Effects of Ridge-Furrow Film Mulching Patterns on Soil Bacterial Diversity in a Continuous Potato Cropping System
Abstract
1. Introduction
2. Materials and Methods
2.1. Description of the Experimental Site
2.2. Experimental Design
2.3. Soil Samples Collection
2.4. Soil DNA Extraction
2.5. PCR Amplification and MiSeq Sequencing Analysis
2.6. Statistical Analysis
3. Results
3.1. Soil Physicochemical Property
3.2. 16S rDNA Optimizing Sequence Statistics
3.3. Species Richness and Diversity of Bacterial Community Altered by Six Planting Patterns
3.4. Analysis of Soil Bacterial Community Structure in Different Furrow-Ridge Mulching Planting Patterns
3.5. Analysis of Soil Bacterial Community at the Phylum Under Different Furrow-Ridge Mulching Planting Patterns
3.6. PCA of Soil Bacterial Community in Different Furrow-Ridge Mulching Planting Patterns
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
EC | Electrical conductivity |
OC | Organic carbon |
OM | Organic matter |
SOC | Soil organic carbon |
TN | Total nitrogen |
TP | Total phosphorus |
TK | Total potassium |
AN | Available nitrogen |
AK | Available potassium |
AP | Available phosphorus |
PCA | Principal component analysis |
PCR | Polymerase Chain Reaction |
Appendix A
Scheme | pH | SOC (g/kg) | EC (μS/cm) | SOM (g/kg) | TN | TP | TK |
---|---|---|---|---|---|---|---|
(g/kg) | (g/kg) | (g/kg) | |||||
0–20 | 8.3 | 10.26 | 329 | 12.3 | 0.87 | 1.92 | 13.26 |
References
- Li, L.; Zhu, T.; Wen, L.; Zhang, T.; Ren, M. Biofortification of potato nutrition. J. Adv. Res. 2024. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Wang, Y.; Wang, X.; Jiao, S.; Lu, Y.; Du, Y.; Zhang, W.; Kang, Y.; Liu, Y.; Qin, S. Differential responses of microstructure, antioxidant defense, and plant hormone signaling regulation in potato (Solanum tuberosum L.) under drought, alkaline salt, and combined stresses. Sci. Hortic. 2025, 341, 114014. [Google Scholar] [CrossRef]
- Ma, H.; Ren, Z.; Luo, A.; Fang, X.; Liu, R.; Wu, C.; Shi, X.; Li, J.; Lv, H.; Sun, X.; et al. Self-alleviation of continuous-cropping obstacles in potato via root-exudate-driven recruitment of growth-promting bacteria. Plant Commun. 2025, 6, 101372. [Google Scholar] [CrossRef] [PubMed]
- Xing, Y.; Zhang, P.; Zhang, W.; Yu, C.; Luo, Z. Continuous cropping of potato changed the metabolic pathway of root exudates to drive rhizosphere microflora. Front. Microbiol. 2024, 14, 1318586. [Google Scholar] [CrossRef] [PubMed]
- Slimane, M.; Karim, H.; Krishna, K.; Ami, I.; Lienda, B.; Maha, A.; Yacine, B.; Marina, M.; Cabral, P.; El-hafid, N. Bioremediation techniques for soil organic pollution: Mechanisms, microorganisms, and technologies—A comprehensive review. Ecol. Eng. 2024, 207, 107338. [Google Scholar]
- De Corato, U. Soil microbiota manipulation and its role in suppressing soil-borne plant pathogens in organic farming systems under the light of microbiome-assisted strategies. Chem. Biol. Technol. Agric. 2020, 7, 17. [Google Scholar] [CrossRef]
- Sun, K.; Jiang, H.; Pan, Y.; Lu, F.; Zhu, Q.; Ma, C.; Zhang, A.; Zhou, J.; Zhang, W. Hyphosphere microorganisms facilitate hyphal spreading and root colonization of plant symbiotic fungus in ammonium-enriched soil. ISME J. 2023, 17, 1626–1638. [Google Scholar] [CrossRef] [PubMed]
