Differences and Influencing Factors of Soil Bacterial Communities Under Different Forest Types on the Southern Slope of the Qilian Mountains
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area and Experimental Design
2.2. Sampling and Treatment
2.3. Soil Physicochemical Properties
2.4. Soil DNA Extraction, Amplification by Polymerase Chain Reaction (PCR), and Illumina Sequencing
2.5. Statistical Analysis
3. Results
3.1. Soil Characteristics Under Different Forest Types
3.1.1. Soil Physicochemical Properties Across Forest Types
3.1.2. Soil Particle Size Composition Across Forest Types
3.1.3. Soil Enzyme Activities Across Vegetation Types
3.2. Composition of Soil Bacterial Communities Across Vegetation Types
3.3. Alpha Diversity of Soil Bacterial Communities Across Vegetation Types
3.4. Functional Diversity of Soil Bacterial Communities Across Vegetation Types
3.5. Key Environmental Factors Influencing Soil Bacterial Community Composition and Diversity Across Vegetation Types
4. Discussion
4.1. Effect of Forest Types on Soil Microbial Communities
4.2. Effect of Forest Type on Soil Microbial Diversity
4.3. Environmental Factors Jointly Regulate the Variation in Soil Microbial Communities Across Forest Types
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AK | Available potassium |
ALP | Phosphatase |
AN | Alkali-hydrolysable nitrogen |
AP | Available phosphorus |
BD | Bulk density |
CAT | Catalase |
EC | Electrical conductivity |
HS | Pure forest of Betula |
KKHJ | Mixed broadleaved forest |
NCM | Neutral community model |
OTU | Operational taxonomic unit |
PCR | Polymerase chain reaction |
Pure forest of Picea wilsonii | |
RDA | Redundancy analysis |
SOC | Soil organic carbon |
SUC | Sucrase |
SWC | Soil water content |
TC | Total carbon |
TK | Total potassium |
TN | Total nitrogen |
TP | Total phosphorus |
URE | Urease |
YB | Pure forest of Juniperus squamata |
YS | Pure forest of Pinus tabuliformis |
ZKHJ | Mixed coniferous and broadleaved forest |
References
- O’Donnell, F.C.; Flatley, W.T.; Springer, A.E.; Fulé, P.Z. Forest restoration as a strategy to mitigate climate impacts on wildfire, vegetation, and water in semiarid forests. Ecol. Appl. 2018, 28, 1459–1472. [Google Scholar] [CrossRef] [PubMed]
- Fierer, N.; Jackson, R.B. The diversity and biogeography of soil bacterial communities. Proc. Natl. Acad. Sci. USA 2006, 103, 626–631. [Google Scholar] [CrossRef] [PubMed]
- Deng, Z.; Wang, Y.; Xiao, C.; Zhang, D.; Feng, G.; Long, W. Effects of plant fine root functional traits and soil nutrients on the diversity of rhizosphere microbial communities in tropical cloud forests in a dry season. Forests 2022, 13, 421. [Google Scholar] [CrossRef]
- Margesin, R.; Jud, M.; Tscherko, D.; Schinner, F. Microbial communities and activities in alpine and subalpine soils. FEMS Microbiol. Ecol. 2009, 67, 208–218. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Gong, L.; Luo, Y.; Tang, J.; Ding, Z.; Li, X. Effects of litter and root manipulations on soil bacterial and fungal community structure and function in a schrenk’s spruce (Picea schrenkiana) forest. Front. Plant Sci. 2022, 13, 849483. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Lin, W.; Jia, S.; Chen, S.; Xiong, D.; Xu, C.; Yang, Z.; Liu, X.; Yang, Y.; Liu, X.; et al. Effects of litter and root inputs on soil microbial community structure in subtropical natural and plantation forests. Plant Soil. 2025, in press. [Google Scholar] [CrossRef]
