Multi-Media Environmental Pollution and Health Risks: Tracing, Effects, and Collaborative Governance

A special issue of Toxics (ISSN 2305-6304). This special issue belongs to the section "Toxicity Reduction and Environmental Remediation".

Deadline for manuscript submissions: 21 November 2025 | Viewed by 2564

Special Issue Editors

Henan Engineering Research Center for Control & Remediation of Soil Heavy Metal Pollution, Henan University, Zhengzhou, China
Interests: heavy metal; risk assessment; remediation; soil/sediment; environmental modeling and management

E-Mail Website
Guest Editor
College of South to North Water Diversion/College of Water Resources and Modern Agriculture, Nanyang Normal University, Nanyang 473061, China
Interests: PPCPs; POPs; AOPs; QSAR; ECOSAR

E-Mail Website
Guest Editor
Chinese Research Academy of Environmental Sciences, Beijing 100012, China
Interests: aerosol; source apportionment ; new particle formation ; pollution control

Special Issue Information

Dear Colleagues,

The accelerated industrialization and urbanization of modern society have escalated cross-media environmental pollution and its mitigation into pressing global challenges. Emerging contaminants – including heavy metals, persistent organic pollutants, and microplastics—exhibit complex transport mechanisms across aquatic systems, atmospheric compartments, terrestrial matrices, and sedimentary deposits, ultimately posing significant threats to both ecosystem integrity and public health. This Special Issue seeks to address these multifaceted challenges by compiling cutting-edge investigations into pollutant origin dynamics, environmental fate processes, ecotoxicological impacts, and human exposure pathways. By synthesizing interdisciplinary methodologies spanning environmental science, toxicology, and sustainable engineering, we aim to advance innovative pollution control paradigms and risk management frameworks to achieve health objectives worldwide.

This Special Issue focuses on the following research directions:

  • Tracing, migration, and transformation of pollutants in environmental media;
  • Ecological and environmental effects of pollutants and assessment of health risks;
  • Pollution control technologies and policy optimization based on multi-media synergy.

We invite scholars in the fields of environmental science, environmental geography, environmental health, and environmental management to submit original research articles or review papers. Building upon these pillars, this initiative synergistically advances the following:

  • Evidence-based decision support systems for SDG-aligned environmental management;
  • Transdisciplinary methodologies bridging contaminant science with socioecological resilience;
  • The implementation roadmaps for the "Beautiful China" initiative and global eco-civilization transition paradigms.

Dr. Dexin Liu
Dr. Jianbiao Peng
Dr. Lihong Ren
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Toxics is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • atmosphere
  • water
  • soil
  • sediment
  • pollutants
  • source apportionment
  • risk assessment
  • human exposure
  • pollution control
  • environmental pollution
  • health risks
  • heavy metal
  • environmental toxicology
  • ecotoxicology

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (5 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

19 pages, 2442 KB  
Article
Spatiotemporal Evolution and Integrated Risk Assessment of Potentially Toxic Element Pollution in Coastal Waters: A Case Study of Bohai Bay Cases in China
by Limei Qu, Jianbiao Peng, Pifu Cong and Yanan Huang
Toxics 2025, 13(10), 880; https://doi.org/10.3390/toxics13100880 - 15 Oct 2025
Abstract
Under the increasing pressures of land-based pollution and intensive coastal development, marine ecosystems are facing unprecedented challenges, highlighting the urgent need for enhanced protection and management of marine environmental quality. This study examines the spatiotemporal distribution and pollution risks of seven potentially toxic [...] Read more.
Under the increasing pressures of land-based pollution and intensive coastal development, marine ecosystems are facing unprecedented challenges, highlighting the urgent need for enhanced protection and management of marine environmental quality. This study examines the spatiotemporal distribution and pollution risks of seven potentially toxic elements (Hg, Cd, Pb, Cr, As, Zn, and Cu) in the coastal waters of Bohai Bay, China, based on monitoring data collected from 2020 to 2023. Results show a significant decline in annual average concentrations of Pb (from 3.23 ± 1.11 μg/L to 0.10 ± 0.06 μg/L) and Hg (from 0.05 ± 0.02 μg/L to 0.01 ± 0.00 μg/L), reflecting effective pollution control measures. In contrast, Cu concentrations nearly doubled, rising from 0.90 ± 0.50 μg/L in 2020 to 1.98 ± 0.42 μg/L in 2023, while Zn exhibited a “V”-shaped fluctuation over the study period. Spatially, Zn, Pb, and Hg displayed pronounced clustering patterns, with coefficients of variation (CV) of 1.04, 1.49, and 1.17, respectively. The Pollution Load Index (PLI) decreased from 1.82 in 2020 to 0.94 in 2023, indicating an overall improvement in ecological quality. However, the Risk Index (RI) reached a maximum of 672.5 at Site 11 in 2020, with Hg and Cd contributing 49.6% and 22.7% to the total risk, respectively. Health risk assessment revealed non-carcinogenic risks (Hi) below the safety threshold (Hi < 1) across all sites. In contrast, carcinogenic risks (CR) ranged from 5.7 × 10−4 to 9.1 × 10−4, approaching the acceptable upper limit of 10−3, primarily due to dermal exposure to Hg and the high toxicity of Cd. Principal Component Analysis (PCA) suggested familiar sources for Hg, Pb, and Zn, whereas As appeared to originate from distinct pathways. Overall, this study establishes an integrated “pollution–ecological–health” assessment framework, offering scientific support for targeted pollution prevention and zonal management strategies in coastal environments. Full article
Show Figures

