Optimizing Maize Production and Soil Microbiome Structure Through Reduced Chemical Nitrogen Supplemented with Organic Fertilizer
Abstract
1. Introduction
2. Results
2.1. Maize Yield and Yield Components Under Reduced Nitrogen Combined with Organic Fertilizer Application
2.2. Soil Nutrient Content and Enzyme Activity Under Reduced Nitrogen Combined with Organic Fertilizer Application
2.3. Soil Microbial Community Alpha Diversity Under Reduced Nitrogen Combined with Organic Fertilizer Application
2.4. Soil Microbial Community Structure Under Reduced Nitrogen Combined with Organic Fertilizer Application
2.5. Soil Microbial Community Beta Diversity Under Reduced Nitrogen Combined with Organic Fertilizer Application
2.6. The Relationship Between Soil Physicochemical Properties, Yield Components, and Microbial Diversity
3. Discussion
3.1. Effects of Reduced Nitrogen Combined with Organic Fertilizer Application on Maize Yield and Yield Components
3.2. Effects of Reduced Nitrogen Combined with Organic Fertilizer on Soil Nutrient Content and Enzyme Activity
3.3. Effects of Reduced Nitrogen Combined with Organic Fertilizer on Soil Bacterial Community
4. Materials and Methods
4.1. Experimental Site
- Soil organic matter (SOM): 10.49 g kg−1;
- Total nitrogen (TN): 0.867 g kg−1;
- Alkali-hydrolyzable nitrogen (AN): 30.70 mg kg−1;
- Available phosphorus (AP): 9.31 mg kg−1;
- Available potassium (AK): 156.5 mg kg−1;
- pH (soil: water = 1:2.5): 8.1.
4.2. Experimental Design
- CK: No fertilizer;
- NC0: Conventional nitrogen (N) application (180 kg N/ha);
- CN0: Conventional organic fertilizer (OF) application (3000 kg OF/ha);
- CN1: OF (3000 kg/ha) + Reduced N (90 kg N/ha, 50% reduction);
- CN2: OF (3000 kg/ha) + Reduced N (135 kg N/ha, 35% reduction);
- CN3: OF (3000 kg/ha) + Conventional N (180 kg N/ha, 0% reduction).
4.3. Sample Collection
- Subset 1: Stored in sterile PVC tubes at −80 °C for microbiological/enzymatic assays.
- Subset 2: Air-dried, sieved (2 mm), and stored for physicochemical analysis [58].
4.4. Measurements
- SOM: Potassium dichromate oxidation-external heating method.
- AN: Alkaline diffusion method.
- pH: Glass electrode (PHS-3E, INESA) in 1:5 soil–water suspension.
- Urease activity: Indophenol blue method (μg NH4+-N g−1 h−1).
- Invertase activity: DNS method (mg glucose g−1 24 h−1).
