts of reduced chemical fertilizer application integrated with organic amendments on cabbage yield and rhizosphere soil microenvironment characteristics. (2) Methods: A biennial field experiment was conducted during the 2022–2023 growing seasons at Lijun Town, Yinchuan City, Ningxia Hui Autonomous Region. Five treatments were tested: (i) Control (CK, no fertilizer); (ii) Conventional chemical fertilization (CF1, chemical fertilizer only); (iii) Reduced chemical fertilization (CF2, 30% less chemical fertilizer); (iv) CF2 + Well-decomposed chicken manure (FCM, 30% less chemical fertilizer + rotted chicken manure); and (v) CF2 + Vermicompost (FEM, 30% less chemical fertilizer + vermicompost). (3) Results: In 2023, the FCM treatment reduced electrical conductivity (EC) by 24.80% and pH by 2.16%, while the FEM treatment decreased EC by 31.13% and pH by 3.84% compared to controls. The FEM treatment significantly enhanced total nitrogen content by 12.71% and 8.85% relative to CF1 and FCM treatments, respectively. Compared to CF1, FEM increased soil organic matter content by 10.49% in 2022 and 11.24% in 2023. Organic fertilizer amendments elevated available nitrogen, phosphorus, and potassium levels while enhancing sucrase activity: FCM and FEM treatments increased sucrase activity by 23.62% and 32.00%, respectively, in 2022. Organic fertilization improved bacterial diversity and richness, optimized microbial community structure, and increased the relative abundance of Bacillus. It also upregulated microbial metabolic pathways related to carbohydrate and amino acid metabolism. Soil nutrients and bacterial community structure showed positive correlations with yield, whereas soil enzyme activities exhibited negative correlations. Key factors influencing yield were identified as Proteobacteria, Chloroflexi, available potassium, organic matter, available nitrogen, Actinobacteria, Firmicutes, total nitrogen, pH, and sucrase activity. (4) Conclusions: Integrated analysis of yield and soil microenvironmental parameters demonstrates that the fertilization regimen combining 30% chemical fertilizer reduction with vermicompost amendment (FEM) constitutes a more efficient fertilization strategy for Chinese flowering cabbage, making it suitable for regional promotion in the Ningxia area. Full article
(This article belongs to the Section Plant Nutrition)
Show Figures

Figure 1

12 pages, 1076 KiB  
Article
Impact of Sugarcane–Pumpkin Intercropping on Soil Microbial Diversity
by Xianglei Chen, Zhikui Cheng, Liwen Su, Xialei Huang, Yan Deng, Wenhui Bai, Zhihao Chen, Baoshan Chen, Peng Wang, Hongguang Pang and Zhengguo Liu
Microorganisms 2025, 13(7), 1703; https://doi.org/10.3390/microorganisms13071703 - 20 Jul 2025
Viewed by 472
Abstract
Intercropping has been widely proven to boost agricultural yields and control diseases. This study examined the impact of sugarcane monoculture (SM) and sugarcane–pumpkin intercropping (IP) systems on soil physicochemical characteristics and microbial community dynamics. Compared to monoculture, intercropping significantly increased soil pH by [...] Read more.
Intercropping has been widely proven to boost agricultural yields and control diseases. This study examined the impact of sugarcane monoculture (SM) and sugarcane–pumpkin intercropping (IP) systems on soil physicochemical characteristics and microbial community dynamics. Compared to monoculture, intercropping significantly increased soil pH by 8.82% and total potassium (TK) by 17.92%, while reducing soil organic matter (SOM) by 25.56%. Bacterial communities under intercropping exhibited significantly higher alpha and beta diversity, whereas fungal community diversity remained unaffected. Notably, the relative abundances of certain taxa with known roles in plant growth promotion and pathogen suppression—such as Anaeromyxobacter, Nitrospira, and Massilia—were enriched. Canonical correlation analysis revealed that bacterial community composition was strongly associated with TK, while fungal community structure correlated with variations in soil available nitrogen (AN). These findings indicate that sugarcane–pumpkin intercropping reshapes soil microbial communities and contributes to some improvement in soil nutrient availability. Full article
(This article belongs to the Section Environmental Microbiology)
Show Figures