- Staszel-Szlachta, K.; Lasota, J.; Szlachta, A.; Błońska, E. The impact of root systems and their exudates in different tree species on soil properties and microorganisms in a temperate forest ecosystem. BMC Plant Biol. 2024, 24, 45. [Google Scholar] [CrossRef] [PubMed]
- Lladó, S.; López-Mondéjar, R.; Baldrian, P. Drivers of microbial community structure in forest soils. Appl. Microbiol. Biotechnol. 2018, 102, 4331–4338. [Google Scholar] [CrossRef] [PubMed]
- Baldrian, P.; Šnajdr, J.; Merhautová, V.; Dobiášová, P.; Cajthaml, T.; Valášková, V. Responses of the extracellular enzyme activities in hardwood forest to soil temperature and seasonality and the potential effects of climate change. Soil. Biol. Biochem. 2013, 56, 60–68. [Google Scholar] [CrossRef]
- Knelman, J.E.; Graham, E.B.; Trahan, N.A.; Schmidt, S.K.; Nemergut, D.R. Fire severity shapes plant colonization effects on bacterial community structure, microbial biomass, and soil enzyme activity in secondary succession of a burned forest. Soil. Biol. Biochem. 2015, 90, 161–168. [Google Scholar] [CrossRef]
- Thacker, S.J.; Quideau, S.A. Rhizosphere response to predicted vegetation shifts in boreal forest floors. Soil. Biol. Biochem. 2021, 154, 108141. [Google Scholar] [CrossRef]
- Hernández-Cáceres, D.; Stokes, A.; Angeles-Alvarez, G.; Abadie, J.; Anthelme, F.; Bounous, M.; Freschet, G.T.; Roumet, C.; Weemstra, M.; Merino-Martín, L. Vegetation creates microenvironments that influence soil microbial activity and functional diversity along an elevation gradient. Soil. Biol. Biochem. 2022, 165, 108485. [Google Scholar] [CrossRef]
- Zhao, P.; Bao, J.; Wang, X.; Liu, Y.; Li, C.; Chai, B. Deterministic processes dominate soil microbial community assembly in subalpine coniferous forests on the Loess Plateau. PeerJ 2019, 7, e6746. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Cao, P.; Ma, H.; Liu, X. Research progress on soil microbial diversity and its influencing factors in Qinghai-Tibet Plateau. Environ. Ecol. 2019, 1, 1–7. [Google Scholar]
- Qiu, X.X.; Cao, G.C.; Zhao, Q.L.; Cao, S.K.; Zhao, M.L.; He, Q. Assessment of soil quality under different land use practices on the southern slope of Qilian Mountains based on minimum data set. Acta Agrestia Sin. 2024, 32, 2952. [Google Scholar]
- Sun, H.; Zheng, D.; Yao, T.; Zhang, Y. Protection and construction of the national ecological security shelter zone on Tibetan Plateau. Acta Geogr. Sin. 2012, 67, 3–12. [Google Scholar]
- Yang, X.; Feng, Q.; Zhu, M. The Impact of Artificial Restoration of Alpine Grasslands in the Qilian Mountains on Vegetation, Soil Bacteria, and Soil Fungal Community Diversity. Microorganisms 2024, 12, 854. [Google Scholar] [CrossRef] [PubMed]
- Mao, N.; Liu, G.M.; Li, L.S. Methane Fluxes and Their Relationships with Methane-Related Microbes in Permafrost Regions of the Qilian Mountains. Earth Sci. 2022, 47, 556–567. [Google Scholar] [CrossRef]
- Tong, S.; Cao, G.; Zhang, Z. Soil microbial community diversity and distribution characteristics under three vegetation types in the Qilian Mountains, China. J. Arid. Land. 2023, 15, 359–376. [Google Scholar] [CrossRef]
- Bai, L.; Wang, W.; Chen, Z.; Chen, X.; Xiong, Y. The variations in soil microbial communities and their mechanisms along an elevation gradient in the Qilian Mountains, China. Sustainability 2025, 17, 1797. [Google Scholar] [CrossRef]