4.5. Data Processing and Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lv, F.; Song, J.; Giltrap, D.; Feng, Y.; Yang, X.; Zhang, S. Crop yield and N2O emission affected by long-term organic manure substitution fertilizer under winter wheat-summer maize cropping system. Sci. Total Environ. 2020, 732, 139321. [Google Scholar] [CrossRef] [PubMed]
- Walling, E.; Vaneeckhaute, C. Greenhouse gas emissions from inorganic and organic fertilizer production and use: A review of emission factors and their variability. J. Environ. Manag. 2020, 276, 111211. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.; Meng, T.; Chen, X.; Zhang, X.; Rong, M.; Lan, H.; Ge, G.; Zhang, D.; Zhao, X.; Hao, Y. Logistic and Structural Equation Fitting Analyses of the Effect of Slow-Release Nitrogen Fertilizer Application Rates on the Nitrogen Accumulation and Yield Formation Mechanism in Maize. Agronomy 2024, 14, 2742. [Google Scholar] [CrossRef]
- Hu, Y.; Li, D.; Wu, Y.; Liu, S.; Li, L.; Chen, W.; Wu, S.; Meng, Q.; Feng, H.; Siddique, K.H. Mitigating greenhouse gas emissions by replacing inorganic fertilizer with organic fertilizer in wheat–maize rotation systems in China. J. Environ. Manag. 2023, 344, 118494. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.H.; Liu, X.J.; Zhang, Y.; Shen, J.; Han, W.; Zhang, W.; Christie, P.; Goulding, K.; Vitousek, P.; Zhang, F. Significant acidification in major Chinese croplands. Science 2010, 327, 1008–1010. [Google Scholar] [CrossRef] [PubMed]
- Bohoussou, N.D.Y.; Han, S.W.; Li, H.R.; Kouadio, Y.D.; Ejaz, I.; Virk, A.L.; Dang, Y.P.; Zhao, X.; Zhang, H.L. Effects of fertilizer application strategies on soil organic carbon and total nitrogen storage under different agronomic practices: A meta-analysis. Land Degrad. Dev. 2023, 34, 5889–5904. [Google Scholar] [CrossRef]
- Zou, X.; Jiang, X.; Guan, J.; Huang, S.; Chen, C.; Zhou, T.; Kuang, C.; Ye, J.; Liu, T.; Cheng, J. Both organic fertilizer and biochar applications enhanced soil nutrition but inhibited cyanobacterial community in paddy soils. Front. Environ. Sci. 2024, 12, 1376147. [Google Scholar] [CrossRef]
- Gao, C.; El-Sawah, A.M.; Ali, D.F.I.; Alhaj Hamoud, Y.; Shaghaleh, H.; Sheteiwy, M.S. The integration of bio and organic fertilizers improve plant growth, grain yield, quality and metabolism of hybrid maize (Zea mays L.). Agronomy 2020, 10, 319. [Google Scholar] [CrossRef]
- Luo, G.; Li, L.; Friman, V.-P.; Guo, J.; Guo, S.; Shen, Q.; Ling, N. Organic amendments increase crop yields by improving microbe-mediated soil functioning of agroecosystems: A meta-analysis. Soil Biol. Biochem. 2018, 124, 105–115. [Google Scholar] [CrossRef]
- Wang, J.; Yang, X.; Huang, S.; Wu, L.; Cai, Z.; Xu, M. Long-term combined application of organic and inorganic fertilizers increases crop yield sustainability by improving soil fertility in maize–wheat cropping systems. J. Integr. Agric. 2025, 24, 290–305. [Google Scholar] [CrossRef]
- Khan, F.U.; Qu, Y.; Zaman, F.; Darmorakhtievich, O.H.; Wang, J.; Wu, Q.; Fahad, S.; Du, F.; Xu, X. Sustainable Crop Cultivation and Fertilization: Five-Year Effects on Soil Quality in the Loess Plateau. J. Soil Sci. Plant Nutr. 2025, 25, 3901–3915. [Google Scholar] [CrossRef]