- Lai, X.; Wei, C.; Wang, H.; He, Z.; Zhang, F.; Lei, Z.; Wang, X.; Liu, S.; Yan, L. Responses of the potato rhizosphere bacterial communities to Ralstonia solanacearum infection and their roles in binary disease outcomes. Plant Soil 2025. [Google Scholar] [CrossRef]
- Liu, C.; Ravnskov, S.; Liu, F.; Rubæk, G.; Andersen, M. Arbuscular mycorrhizal fungi alleviate abiotic stresses in potato plants caused by low phosphorus and deficit irrigation/partial root-zone drying. J. Agric. Sci. 2018, 156, 46–58. [Google Scholar] [CrossRef]
- Oro, C.E.D.; Saorin Puton, B.M.; Venquiaruto, L.D.; Dallago, R.M.; Tres, M.V. Effective Microbial Strategies to Remediate Contaminated Agricultural Soils and Conserve Functions. Agronomy 2024, 14, 2637. [Google Scholar] [CrossRef]
- Ma, H.; Xie, C.; Zheng, S.; Li, P.; Cheema, H.N.; Gong, J.; Xiang, Z.; Liu, J.; Qin, J. Potato tillage method is associated with soil microbial communities, soil chemical properties, and potato yield. J. Microbiol. 2022, 60, 156–166. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; He, Y.; Zhou, W.; Ai, L.; Liu, H.; Chen, L.; Xie, Y. Effects of Continuous Cropping of Codonopsis tangshen on Rhizospheric Soil Bacterial Community as Determined by Pyrosequencing. Diversity 2021, 13, 317. [Google Scholar] [CrossRef]
- Yu, F.; Yan, Y.; Dong, Q.; Jiang, C.; Zu, C.; Shen, J. The Changes in Rhizosphere Metabolome and Microbiota Are the Main Direct Obstacles to Continuous Cropping in Tobacco (Nicotiana tabacum L.). Agronomy 2023, 13, 964. [Google Scholar] [CrossRef]
- Gao, W.; Song, Y.; Guo, X.; Zhao, J.; Zeng, G.; Ma, X.; Li, L.; Li, Y.; Chen, X.; Wang, L.; et al. Unveiling soil microbial dynamics: Insights into bacterial community responses to solonetz dealkalinization. J. Soils Sediments 2025, 25, 1–12. [Google Scholar] [CrossRef]
- Meslier, V.; Quinquis, B.; Da Silva, K.; Plaza Oñate, F.; Pons, N.; Roume, H.; Podar, M.; Almeida, M. Benchmarking second and third-generation sequencing platforms for microbial metagenomics. Sci. Data 2022, 9, 694. [Google Scholar] [CrossRef] [PubMed]
- Cox, M.P.; Peterson, D.A.; Biggs, P.J. SolexaQA: At-a-glance quality assessment of Illumina second-generation sequencing data. BMC Bioinform. 2010, 11, 485. [Google Scholar] [CrossRef] [PubMed]
- Mootapally, C.; Sharma, P.; Dash, S.; Kumar, M.; Sharma, S.; Kothari, R.; Nathani, N. Microbial drivers of biogeochemical cycles in deep sediments of the Kathiawar Peninsula Gulfs of India. Sci. Total Environ. 2025, 965, 178609. [Google Scholar] [CrossRef] [PubMed]
- Dewar, A.; Belcher, L.; West, S. A phylogenetic approach to comparative genomics. Nat. Rev. Genet. 2025, 26, 395–405. [Google Scholar] [CrossRef] [PubMed]
- Zhu, G.; Yong, L.; Zhang, Z.; Sun, Z.; Wan, Q.; Xu, Y.; Ma, H.; Sang, L.; Liu, Y.; Wang, L.; et al. Effects of plastic mulch on soil water migration in arid oasis farmland: Evidence of stable isotopes. Catena 2021, 207, 105580. [Google Scholar] [CrossRef]