- Duan, Y.; Lian, J.; Wang, L.; Wang, X.; Luo, Y.; Wang, W.; Wu, F.; Zhao, J.; Ding, Y.; Ma, J. Variation in soil microbial communities along an elevational gradient in alpine meadows of the Qilian Mountains, China. Front. Microbiol. 2021, 12, 684386. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Wang, P.; Li, X. Distribution of soil fungal diversity and community structure in different vegetation types on the eastern slopes of Helan Mountains. Ecol. Environ. 2022, 31, 239. [Google Scholar] [CrossRef]
- Cui, Y.; Bing, H.; Fang, L.; Jiang, M.; Shen, G.; Yu, J.; Wang, X.; Zhu, H.; Wu, Y.; Zhang, X.; et al. Extracellular enzyme stoichiometry reveals the carbon and phosphorus limitations of microbial metabolisms in the rhizosphere and bulk soils in alpine ecosystems. Plant Soil. 2021, 458, 7–20. [Google Scholar] [CrossRef]
- Su, Y.Z.; Zhao, H.L.; Zhao, W.Z.; Zhang, T.H. Fractal features of soil particle size distribution and the implication for indicating desertification. Geoderma 2004, 122, 43–49. [Google Scholar] [CrossRef]
- Bao, S.; Lu, R.; Jiang, S. BOOK REVIEW: Analytical Methods for Soil and Agro-Chemistry; Wiley: Hoboken, NJ, USA, 2000. (In Chinese) [Google Scholar]
- Liu, C.; Zhao, D.; Ma, W.; Guo, Y.; Wang, A.; Wang, Q.; Lee, D.-J. Denitrifying sulfide removal process on high-salinity wastewaters in the presence of Halomonas sp. Appl. Microbiol. Biotechnol. 2016, 100, 1421–1426. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Ding, M.J.; Zhang, H.; Zhang, Y.J.; Huang, P.; Wu, Y.P.; Zou, T.E.; Wang, N.Y.; Zeng, H. Interaction effects of vegetation and soil factors on microbial communities in alpine steppe under degradation. Huan Jing Ke Xue 2024, 45, 4251–4265. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Liu, Y.; Wang, F.; Wang, Y.C. Effects of vegetation types and seasonal dynamics on the diversity and function of soil bacterial communities in the upper reaches of the Heihe River. Huan Jing Ke Xue 2023, 44, 6339–6353. [Google Scholar] [CrossRef] [PubMed]
- Jones, R.T.; Robeson, M.S.; Lauber, C.L.; Hamady, M.; Knight, R.; Fierer, N. A comprehensive survey of soil acidobacterial diversity using Pyrosequencing and clone library analyses. ISME J. 2009, 3, 442–453. [Google Scholar] [CrossRef] [PubMed]
- Kielak, A.M.; Barreto, C.C.; Kowalchuk, G.A.; Van Veen, J.A.; Kuramae, E.E. The ecology of Acidobacteria: Moving beyond genes and genomes. Front. Microbiol. 2016, 7, 744. [Google Scholar] [CrossRef] [PubMed]
- Naether, A.; Foesel, B.U.; Naegele, V.; Wüst, P.K.; Weinert, J.; Bonkowski, M.; Alt, F.; Oelmann, Y.; Polle, A.; Lohaus, G. Environmental factors affect acidobacterial communities below the subgroup level in grassland and forest soils. Appl. Environ. Microbiol. 2012, 78, 7398–7406. [Google Scholar] [CrossRef] [PubMed]
- Ward, N.L.; Challacombe, J.F.; Janssen, P.H.; Henrissat, B.; Coutinho, P.M.; Wu, M.; Xie, G.; Haft, D.H.; Sait, M.; Badger, J. Three genomes from the phylum Acidobacteria provide insight into the lifestyles of these microorganisms in soils. Appl. Environ. Microbiol. 2009, 75, 2046–2056. [Google Scholar] [CrossRef] [PubMed]
- Janssen, P.H. Identifying the dominant soil bacterial taxa in libraries of 16S rRNA and 16S rRNA genes. Appl. Environ. Microbiol. 2006, 72, 1719–1728. [Google Scholar] [CrossRef] [PubMed]