- Wei, J.; Yang, S.; Wang, X.; Duan, J.; Mei, T.T.; Li, M.; Yang, S.; Wang, F. Effects of organic fertilizer replacing chemical fertilizer on organic carbon mineralization and active carbon fractions in yellow paddy soil of Guizhou Province. PLoS ONE 2025, 20, e0323801. [Google Scholar] [CrossRef] [PubMed]
- Zhao, N.; Wang, X.L.; He, J.; Yang, S.M.; Zheng, Q.W.; Li, M.R. Effects of Replacing Chemical Nitrogen Fertilizer with Organic Fertilizer on Active Organic Carbon Fractions, Enzyme Activities, and Crop Yield in Yellow Soil. Huan Jing Ke Xue 2024, 45, 4196–4205. [Google Scholar] [PubMed]
- Li, X.; Fang, J.; Shagahaleh, H.; Wang, J.; Hamad, A.A.A.; Alhaj Hamoud, Y. Impacts of partial substitution of chemical fertilizer with organic fertilizer on soil organic carbon composition, enzyme activity, and grain yield in wheat–maize rotation. Life 2023, 13, 1929. [Google Scholar] [CrossRef] [PubMed]
- Fan, B.; Li, J.; Fenton, O.; Zhang, Y.; Wang, H.; Zhai, L.; Lei, Q.; Wu, S.; Liu, H. Higher maize yields and lower ammonia emissions by replacing synthetic nitrogen fertiliser with manure in the North China plain. Nutr. Cycl. Agroecosystems 2023, 127, 23–35. [Google Scholar] [CrossRef]
- Wang, J.L.; Liu, K.L.; Xu, Q.F.; Shen, R.F.; Zhao, X.Q. Organic fertilization sustains high maize yields in acid soils through the cooperation of rhizosphere microbes and plants. Plant Soil 2025. [Google Scholar] [CrossRef]
- Tang, Y.; Nian, L.; Zhao, X.; Li, J.; Wang, Z.; Dong, L. Bio-Organic Fertilizer Application Enhances Silage Maize Yield by Regulating Soil Physicochemical and Microbial Properties. Microorganisms 2025, 13, 959. [Google Scholar] [CrossRef] [PubMed]
- Jiang, M.; Dong, C.; Bian, W.; Zhang, W.; Wang, Y. Effects of different fertilization practices on maize yield, soil nutrients, soil moisture, and water use efficiency in northern China based on a meta-analysis. Sci. Rep. 2024, 14, 6480. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Zhao, Y.; Zheng, Y.; Wang, L.; Zhang, Y.; Sun, Y.; Sun, N. Effect of Different Fertilization on Soil Fertility, Biological Activity, and Maize Yield in the Albic Soil Area of China. Plants 2025, 14, 810. [Google Scholar] [CrossRef] [PubMed]
- Cai, Y.; Li, J.; Chang, N.; Wang, L.; Wei, H.; Chen, D.; Liang, X. Climate proofing maize through optimizing manure fertilization. J. Clean. Prod. 2025, 512, 145667. [Google Scholar] [CrossRef]
- Basu, S.; Kumar, G.; Chhabra, S.; Prasad, R. Role of soil microbes in biogeochemical cycle for enhancing soil fertility. In New and Future Developments in Microbial Biotechnology and Bioengineering; Elsevier: Amsterdam, The Netherlands, 2021; pp. 149–157. [Google Scholar]
- Loeppmann, S.; Blagodatskaya, E.; Pausch, J.; Kuzyakov, Y. Substrate quality affects kinetics and catalytic efficiency of exo-enzymes in rhizosphere and detritusphere. Soil Biol. Biochem. 2016, 92, 111–118. [Google Scholar] [CrossRef]
- Li, Y.; Li, K.; Li, J.; Pan, Z.; Shi, L.; Liu, X.; Fang, H.; Yue, X. Effects of organic fertilizer and intercropping on soil microbial characteristics and yield and quality of red pitaya in dry-hot region. Chin. J. Ecol. 2024, 43, 656. [Google Scholar]