- Xu, J.; Wang, Y.; Chen, Y.; He, W.; Li, X.; Cui, J.X. Identifying the Influencing Factors of Plastic Film Mulching on Improving the Yield and Water Use Efficiency of Potato in the Northwest China. Water 2023, 15, 2279. [Google Scholar] [CrossRef]
- Li, C.; Luo, X.; Li, Y.; Wang, N.; Zhang, T.; Dong, Q.; Feng, H.; Zhang, W.; Siddique, K.H.M. Ridge planting with transparent plastic mulching improves maize productivity by regulating the distribution and utilization of soil water, heat, and canopy radiation in arid irrigation area. Agric. Water Manag. 2023, 280, 108230. [Google Scholar] [CrossRef]
- Rittl, T.; Grønmyr, F.; Bakken, I.; Løes, A. Effects of organic amendments and cover crops on soil characteristics and potato yields. Acta Agric. Scand. Sect. B Soil Plant Sci. 2023, 73, 13–26. [Google Scholar] [CrossRef]
- Hou, F.Y.; Zhang, L.M.; Xie, B.T.; Dong, S.X.; Zhang, H.Y.; Li, A.X.; Wang, Q.M. Effect of plastic mulching on the photosynthetic capacity, endogenous hormones and root yield of summer-sown sweet potato [Ipomoea batatas L.] in Northern China. Acta Physiol. Plant 2015, 37, 164. [Google Scholar] [CrossRef]
- Farmer, J.; Zhang, B.; Jin, X.; Zhang, P.; Wang, J. Long-term effect of plastic film mulching and fertilization on bacterial communities in a brown soil revealed by high through-put sequencing. Arch. Agron. Soil Sci. 2016, 63, 230–241. [Google Scholar] [CrossRef]
- Wang, X.; Huang, J.; Yang, L.; Li, Y.; Xia, B.; Li, H.; Deng, X. From Residue to Resource: A Physicochemical and Microbiological Analysis of Soil Microbial Communities through Film Mulch-Enhanced Rice Straw Return Strategies. Agronomy 2024, 14, 1001. [Google Scholar] [CrossRef]
- Luo, S.; Wang, S.; Yao, P.; Guo, D.; Li, X.; Li, S.; Tian, C. Soil microbial communities under film mulching and N fertilization in semiarid farmland. Nutr. Cycl. Agroecosyst. 2019, 114, 157–170. [Google Scholar] [CrossRef]
- Liu, Y.; Huang, Q.; Hu, W.; Qin, J.; Zheng, Y.; Wang, J.; Wang, Q.; Xu, Y.; Guo, G.; Hu, S.; et al. Effects of plastic mulch film residues on soil-microbe-plant systems under different soil pH conditions. Chemosphere 2020, 267, 128901. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Zheng, J.; Li, Q.; Liang, F.; Mu, X.; Pei, D.; Jia, H.; Wang, Z. Effects of Film Mulching on Soil Microbial Diversity and Community Structure in the Maize Root Zone under Drip Irrigation in Northwest China. Agronomy 2024, 14, 1139. [Google Scholar] [CrossRef]
- Song, W.; Han, F.; Bao, Z.; Chai, Y.; Wang, L.; Huang, C.; Cheng, H.; Chang, L. Mulching Practices Improve Soil Moisture and Enzyme Activity in Drylands, Increasing Potato Yield. Agronomy 2024, 14, 1077. [Google Scholar] [CrossRef]
- Lin, Y.C.; Wei, K.S.; Gao, W.C.; Chen, Y.; Lin, Y.; Chen, W.; Li, H.; Pan, W.J. Effects of plastic mulching film-induced leaf burning on seedling growth in tobacco cultivation: Different findings beyond conservation view. J. Integr. Agric. 2018, 17, 1327–1337. [Google Scholar] [CrossRef]