Figure 1

19 pages, 3162 KiB  
Article
Diversity and Functional Differences in Soil Bacterial Communities in Wind–Water Erosion Crisscross Region Driven by Microbial Agents
by Tao Kong, Tong Liu, Zhihui Gan, Xin Jin and Lin Xiao
Agronomy 2025, 15(7), 1734; https://doi.org/10.3390/agronomy15071734 - 18 Jul 2025
Viewed by 467
Abstract
Soil erosion-prone areas require effective microbial treatments to improve soil bacterial communities and functional traits. Understanding the driving effects of different microbial interventions on soil ecology is essential for restoration efforts. Single and combined microbial treatments were applied to soil. Bacterial community structure [...] Read more.
Soil erosion-prone areas require effective microbial treatments to improve soil bacterial communities and functional traits. Understanding the driving effects of different microbial interventions on soil ecology is essential for restoration efforts. Single and combined microbial treatments were applied to soil. Bacterial community structure was analyzed via 16S IRNA high-throughput sequencing, and functional groups were predicted using FAPROTAX. Soil microbial carbon, nitrogen, metabolic entropy, and enzymatic activity were assessed. Microbial Carbon and Metabolic Activity: The Arbuscular mycorrhizal fungi (AMF) and Bacillus mucilaginosus (BM) (AMF.BM) treatment exhibited the highest microbial carbon content and the lowest metabolic entropy. The microbial carbon-to-nitrogen ratio ranged from 1.27 to 3.69 across all treatments. Bacterial Community Composition: The dominant bacterial phyla included Firmicutes, Proteobacteria, Acidobacteria, Bacteroidetes, and Actinobacteria. Diversity and Richness: The AMF and Trichoderma harzianum (TH) (AMF.TH) treatment significantly reduced diversity, richness, and phylogenetic diversity indices, while the AMF.BM treatment showed a significantly higher richness index (p < 0.05). Relative Abundance of Firmicutes: Compared to the control, the AMF, TH.BM, and TH treatments decreased the relative abundance of Firmicutes, whereas the AMF.TH treatment increased their relative abundance. Environmental Correlations: Redundancy and correlation analyses revealed significant correlations between soil organic matter, magnesium content, and sucrase activity and several major bacterial genera. Functional Prediction: The AMF.BM treatment enhanced the relative abundance and evenness of bacterial ecological functions, primarily driving nitrification, aerobic ammonia oxidation, and ureolysis. Microbial treatments differentially influence soil bacterial communities and functions. The AMF.BM combination shows the greatest potential for ecological restoration in erosion-prone soils. Full article
(This article belongs to the Section Agroecology Innovation: Achieving System Resilience)
Show Figures