- Philippot, L.; Raaijmakers, J.M.; Lemanceau, P.; Van Der Putten, W.H. Going back to the roots: The microbial ecology of the rhizosphere. Nat. Rev. Microbiol. 2013, 11, 789–799. [Google Scholar] [CrossRef] [PubMed]
- Spain, A.M.; Krumholz, L.R.; Elshahed, M.S. Abundance, composition, diversity and novelty of soil proteobacteria. ISME J. 2009, 3, 992–1000. [Google Scholar] [CrossRef] [PubMed]
- Trivedi, P.; Leach, J.E.; Tringe, S.G.; Sa, T.; Singh, B.K. Plant–microbiome interactions: From community assembly to plant health. Nat. Rev. Microbiol. 2020, 18, 607–621. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Garrity, G.M.; Tiedje, J.M.; Cole, J.R. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 2007, 73, 5261–5267. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Xie, P.; She, J.; Huang, K.; Deng, A.; Fan, S. Soil bacterial communities are influenced more by forest type than soil depth or slope position. Authorea 2022. preprints. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Xin, Y.; Zhao, Y. Diversity and functional potential of soil bacterial communities in different types of farmland shelterbelts in Mid-Western Heilongjiang, China. Forests 2019, 10, 1115. [Google Scholar] [CrossRef]
- Guo, J.; Wu, Y.; Wu, X.; Ren, Z.; Wang, G. Soil bacterial community composition and diversity response to land conversion is depth-dependent. Glob. Ecol. Conserv. 2021, 32, e01923. [Google Scholar] [CrossRef]
- Zheng, Y.; Ji, N.N.; Wu, B.W.; Wang, J.T.; Hu, H.W.; Guo, L.D.; He, J.Z. Climatic factors have unexpectedly strong impacts on soil bacterial β-diversity in 12 forest ecosystems. Soil. Biol. Biochem. 2020, 142, 107699. [Google Scholar] [CrossRef]
- Luan, L.; Liang, C.; Chen, L.; Wang, H.; Xu, Q.; Jiang, Y.; Sun, B. Coupling bacterial community assembly to microbial metabolism across soil profiles. mSystems 2020, 5, e00298-e20. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.; Feng, W.; Zhou, W.; He, K.; Yang, Z. Association between soil physicochemical properties and bacterial community structure in diverse forest ecosystems. Microorganisms 2024, 12, 728. [Google Scholar] [CrossRef] [PubMed]
- Dang, P.; Yu, X.; Le, H.; Liu, J.; Shen, Z.; Zhao, Z. Effects of stand age and soil properties on soil bacterial and fungal community composition in Chinese pine plantations on the Loess Plateau. PLoS ONE 2017, 12, e0186501. [Google Scholar] [CrossRef] [PubMed]
- Jing, H.; Wang, H.; Wang, G.; Liu, G.; Cheng, Y. Hierarchical traits of rhizosphere soil microbial community and carbon metabolites of different diameter roots of Pinus tabuliformis under nitrogen addition. Carbon. Res. 2023, 2, 47. [Google Scholar] [CrossRef]
- Jing, H.; Wang, H.; Wang, G.; Liu, G.; Cheng, Y. The mechanism effects of root exudate on microbial community of rhizosphere soil of tree, shrub, and grass in forest ecosystem under N deposition. ISME Commun. 2023, 3, 120. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Zhang, Y.; Ma, J.; Bai, M.; Long, J.; Liu, M. Contribution of soil Microbial Necromass Carbon to Soil Organic Carbon fractions and its influencing factors in different grassland types. EGUsphere 2025. preprint. [Google Scholar] [CrossRef]
- Chen, W.; Jiao, S.; Li, Q.; Du, N. Dispersal limitation relative to environmental filtering governs the vertical small-scale assembly of soil microbiomes during restoration. J. Appl. Ecol. 2020, 57, 402–412. [Google Scholar] [CrossRef]