- Qian, Z.; Zhuang, S.Y.; Gao, J.; Tang, L.; Harindintwali, J.; Wang, F. Aeration increases soil bacterial diversity and nutrient transformation under mulching-induced hypoxic conditions. Sci. Total Environ. 2022, 817, 153017. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Shi, M.; Zhang, R.; Zhang, W.; Liu, Y.; Sun, D.; Wang, X.; Qin, S.; Kang, Y. Legume-potato rotation affects soil physicochemical properties, enzyme activity, and rhizosphere metabolism in continuous potato cropping. Chem. Biol. Technol. Agric. 2023, 10, 132. [Google Scholar] [CrossRef]
- Xia, H.; Jiang, C.; Riaz, M.; Yu, F.; Dong, Q.; Yan, Y.; Zu, C.; Zhou, C.; Wang, J.; Shen, J. Impacts of continuous cropping on soil fertility, microbial communities, and crop growth under different tobacco varieties in a field study. Environ. Sci. Eur. 2025, 37, 5. [Google Scholar] [CrossRef]
- Gao, Z.; Han, M.; Hu, Y.; Li, Z.; Liu, C.; Wang, X.; Tian, Q.; Jiao, W.; Hu, J.; Liu, L.; et al. Effects of Continuous Cropping of Sweet Potato on the Fungal Community Structure in Rhizospheric Soil. Front. Microbiol. 2019, 10, 2269. [Google Scholar] [CrossRef] [PubMed]
- Gu, S.; Xiong, X.; Tan, L.; Deng, Y.; Du, X.; Yang, X.; Hu, Q. Soil microbial community assembly and stability are associated with potato [Solanum tuberosum L.] fitness under continuous cropping regime. Front. Plant Sci. 2022, 13, 1000045. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.; Li, M.; Wang, M.; Wang, Y.; Zhang, X.Y. Effects of watermelon replanting on main microflora of rhizosphere and activity of soil enzymes. Microbiology 2008, 35, 1251–1254. [Google Scholar]
- Jiang, S.; Xue, D.; Feng, W.; Wang, K.; Wang, S.; Wang, T.; Lv, M.; Han, Y.; Lv, Y.; Hu, A.; et al. Long-term organic fertilization alters soil microbial community structure and its influence on faba bean production in a six-crop rotation system. Plant Soil 2024. [Google Scholar] [CrossRef]
- Yin, X.; Song, Y.; Shen, J.; Sun, L.; Fan, K.; Chen, H.; Sun, K.; Ding, Z.; Wang, Y. The role of rhizosphere microbial community structure in the growth and development of different tea cultivars. Appl. Soil Ecol. 2025, 206, 105817. [Google Scholar] [CrossRef]
- Yang, L.; Wang, M.; Li, S.; Yu, J.; Chen, Y.; Yang, H.; Wang, W.; Chen, H.; Hong, L. Effect of Different Mulching Practices on Bacterial Community Composition and Fruit Quality in a Citrus Orchard. Agriculture 2023, 13, 1914. [Google Scholar] [CrossRef]
- Gu, Y.; Xu, Q.; Zhou, W.; Han, C.; Siddique, K. Enhancing Faba Bean Yields in Alpine Agricultural Regions. The Impact of Plastic Film Mulching and Phosphorus Fertilization on Soil Dynamics. Agronomy 2024, 14, 447. [Google Scholar] [CrossRef]
- Xin, X.; Sun, Z.; Xiao, J.; Bai, W.; Zhang, Z.; Yan, H. Efficient Utilization Mechanism of Soil Moisture and Nutrients with Ridge Film Furrow Seeding Technology of Sloping Farmlands in Semi-Arid and Rain-Fed Areas. Agriculture 2023, 13, 1940. [Google Scholar] [CrossRef]
- Zhou, J.; Tang, S.; Pan, W.; Xu, M.; Liu, X.; Ni, L.; Mao, X.; Sun, T.; Fu, H.; Han, K.; et al. Long-term application of controlled-release fertilizer enhances rice production and soil quality under non-flooded plastic film mulching cultivation conditions. Agric. Ecosyst. Environ. 2023, 358, 108720. [Google Scholar] [CrossRef]