- Trivedi, P.; Rochester, I.J.; Trivedi, C.; Van Nostrand, J.D.; Zhou, J.; Karunaratne, S.; Anderson, I.C.; Singh, B.K. Soil aggregate size mediates the impacts of cropping regimes on soil carbon and microbial communities. Soil Biol. Biochem. 2015, 91, 169–181. [Google Scholar] [CrossRef]
- Cavagnaro, T.R. Impacts of compost application on the formation and functioning of arbuscular mycorrhizas. Soil Biol. Biochem. 2014, 78, 38–44. [Google Scholar] [CrossRef]
- Ji, L.; Xu, X.; Zhang, F.; Si, H.; Li, L.; Mao, G. The preliminary research on shifts in maize rhizosphere soil microbial communities and symbiotic networks under different fertilizer sources. Agronomy 2023, 13, 2111. [Google Scholar] [CrossRef]
- Wei, Q.; Gu, X.; Gou, J.; Zhang, M.; Rao, Y.; Xiao, H. Effect of Nitrogen Fertilizer Combined with Organic Materials on Microbial Community in Winter Rapeseed-Maize Rotation in Yellow Soil. J. Henan Agric. Sci. 2023, 52, 41. [Google Scholar]
- Song, S.; Liu, S.; Liu, Y.; Shi, W.; Ma, H. Effects of Tropical Typical Organic Materials on Soil Physicochemical Properties and Microbial Community Structure. Agronomy 2025, 15, 1073. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, B.; Ma, S.; Hao, J.; Zhang, L.; Guo, C.; Hong, J.; Ding, H.; Zhang, Y.; Wu, Y. Effects of microbial organic fertilizers on soil microbial communities and physicochemical properties in tobacco cultivation. Front. Environ. Sci. 2025, 13, 1555622. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, H.; Liu, H.; Wang, H.; Xiu, W.; Zhou, Z.; Jiang, N.; Zhang, H.; Zhao, J.; Yang, D. Combined organic and inorganic fertilization increases soil network complexity and multifunctionality in a 5-year fertilization system. Land Degrad. Dev. 2024, 35, 586–596. [Google Scholar] [CrossRef]
- Chen, D.; Wang, X.; Zhang, Y.; Yang, Z.; Yao, X.; Li, X. Effect of persistent application of bioorganic fertilizer on peanut yield and rhizosphere bacterial community. Soils 2021, 53, 537–544. [Google Scholar]
- Yan, H.; Gu, S.; Li, S.; Shen, W.; Zhou, X.; Yu, H.; Ma, K.; Zhao, Y.; Wang, Y.; Zheng, H. Grass-legume mixtures enhance forage production via the bacterial community. Agric. Ecosyst. Environ. 2022, 338, 108087. [Google Scholar] [CrossRef]
- Zhang, L.; Ma, L.; Li, Y.D.; Zheng, F.; Wei, J.L.; Tan, D.S.; Cui, X.M.; Li, Y. Effects of long-term synergistic application of organic materials and chemical fertilizers on bacterial community and enzyme activity in wheat-maize rotation fluvo-aquic soil. Sci. Agric. Sin. 2023, 56, 3843–3855. [Google Scholar]
- Nie, S.W.; Huang, S.M.; Zhang, S.Q.; Guo, D.D.; Zhang, Q.P.; Bao, D.J. Effects of various fertilizations on soil organic carbon and total nitrogen in winter wheat-summer corn rotation in the Huang-Huai-Hai Plain of China. J. Food Agric. Environ. 2012, 10, 567–572. [Google Scholar]
- Mao, H.; Leng, K.; Chen, X.; Zhang, J.; Liu, K.; Lin, Y.; Xiang, X.; Liu, J. Changes in fertility and microbial communities of red soil and their contribution to crop yield following long-term different fertilization. J. Soils Sediments 2025, 1–19. [Google Scholar] [CrossRef]
- Liu, Z.J.; Xie, J.G.; Zhang, K.; Wang, X.F.; Hou, Y.P.; Yin, C.X.; Li, S.T. Maize growth and nutrient uptake as influenced by nitrogen management in Jilin province. J. Plant Nutr. Fertil. 2011, 17, 38–47. [Google Scholar]