- Danielsen, A.S.; Nielsen, P.H.; Hermansen, C.; Weber, P.L.; de Jonge, L.W.; Jørgensen, V.R.; Greve, M.H.; Corcoran, D.; Dueholm, M.K.D.; Bruhn, D.; et al. Improved description of terrestrial habitat types by including microbial communities as indicators. J. Environ. Manag. 2023, 344, 118677. [Google Scholar] [CrossRef] [PubMed]
- Fu, Q.; Shao, Y.; Wang, S.; Liu, F.; Tian, G.; Chen, Y.; Yuan, Z.; Ye, Y. Soil microbial distribution depends on different types of landscape vegetation in temperate urban forest ecosystems. Front. Ecol. Evol. 2022, 10, 858254. [Google Scholar] [CrossRef]
- Luo, X.; Gong, Y.; Xu, F.; Wang, S.; Tao, Y.; Yang, M. Soil horizons regulate bacterial community structure and functions in Dabie Mountain of the East China. Sci. Rep. 2023, 13, 15866. [Google Scholar] [CrossRef] [PubMed]
- Saltonstall, K.; van Breugel, M.; Navia, W.; Castillo, H.; Hall, J.S. Soil microbial communities in dry and moist tropical forests exhibit distinct shifts in community composition but not diversity with succession. Microbiol. Spectr. 2025, 13, e01931-24. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.; Yang, Z.; He, K.; Zhou, W.; Feng, W. Soil fungal community diversity, co-occurrence networks, and assembly processes under diverse forest ecosystems. Microorganisms 2024, 12, 1915. [Google Scholar] [CrossRef] [PubMed]
- Shi, B.; Wang, X.; Yang, S.; Chen, H.; Zhao, Y.; Shen, J.; Xie, M.; Huang, B.; Huang, B. Changes and driving factors of microbial community composition and functional groups during the decomposition of Pinus massoniana deadwood. Ecol. Evol. 2024, 14, e11210. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.M.; Fan, S.H.; Guan, F.Y.; Yan, X.R.; Yin, Z.X. Soil bacterial community structure of mixed bamboo and broad-leaved forest based on tree crown width ratio. Sci. Rep. 2020, 10, 6522. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Xiang, W.; Wu, H.; Ouyang, S.; Zhou, B.; Zeng, Y.; Chen, Y.; Kuzyakov, Y.; Kuzyakov, Y. Tree species identity surpasses richness in affecting soil microbial richness and community composition in subtropical forests. Soil. Biol. Biochem. 2019, 130, 113–121. [Google Scholar] [CrossRef]
- Yang, F.; Tian, J.; Fang, H.; Gao, Y.; Zhang, X.; Yu, G.; Kuzyakov, Y. Spatial heterogeneity of microbial community and enzyme activities in a broad-leaved Korean pine mixed forest. Eur. J. Soil. Biol. 2018, 88, 65–72. [Google Scholar] [CrossRef]
- Gillespie, L.M.; Hättenschwiler, S.; Milcu, A.; Wambsganss, J.; Shihan, A.; Fromin, N. Tree species mixing affects soil microbial functioning indirectly via root and litter traits and soil parameters in European forests. Funct. Ecol. 2021, 35, 2190–2204. [Google Scholar] [CrossRef]
- Sun, W.; Li, Z.; Lei, J.; Liu, X. Bacterial communities of forest soils along different elevations: Diversity, structure, and functional composition with potential impacts on CO2 emisswion. Microorganisms 2022, 10, 766. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Dai, G.; Mu, L. Composition and diversity of soil bacterial communities under identical vegetation along an elevational gradient in Changbai Mountains, China. Front. Microbiol. 2022, 13, 1065412. [Google Scholar] [CrossRef] [PubMed]