- Mao, H.; Sun, Y.; Tao, C.; Deng, X.; Xu, X.; Shen, Z.; Zhang, L.; Zheng, Z.; Huang, Y.; Hao, Y.; et al. Rhizosphere Microbiota Promotes the Growth of Soybeans in a Saline-Alkali Environment under Plastic Film Mulching. Plants 2023, 12, 1889. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Nie, C.; Liu, Y.H.; Du, W.; He, P. Soil microbial community composition closely associates with specific enzyme activities and soil carbon chemistry in a long-term nitrogen fertilized grassland. Sci. Total Environ. 2019, 654, 264–274. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Yang, B.; Li, W. Defining the normal core microbiome of conjunctival microbial communities. Clin. Microbiol. Infect. 2016, 22, 643. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Sun, W.; Xiang, S.; Zou, S. High-Throughput Sequencing Analysis of the Composition and Diversity of the Bacterial Community in Cinnamomum camphora Soil. Microorganisms 2022, 10, 72. [Google Scholar] [CrossRef] [PubMed]
- Baldrian, P.; Větrovský, T.; Lepinay, C.; Kohout, P. High-throughput sequencing view on the magnitude of global fungal diversity. Fungal Divers. 2022, 114, 539–547. [Google Scholar] [CrossRef]
- Lou, J.; Yang, L.; Wang, H.; Wu, L.; Xu, J. Assessing soil bacterial community and dynamics by integrated high-throughput absolute abundance quantification. PeerJ 2018, 6, e4514. [Google Scholar] [CrossRef] [PubMed]
- Arunrat, N.; Uttarotai, T.; Mhuantong, W.; Kongsurakan, P.; Sereenonchai, S.; Hatano, R. Soil bacterial communities in a 10-year fallow rotational shifting cultivation field and an 85-year-old terraced paddy field in Northern Thailand. Environ. Sci. Eur. 2025, 37, 95. [Google Scholar] [CrossRef]
- Arunrat, N.; Uttarotai, T.; Kongsurakan, P.; Sereenonchai, S.; Hatano, R. Bacterial Community Structure in Soils with Fire-Deposited Charcoal Under Rotational Shifting Cultivation of Upland Rice in Northern Thailand. Ecol. Evol. 2025, 15, e70851. [Google Scholar] [CrossRef] [PubMed]
- Morigasaki, S.; Matsui, M.; Ohtsu, I.; Doi, Y.; Kawano, Y.; Nakai, R.; Iwasaki, W.; Hayashi, H.; Takaya, N. Temporal and fertilizer-dependent dynamics of soil bacterial communities in buckwheat fields under long-term management. Sci. Rep. 2024, 14, 9896. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Wang, S.; Liu, J.; Li, Y.; Xu, L.; Sun, Z.; Mo, E.; Zhao, Y. Flue gas desulfurization gypsum amelioration affects the salinealkali soil microbial community on the temporal scale. Soil Tillage Res. 2025, 252, 106607. [Google Scholar] [CrossRef]
- Corato, U.; Patruno, L.; Avella, N.; Salimbeni, R.; Lacolla, G.; Cucci, G.; Crecchio, C. Soil management under tomato-wheat rotation increases the suppressive response against Fusarium wilt and tomato shoot growth by changing the microbial composition and chemical parameters. Appl. Soil Ecol. 2020, 154, 103601. [Google Scholar] [CrossRef]
- Mulet, M.; Gomila, M.; Busquets, A.; Sánchez, D.; Lalucat, J.; García-Valdés, E. Genome-Based Taxonomy of Species in the Pseudomonas syringae and Pseudomonas lutea Phylogenetic Groups and Proposal of Pseudomonas maioricensis sp. nov., Isolated from Agricultural Soil. Microorganisms 2024, 12, 460. [Google Scholar] [CrossRef] [PubMed]