Figure 1

23 pages, 5171 KiB  
Article
Investigation into the Enhancement Effects of Combined Bioremediation of Petroleum-Contaminated Soil Utilizing Immobilized Microbial Consortium and Sudan Grass
by Tie-Jun Wang, Zi-Yue Ding, Zi-Wei Hua, Zi-Wang Yuan, Qiu-Hong Niu and Hao Zhang
Toxics 2025, 13(7), 599; https://doi.org/10.3390/toxics13070599 - 16 Jul 2025
Viewed by 303
Abstract
Petroleum-contaminated soil is an increasingly severe environmental issue. The integration of phytoremediation and microbial remediation can effectively mitigate their individual limitations and enhance remediation efficiency. In this study, four newly isolated bacterial strains (including Cytobacillus and Rhodococcus) that exhibited preferential degradation of [...] Read more.
Petroleum-contaminated soil is an increasingly severe environmental issue. The integration of phytoremediation and microbial remediation can effectively mitigate their individual limitations and enhance remediation efficiency. In this study, four newly isolated bacterial strains (including Cytobacillus and Rhodococcus) that exhibited preferential degradation of distinct petroleum components were combined with the rhamnolipid-producing strain Pseudomonas aeruginosa SL-1. The immobilization of this petroleum-degrading microbial consortium was performed by biochar adsorption and sodium alginate embedding, subsequently optimized using response surface methodology (0.75 g·L−1 of biochar, 40 g·L−1 of sodium alginate, and 40 g·L−1 of calcium chloride). The results showed that the highest petroleum degradation rate (97.1%) of immobilized bacterial consortium was achieved at 72 h at a petroleum concentration of 5.0 g·L−1. When combined with Sudan grass for soil bioremediation, the degradation rate reached 72.8% after 120 d for soil containing 5.0 g·kg−1 of petroleum, higher than the results for the treatments with only immobilized bacterial consortium (53.0%) or Sudan grass (49.2%). Furthermore, significant improvements were observed for soil pH; nitrogen, phosphorus, and potassium contents; and urease, dehydrogenase, and catalase activities. Composite treatment also significantly increased the diversity and richness of the soil bacterial community and regulated its structure, function, and network composition. This study offers theoretical insights and potential practical applications for the enhanced bioremediation of petroleum-contaminated soils. Full article
Show Figures

Graphical abstract

16 pages, 2162 KiB  
Article
Exploring Protist Communities in the Rhizosphere of Cultivated and Wild Date Palms
by Dana A. Abumaali, Sara H. Al-Hadidi, Talaat Ahmed, Ameni Ben Zineb, Abdul Rashid P. Rasheela, Amer Fayad Al-khis, Sowaid Ali Al-Malki, Mahmoud W. Yaish, Hassan Hassan, Roda Al-Thani and Juha M. Alatalo
Soil Syst. 2025, 9(3), 79; https://doi.org/10.3390/soilsystems9030079 - 15 Jul 2025
Viewed by 169
Abstract
Protists represent a major component of eukaryotic diversity within the soil microbiome, playing critical roles in mediating carbon and nitrogen cycling and influencing nutrient availability and soil health. Their diversity is shaped by multiple factors, including temperature, pH, organic matter content, and land [...] Read more.
Protists represent a major component of eukaryotic diversity within the soil microbiome, playing critical roles in mediating carbon and nitrogen cycling and influencing nutrient availability and soil health. Their diversity is shaped by multiple factors, including temperature, pH, organic matter content, and land use. In this study, we investigated the protist diversity in rhizosphere soils from both wild and cultivated date palm varieties. Our results identified nitrate, nitrite, calcium, and carbon content as key soil factors significantly correlated with protist diversity. Only 9.2% (42) of operational taxonomic units (OTUs) were shared across all soil samples, suggesting that these taxa possess traits enabling adaptation to extreme environmental conditions. The dominant protist families belonged to Rhizaria, Alveolata, Amoebozoa, and Archaeplastida, primarily comprising bacterial consumers, alongside taxa from Stramenopiles, Opisthokonta, Hacrobia, and Excavata. At the class level, Filosa-Sarcomonadea, Colpodea, Variosea, Tubulinea, and Chlorophyceae were the most abundant. Filosa-Sarcomonadea and Colpodea were positively correlated with bacterial and fungal genera, suggesting their role as consumers, while Variosea showed a negative correlation with bacteria, reflecting predator-prey dynamics. Notably, the protist community composition in wild date palm rhizosphere soils was distinct from that in cultivated soils, with Opisthokonta being particularly abundant, likely reflecting adaptation to drought conditions. Overall, this study highlights the significant differences in protist diversity and community structure between wild and cultivated date palm ecosystems. Full article
Show Figures

Figure 1

Back to TopTop