- Qaswar, M.; Liu, Y.R.; Huang, J.; Kaillou, L.; Mudasir, M.; Lv, Z.Z.; Hou, H.Q.; Lan, X.J.; Ji, J.H.; Ahmed, W. Soil nutrients and heavy metal availability under long-term combined application of swine manure and synthetic fertilizers in acidic paddy soil. J. Soils Sediments 2020, 20, 2093–2106. [Google Scholar] [CrossRef]
- Cai, A.; Xu, M.; Wang, B.; Zhang, W.; Liang, G.; Hou, E.; Luo, Y. Manure acts as a better fertilizer for increasing crop yields than synthetic fertilizer does by improving soil fertility. Soil Tillage Res. 2019, 189, 168–175. [Google Scholar] [CrossRef]
- Li, W.T.; Wu, M.; Liu, M.; Chunyu, J.; Chen, X.F.; Yakov, K.; Jorg, R.; Li, Z.P. Responses of soil enzyme activities and microbial community composition to moisture regimes in paddy soils under long-term fertilization practices. Pedosphere 2018, 28, 323–331. [Google Scholar] [CrossRef]
- Zhang, Y.; E, S.Z.; Wang, Y.; Su, S.; Bai, L.; Wu, C.; Zeng, X. Long-term manure application enhances the stability of aggregates and aggregate-associated carbon by regulating soil physicochemical characteristics. Catena 2021, 203, 105342. [Google Scholar] [CrossRef]
- Wang, H.; Xu, J.; Liu, X.; Zhang, D.; Li, L.; Li, W.; Sheng, L. Effects of long-term application of organic fertilizer on improving organic matter content and retarding acidity in red soil from China. Soil Tillage Res. 2019, 195, 104382. [Google Scholar] [CrossRef]
- Shu, X.; He, J.; Zhou, Z.; Xia, L.; Hu, Y.; Zhang, Y.; Zhang, Y.; Luo, Y.; Chu, H.; Liu, W. Organic amendments enhance soil microbial diversity, microbial functionality and crop yields: A meta-analysis. Sci. Total Environ. 2022, 829, 154627. [Google Scholar] [CrossRef] [PubMed]
- Strickland, M.S.; Rousk, J. Considering fungal: Bacterial dominance in soils—Methods, controls, and ecosystem implications. Soil Biol. Biochem. 2010, 42, 1385–1395. [Google Scholar] [CrossRef]
- Rasche, F.; Cadisch, G. The molecular microbial perspective of organic matter turnover and nutrient cycling in tropical agroecosystems—What do we know? Biol. Fertil. Soils 2013, 49, 251–262. [Google Scholar] [CrossRef]
- Ma, Z.H.; Liu, J.L.; Wu, N.; Yang, Y.S.; Hu, Y.Q.; Zhe, Y.Q. Effects of deep rotary tillage combined with organic fertilizer on bacterial community structure and function of maize rhizosphere soil in saline alkali land. Chin. J. Agrometeorol. 2023, 44, 479. [Google Scholar]
- Ma, Q.; Wen, Y.; Wang, D.; Sun, X.; Hill, P.W.; Macdonald, A.; Chadwick, D.R.; Wu, L.; Jones, D.L. Farmyard manure applications stimulate soil carbon and nitrogen cycling by boosting microbial biomass rather than changing its community composition. Soil Biol. Biochem. 2020, 144, 107760. [Google Scholar] [CrossRef]
- Wei, W.; Xu, Y.L.; Zhu, L.; Han, X.Z.; Li, S. Effect of long-term fertilization on soil microbial communities in farmland of black Soil. Acta Pedol. Sin. 2013, 50, 372–380. [Google Scholar] [CrossRef]
- Louca, S.; Polz, M.F.; Mazel, F.; Albright, M.B.; Huber, J.A.; O’Connor, M.I.; Ackermann, M.; Hahn, A.S.; Srivastava, D.S.; Crowe, S.A. Function and functional redundancy in microbial systems. Nat. Ecol. Evol. 2018, 2, 936–943. [Google Scholar] [CrossRef] [PubMed]