- Mishra, A.; Singh, D.; Hathi, Z.; Purohit, H.J.; Jessy, M.D.; Philip, A.; Uthup, T.K.; Singh, L.; Singh, L. Soil microbiome dynamics associated with conversion of tropical forests to different rubber based land use management systems. Appl. Soil. Ecol. 2023, 188, 104933. [Google Scholar] [CrossRef]
- Weinhold, A.; Döll, S.; Liu, M.; Schedl, A.; Pöschl, Y.; Xu, X.; Neumann, S.; van Dam, N.M.; van Dam, N.M. Tree species richness differentially affects the chemical composition of leaves, roots and root exudates in four subtropical tree species. J. Ecol. 2022, 110, 97–116. [Google Scholar] [CrossRef]
- Berg, B.; McClaugherty, C. Plant Litter: Decomposition, Humus Formation, Carbon Sequestration; Springer: Berlin/Heidelberg, Germany, 2008. [Google Scholar] [CrossRef]
- Dequiedt, S.; Thioulouse, J.; Jolivet, C.; Saby, N.P.; Lelievre, M.; Maron, P.A.; Martin, M.P.; Prévost-Bouré, N.C.; Toutain, B.; Arrouays, D. Biogeographical patterns of soil bacterial communities. Environ. Microbiol. Rep. 2009, 1, 251–255. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Liu, G.; Xue, S.; Wang, G. Soil bacterial community dynamics reflect changes in plant community and soil properties during the secondary succession of abandoned farmland in the Loess Plateau. Soil. Biol. Biochem. 2016, 97, 40–49. [Google Scholar] [CrossRef]
- Zeng, J.; Liu, X.; Song, L.; Lin, X.; Zhang, H.; Shen, C.; Chu, H. Nitrogen fertilization directly affects soil bacterial diversity and indirectly affects bacterial community composition. Soil. Biol. Biochem. 2016, 92, 41–49. [Google Scholar] [CrossRef]
- Hu, H.W.; Zhang, L.M.; Dai, Y.; Di, H.J.; He, J.Z. PH-dependent distribution of soil ammonia oxidizers across a large geographical scale as revealed by high-throughput Pyrosequencing. J. Soils Sediments 2013, 13, 1439–1449. [Google Scholar] [CrossRef]
- Yang, Y.; Gao, Y.; Wang, S.; Xu, D.; Yu, H.; Wu, L.; Lin, Q.; Hu, Y.; Li, X.; He, Z. The microbial gene diversity along an elevation gradient of the Tibetan grassland. ISME J. 2014, 8, 430–440. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Xia, J.B.; Su, L.; Zhao, X.M.; Chen, Y.P.; Yue, X.Y.; Li, C.R. Soil amelioration of different vegetation types in saline-alkali land of the Yellow River Delta, China. Ying Yong Sheng Tai Xue Bao 2020, 31, 1323–1332. [Google Scholar] [CrossRef] [PubMed]
- Tscherko, D.; Hammesfahr, U.; Zeltner, G.; Kandeler, E.; Böcker, R. Plant succession and rhizosphere microbial communities in a recently deglaciated alpine terrain. Basic Appl. Ecol. 2005, 6, 367–383. [Google Scholar] [CrossRef]
- Cong, L.; Jinghua, L.; Mei, L.; Zhidong, Y.; Pan, L.; Yulian, R.; Fan, D. Responses of soil bacterial communities to vertical vegetarian zone changes in the subtropical forests, southeastern Yunnan. Ecol. Environ. 2022, 31, 1971. [Google Scholar] [CrossRef]
Plot ID | Forest Type | Elevation (m) | Longitude (°E) | Latitude (°N) | Mean Vegetation Cover (%) | Mean Diameter at Breast Height (m) | Mean Tree Height (m) | Vegetation Composition |
---|---|---|---|---|---|---|---|---|
1 | Pure forest of Picea wilsonii | 2328 | 102°28′12′′ | 36°56′39″ | 45 | 18.93 | 15.66 | The overstory is dominated by Picea crassifolia. The understory shrub layer is primarily composed of Ribes spinosum (spiny currant), Lonicera tangutica (Tangut honeysuckle), and Rosa acicularis (prickly rose). The herbaceous layer includes species such as Fragaria orientalis (Oriental strawberry), Dryopteris spp. (wood ferns), and Vaccinium vitis-idaea (lingonberry). |