- Madhogaria, B.; Banerjee, S.; Chakraborty, S.; Dhak, P.; Kundu, A. Alleviation of heavy metals chromium, cadmium and lead and plant growth promotion in Vigna radiata L. plant using isolated Pseudomonas geniculata. Int. Microbiol. 2025, 28, 133–149. [Google Scholar] [CrossRef] [PubMed]
- Deng, X.; Zhang, N.; Li, Y.; Zhu, C.; Qu, B.; Liu, H.; Li, R.; Bai, Y.; Shen, Q.; Falcao, S. Bio-organic soil amendment promotes the suppression of Ralstonia solanacearum by inducing changes in the functionality and composition of rhizosphere bacterial communities. New Phytol. 2022, 235, 1558–1574. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Zhang, Q.; Yan, Y.; Qu, J.; Zhou, J.; Zhao, J.; Zhang, J.; Cai, Z.; Dai, C.; Huang, X. Effects of soil management strategies based on different principles on soil microbial communities and the outcomes for plant health. Biol. Control 2025, 201, 105708. [Google Scholar] [CrossRef]
- Yao, T.; Wang, C.Y.; Ren, Q.; Liu, M.; Sun, W.; Cao, Y. Bacterial wilt alters the microbial community characteristics of tobacco root and rhizosphere soil. Rhizosphere 2024, 32, 100995. [Google Scholar] [CrossRef]
- Ali, A.; Elrys, A.S.; Liu, L.; Xia, Q.; Wang, B.; Li, Y.; Dan, X.; Iqbal, M.; Zhao, J.; Huang, X.; et al. Deciphering the Synergies of Reductive Soil Disinfestation Combined with Biochar and Antagonistic Microbial Inoculation in Cucumber Fusarium Wilt Suppression Through Rhizosphere Microbiota Structure. Microb. Ecol. 2023, 85, 980–997. [Google Scholar] [CrossRef] [PubMed]
- Vaishnav, A.; Rozmoš, M.; Kotianová, M.; Hršelová, H.; Bukovská, P.; Jansa, J. Protists are key players in the utilization of protein nitrogen in the arbuscular mycorrhizal hyphosphere. New Phytol. 2025, 246, 2753–2764. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Tu, Q.; Liu, S.; Ding, W.; Min, X.; Zhou, S.; Zhang, J.; Li, J.; Yuan, C. Effects of the combined compost of grape branches and sheep manure on a soil-microorganism-chardonnay (Vitis vinifera L.) plant ecosystem. Sci. Hortic. 2024, 336, 113430. [Google Scholar] [CrossRef]
- Higo, M.; Tatewaki, Y.; Iida, K.; Yokota, K.; Isobe, K. Amplicon sequencing analysis of arbuscular mycorrhizal fungal communities colonizing maize roots in different cover cropping and tillage systems. Sci. Rep. 2020, 10, 6039. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Huo, S.; Xi, B. Updating the resolution for 16S rRNA OTUs clustering reveals the cryptic cyanobacterial genus and species. Ecol. Indic. 2020, 117, 106695. [Google Scholar] [CrossRef]
- García-López, R.; Cornejo-Granados, F.; Lopez-Zavala, A.A.; Cota-Huízar, A.; Sotelo-Mundo, R.R.; Gómez-Gil, B.; Ochoa-Leyva, A. OTUs and ASVs Produce Comparable Taxonomic and Diversity from Shrimp Microbiota 16S Profiles Using Tailored Abundance Filters. Genes 2021, 12, 564. [Google Scholar] [CrossRef] [PubMed]
Treatment | Operation |
---|---|
CK | Non-film mulched flat plot |
T1 | Half-mulched flat plot (70 cm) alternated with strips of bare land (40 cm) without ridges. Potato planted in two rows in the mulched plot and spaced at 40 cm |