Figure 1

14 pages, 3674 KB  
Article
Phytoremediation of Meta-Cresol by Sunflower: Tolerance of Plant and Removal of M-Cresol
by Hui Li, Shuai Su, Yujia Jiang, Hong Chen, Liudong Zhang, Yi Li, Shengguo Ma, Jiaxin Liu, Haitao Li, Degang Fu, Kun Li and Huicheng Xie
Toxics 2025, 13(10), 845; https://doi.org/10.3390/toxics13100845 - 3 Oct 2025
Viewed by 299
Abstract
Meta-cresol (m-cresol) is highly corrosive and toxic, and is widely present in industrial wastewater. As a pollutant, it adversely affects various aspects of human production and daily life. To evaluate the feasibility of using sunflowers to remediate m-cresol-contaminated wastewater, this study used Helianthus [...] Read more.
Meta-cresol (m-cresol) is highly corrosive and toxic, and is widely present in industrial wastewater. As a pollutant, it adversely affects various aspects of human production and daily life. To evaluate the feasibility of using sunflowers to remediate m-cresol-contaminated wastewater, this study used Helianthus annuus L. as the test subject to analyze its tolerance and the wastewater purification efficiency under different m-cresol concentrations. The results showed that the net photosynthetic rate (Pn), transpiration rate (Tr), stomatal conductance (Gs), and light energy utilization efficiency (LUE) of Helianthus annuus L. exhibited an overall decreasing trend, while the intercellular CO2 concentration (Cᵢ) initially increased and subsequently decreased with increasing m-cresol concentration. When m-cresol concentration reached or exceeded 60 mg·L−1, the net photosynthetic rate and intercellular CO2 concentration in the leaves showed opposite trends with further increases in m-cresol stress. The inhibition of net photosynthesis in sunflowers by m-cresol was mainly attributed to non-stomatal factors. The maximum photochemical efficiency (Fv/Fm), actual photochemical efficiency (ΦPSII), photochemical quenching coefficient (qP), PSII excitation energy partition coefficient (α), and the fraction of absorbed light energy used for photochemistry (P) all decreased with increasing m-cresol concentration. In contrast, non-photochemical quenching (NPQ), the quantum yield of regulated energy dissipation [Y(NPQ)], and the fraction of energy dissipated as heat through the antenna (D) first increased and then decreased. Under low-concentration m-cresol stress, sunflowers protected their photosynthetic system by dissipating excess light energy as heat as a stress response. However, high concentrations of m-cresol caused irreversible damage to Photosystem II (PSII) in sunflowers. Under m-cresol stress, chlorophyll a exhibited strong stability with minimal degradation. As the m-cresol concentration increased from 30 to 180 mg·L−1, the removal rate decreased from 84.91% to 11.84%. In conclusion, sunflowers show good remediation potential for wastewater contaminated with low concentrations of m-cresol and can be used for treating m-cresol wastewater with concentrations ≤ 51.9 mg·L−1. Full article
Show Figures

Figure 1

15 pages, 2172 KB  
Article
Source Apportionment and Ecological Risk Assessment of Heavy Metals in Urban Fringe Areas: A Case Study of Kaifeng West Lake, China
by Jinting Huang, Bingyan Jin and Feng Zhou
Toxics 2025, 13(9), 720; https://doi.org/10.3390/toxics13090720 - 27 Aug 2025
Viewed by 610
Abstract
Exploring the pollution characteristics and ecological risks of urbanization on lakes in urban fringe areas has guiding significance for the control and scientific management of heavy metal pollution in lakes in urban fringe areas. Taking the West Lake in Kaifeng city as an [...] Read more.
Exploring the pollution characteristics and ecological risks of urbanization on lakes in urban fringe areas has guiding significance for the control and scientific management of heavy metal pollution in lakes in urban fringe areas. Taking the West Lake in Kaifeng city as an example, the samples of the sediments and surface water of the lake were collected, and the contents of heavy metals (As, Cd, Cr, Cu, Ni, Pb, and Zn) were measured, assessing the degree and ecological risk of heavy metal pollution using the Geo-Accumulation Index (Igeo) and Potential Ecological Risk Index methods (RI); and the sources of pollution were identified. The results show that the heavy metal concentrations in the surface water of the West Lake in Kaifeng city are generally low; average concentrations of Cd, Cu, Zn, Cr, Ni, Pb, and As in sediments are 3.120, 1.810, 1.700, 1.540, 1.000, 0.990, and 0.430 times higher than the background value of fluvo-aquic soil, respectively. The sequence of the average Igeo from high to low is Cd (1.020) > Cu (0.220) > Zn (0.160) > Cr (0.000) > Pb (−0.610) > Ni (−0.640) > As (−1.850). Among them, contaminations with Pb are classed as moderately polluted; As pollution is relatively light, while other heavy metals are unpolluted. The average Potential Ecological Risk Coefficient (E) values for seven heavy metals are Cd (93.500) > Cu (9.040) > Ni (4.990) > Pb (4.950) > As (4.290) > Cr (3.080) > Zn (1.700). Cd is at a considerable potential ecological risk, while other heavy metals are at low ecological risks. Heavy metal pollution in sediment of West Lake in Kaifeng mainly comes from traffic activities such as yacht machinery wear and gasoline burning. The research findings provide a scientific foundation for developing effective mitigation strategies against heavy metal contamination in peri-urban lacustrine ecosystems. Full article
Show Figures