2 | Pure forest of Betula | 2941 | 102°18′8″ | 36°54′53″ | 72 | 8.21 | 7.47 | The overstory is dominated by Betula platyphylla (Asian white birch). The understory shrub layer mainly includes Myricaria germanica (tamarisk), Rhododendron przewalskii (Przewalski’s rhododendron), and Rosa sericea (Silky rose). The herbaceous layer comprises Fragaria orientalis (Oriental strawberry), Dryopteris spp. (wood ferns), and Rubus spp. (raspberries). |
3 | Pure forest of Juniperus squamata | 3255 | 102°16′10″ | 36°53′36″ | 60 | 14.81 | 5.79 | The overstory is dominated by Juniperus przewalskii (Qilian juniper). The understory shrub layer mainly includes Potentilla fruticosa (shrubby cinquefoil), Berberis spp. (barberry), and Sempervivella spp. (assumed “Dongxiaqing”—further taxonomic confirmation may be needed). The herbaceous layer consists of Fragaria orientalis (Oriental strawberry), Polygonum viviparum (alpine bistort), and Poa pratensis (Kentucky bluegrass). |
4 | Pure forest of Pinus tabuliformis | 2378 | 102°27′18″ | 36°57′35″ | 75 | 15.36 | 13.63 | The overstory is dominated by Pinus tabuliformis (Chinese pine). The understory shrub layer primarily includes Dasiphora nivea (silvery cinquefoil). The herbaceous layer is mainly composed of Fragaria orientalis (Oriental strawberry) and Carex spp. (sedges). |
5 | Mixed coniferous and broadleaved forest | 2512 | 102°24′51″ | 36°55′8″ | 70 | 22.91 | 19.26 | The overstory consists of Betula albo-sinensis (Chinese red birch) and Picea crassifolia (Qinghai spruce). The understory shrub layer mainly includes Lonicera tangutica (Tangut honeysuckle) and Rosa sericea (Silky rose). The herbaceous layer is primarily composed of Dryopteris spp. (wood ferns). |
6 | Mixed broadleaved forest | 2559 | 102°22′39″ | 36°55′27″ | 75 | 25.08 | 15.62 | The overstory is composed of Betula platyphylla (white birch) and Betula albo-sinensis (Chinese red birch). The understory shrub layer primarily includes Lonicera tangutica (Tangut honeysuckle). The herbaceous layer is dominated by Vicia amoena (wild vetch), Saussurea spp. (saw-wort), and Thalictrum spp. (meadow-rue). |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ji, S.; Xie, H.; Du, S.; Zhang, S.; Dong, Z.; Li, H.; Qiu, X. Differences and Influencing Factors of Soil Bacterial Communities Under Different Forest Types on the Southern Slope of the Qilian Mountains. Biology 2025, 14, 927. https://doi.org/10.3390/biology14080927
Ji S, Xie H, Du S, Zhang S, Dong Z, Li H, Qiu X. Differences and Influencing Factors of Soil Bacterial Communities Under Different Forest Types on the Southern Slope of the Qilian Mountains. Biology. 2025; 14(8):927. https://doi.org/10.3390/biology14080927
Chicago/Turabian StyleJi, Shuang, Huichun Xie, Shaobo Du, Shaoxiong Zhang, Zhiqiang Dong, Hongye Li, and Xunxun Qiu. 2025. "Differences and Influencing Factors of Soil Bacterial Communities Under Different Forest Types on the Southern Slope of the Qilian Mountains" Biology 14, no. 8: 927. https://doi.org/10.3390/biology14080927
APA StyleJi, S., Xie, H., Du, S., Zhang, S., Dong, Z., Li, H., & Qiu, X. (2025). Differences and Influencing Factors of Soil Bacterial Communities Under Different Forest Types on the Southern Slope of the Qilian Mountains. Biology, 14(8), 927. https://doi.org/10.3390/biology14080927