T2 | Fully mulched ridge cropping (70 cm) alternated with narrow ridges (40 cm) and ridge cropping. Potato planted in two rows in the mulched ridges and spaced at 40 cm |
T3 | Fully mulched furrow cropping (70 cm) with narrow ridges (40 cm). This was similar to T2 with the exception of planting at the bottom of the furrows (two furrows) |
T4 | Half-mulched ridge cropping (70 cm) alternated with bare land (40 cm) that had no ridges and mulching. Potatoes were planted in two rows in the mulched ridges plots and spaced at 40 cm |
T5 | Half-mulched furrow cropping (70 cm) alternated with bare land (40 cm) that had no ridges and mulching. Two rows of potatoes were planted in the non-mulched plots and spaced at 40 cm. |
Treatment | Moisture/% | pH | EC (µs/cm) | OC (g·kg−1) | OM (g·kg−1) | AN (mg·kg−1) | AK (mg·kg−1) | AP (mg·kg−1) |
---|---|---|---|---|---|---|---|---|
CK | 7.3 ± 0.08 b | 7.8 ± 0.06 a | 284 ± 24.13 a | 12.3 ± 0.4 c | 21.2 ± 0.7 c | 22.1 ± 1.16 a | 200.7 ± 19.32 a | 18.7 ± 3.84 b |
T1 | 8.9 ± 0.01 ab | 7.7 ± 0.05 ab | 276 ± 4.16 a | 14.1 ± 0.5 b | 24.3 ± 0.9 ab | 20.2 ± 1.91 ab | 124.7 ± 17.42 b | 25.8 ± 1.81 ab |
T2 | 11.0 ± 0.22 a | 7.5 ± 0.17 ab | 232 ± 8.74 a | 16.8 ± 0.6 a | 29.0 ± 1.0 a | 16.9 ± 0.29 c | 135.0 ± 15.28 ab | 29.0 ± 4.21 a |
T3 | 10.5 ± 0.16 a | 7.3 ± 0.03 b | 241 ± 8.50 a | 15.9 ± 0.5 a | 27.4 ± 0.9 a | 18.9 ± 0.27 bc | 193.3 ± 34.92 a | 29.2 ± 3.99 a |
T4 | 10.3 ± 0.18 a | 7.5 ± 0.07 ab | 244 ± 87.09 a | 13.7 ± 0.4 b | 23.6 ± 0.7 b | 19.3 ± 0.41 b | 146.3 ± 24.33 ab | 18.0 ± 6.92 b |
T5 | 10.6 ± 0.08 a | 7.6 ± 0.02 ab | 283 ± 22.72 a | 13.2 ± 0.4 b | 22.8 ± 0.7 bc | 20.6 ± 0.92 ab | 150.0 ± 26.41 ab | 18.9 ± 2.46 b |
Planting Patterns | Sequence Number |
---|---|
CK | 16,847 |
T1 | 20,291 |
T2 | 18,694 |
T3 | 9876 |
T4 | 12,423 |
T5 | 17,601 |
Planting Patterns | OTU Number | Chao | Shannon | Coverage/% |
---|---|---|---|---|
CK | 1384 | 1473 b | 5.97 d | 97.41 |
T1 | 1350 | 1624 ab | 6.05 bc | 97.22 |
T2 | 1344 | 1670 a | 6.14 a | 97.31 |
T3 | 1102 | 1677 a | 6.12 a | 94.48 |
T4 | 1206 | 1537 ab | 6.02 cd | 95.55 |
T5 | 1334 | 1613 ab | 6.09 ab | 97.41 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiao, S.; Kang, Y.; Zhang, W.; Liu, Y.; Li, H.; Li, W.; Qin, S. Effects of Ridge-Furrow Film Mulching Patterns on Soil Bacterial Diversity in a Continuous Potato Cropping System. Agronomy 2025, 15, 1784. https://doi.org/10.3390/agronomy15081784
Jiao S, Kang Y, Zhang W, Liu Y, Li H, Li W, Qin S. Effects of Ridge-Furrow Film Mulching Patterns on Soil Bacterial Diversity in a Continuous Potato Cropping System. Agronomy. 2025; 15(8):1784. https://doi.org/10.3390/agronomy15081784
Chicago/Turabian StyleJiao, Shujuan, Yichen Kang, Weina Zhang, Yuhui Liu, Hong Li, Wenlin Li, and Shuhao Qin. 2025. "Effects of Ridge-Furrow Film Mulching Patterns on Soil Bacterial Diversity in a Continuous Potato Cropping System" Agronomy 15, no. 8: 1784. https://doi.org/10.3390/agronomy15081784
APA StyleJiao, S., Kang, Y., Zhang, W., Liu, Y., Li, H., Li, W., & Qin, S. (2025). Effects of Ridge-Furrow Film Mulching Patterns on Soil Bacterial Diversity in a Continuous Potato Cropping System. Agronomy, 15(8), 1784. https://doi.org/10.3390/agronomy15081784