Figure 1

23 pages, 5171 KB  
Article
Investigation into the Enhancement Effects of Combined Bioremediation of Petroleum-Contaminated Soil Utilizing Immobilized Microbial Consortium and Sudan Grass
by Tie-Jun Wang, Zi-Yue Ding, Zi-Wei Hua, Zi-Wang Yuan, Qiu-Hong Niu and Hao Zhang
Toxics 2025, 13(7), 599; https://doi.org/10.3390/toxics13070599 - 16 Jul 2025
Viewed by 659
Abstract
Petroleum-contaminated soil is an increasingly severe environmental issue. The integration of phytoremediation and microbial remediation can effectively mitigate their individual limitations and enhance remediation efficiency. In this study, four newly isolated bacterial strains (including Cytobacillus and Rhodococcus) that exhibited preferential degradation of [...] Read more.
Petroleum-contaminated soil is an increasingly severe environmental issue. The integration of phytoremediation and microbial remediation can effectively mitigate their individual limitations and enhance remediation efficiency. In this study, four newly isolated bacterial strains (including Cytobacillus and Rhodococcus) that exhibited preferential degradation of distinct petroleum components were combined with the rhamnolipid-producing strain Pseudomonas aeruginosa SL-1. The immobilization of this petroleum-degrading microbial consortium was performed by biochar adsorption and sodium alginate embedding, subsequently optimized using response surface methodology (0.75 g·L−1 of biochar, 40 g·L−1 of sodium alginate, and 40 g·L−1 of calcium chloride). The results showed that the highest petroleum degradation rate (97.1%) of immobilized bacterial consortium was achieved at 72 h at a petroleum concentration of 5.0 g·L−1. When combined with Sudan grass for soil bioremediation, the degradation rate reached 72.8% after 120 d for soil containing 5.0 g·kg−1 of petroleum, higher than the results for the treatments with only immobilized bacterial consortium (53.0%) or Sudan grass (49.2%). Furthermore, significant improvements were observed for soil pH; nitrogen, phosphorus, and potassium contents; and urease, dehydrogenase, and catalase activities. Composite treatment also significantly increased the diversity and richness of the soil bacterial community and regulated its structure, function, and network composition. This study offers theoretical insights and potential practical applications for the enhanced bioremediation of petroleum-contaminated soils. Full article
Show Figures

Graphical abstract

21 pages, 2288 KB  
Article
Life Cycle Emissions and Driving Forces of Air Pollutants and CO2 from Refractory Manufacturing Industry in China Based on LMDI Model
by Yan Wang, Yu Shangguan, Cheng Wang, Xinyue Zhou, Huanjia Liu, Yi Cao, Xiayu Liu, Yan Guo, Guangxuan Yan, Panru Kang and Ke Cheng
Toxics 2025, 13(7), 533; https://doi.org/10.3390/toxics13070533 - 26 Jun 2025
Viewed by 509
Abstract
China is the world’s largest supplier of raw materials and is a major consumer of refractories. The environmental damage that results from the use of refractories has drawn increasing attention. Life cycle emissions of air pollutants and CO2 associated with the refractory [...] Read more.
China is the world’s largest supplier of raw materials and is a major consumer of refractories. The environmental damage that results from the use of refractories has drawn increasing attention. Life cycle emissions of air pollutants and CO2 associated with the refractory manufacturing industry between 2009 and 2021 were quantified in this study. Particulate matter, SO2, and NOx emissions decreased by 7.1% (1515 t), 23.6% (2982 t), and 27.8% (3178 t), respectively, over the aforementioned period despite refractory output volumes being relatively stable. Advancements in manufacturing and purification technologies and internal modifications within the industry played a significant role in these decreases. To sustain output while significantly lowering emissions, the industry shifted toward the production of new minimally polluting refractories and monolithic refractories and away from the production of highly polluting clay bricks. CO2 emission was reduced by 1.36 million tons as a result of product modifications. A logarithmic mean Divisia index (LMDI) model was used to quantify the driving forces of five factors (pollution production coefficient, control technology level, economic development level, economic structure, and consumption structure) affecting emissions. Three different emission reduction scenarios were simulated, and potential emission reductions of 23.1–77.7% by 2030 were projected. Full article
Show Figures

Graphical abstract

Back to TopTop