- Xun, W.; Huang, T.; Zhao, J.; Ran, W.; Wang, B.; Shen, Q.; Zhang, R. Environmental conditions rather than microbial inoculum composition determine the bacterial composition, microbial biomass and enzymatic activity of reconstructed soil microbial communities. Soil Biol. Biochem. 2015, 90, 10–18. [Google Scholar] [CrossRef]
- Lui, P.J.; Xiao, J.; Sun, B.H.; Gao, M.X.; Zhang, S.L.; Yang, X.Y.; Feng, H. Variation of bacterial community structure and the main influencing factors in Eum-orthic Anthrosols under different fertilization regimes. J. Plant Nutr. Fertil. 2020, 26, 307–315. [Google Scholar]
- Sun, R.B.; Guo, X.S.; Wang, D.Z.; Chu, H.Y. The impact of long-term application of chemical fertilizers and straw returning on soil bacterial community. Microbiol. China 2015, 42, 2049–2057. [Google Scholar]
- Guo, Y.; Zhao, C.; Liu, X.; Dong, Y.; Liu, W.; Chen, Q.; Ding, S.; Zhang, J.; Guo, B.; Gao, X. The Impact of Organic Fertilizer Substitution on Microbial Community Structure, Greenhouse Gas Emissions, and Enzyme Activity in Soils with Different Cultivation Durations. Sustainability 2025, 17, 4541. [Google Scholar] [CrossRef]
- Din, P.; Liu, Z.M.; Hu, B.R.; Wu, W.J. Transcriptome Analyses Reveal the Urease Function of Sporosarcina pasteurii Based on Different Nitrogen Source Culture Conditions. Prog. Biochem. Biophys. 2021, 48, 1063–1076. [Google Scholar]
- Cao, S.; Pan, F.; Lin, G.G.; Zhang, Y.L.; Zhou, C.F.; Liu, B. Changes of soil bacterial structure and soil enzyme activity in Chinese fir forest of different ages. Acta Ecol. Sin. 2021, 41, 1846–1856. [Google Scholar] [CrossRef]
- Kamke, J.; Sczyrba, A.; Ivanova, N.; Schwientek, P.; Rinke, C.; Mavromatis, K.; Woyke, T.; Hentschel, U. Single-cell genomics reveals complex carbohydrate degradation patterns in poribacterial symbionts of marine sponges. ISME J. 2013, 7, 2287–2300. [Google Scholar] [CrossRef] [PubMed]
- Sheng, Z.; Zhu, W.; Yao, H.; Shu, S.; Li, X.; Ma, S.; Li, Y.; Xiong, J. Niche selection by soil bacterial community of disturbed subalpine forests in western Sichuan. Forests 2021, 12, 505. [Google Scholar] [CrossRef]
- Bergmann, G.T.; Bates, S.T.; Eilers, K.G.; Lauber, C.L.; Caporaso, J.G.; Walters, W.A.; Knight, R.; Fierer, N. The under-recognized dominance of Verrucomicrobia in soil bacterial communities. Soil Biol. Biochem. 2011, 43, 1450–1455. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Xiao, J.; Liang, T.; He, W.; Tan, H. Response of soil biological properties and bacterial diversity to different levels of nitrogen application in sugarcane fields. AMB Express 2021, 11, 172. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Zhang, J.; Lu, M.; Qin, C.; Chen, Y.; Yang, L.; Huang, Q.; Wang, J.; Shen, Z.; Shen, Q. Microbial communities of an arable soil treated for 8 years with organic and inorganic fertilizers. Biol. Fertil. Soils 2016, 52, 455–467. [Google Scholar] [CrossRef]
- Magoc, T.; Salzberg, S.L. FLASH: Fast length adjustment of short reads to improve genome assemblies. Bioinformatics 2011, 27, 2957–2963. [Google Scholar] [CrossRef] [PubMed]
- Uparse, R.E. Highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 2013, 10, 996–998. [Google Scholar] [CrossRef] [PubMed]
- Nilsson, R.H.; Larsson, K.H.; Taylor, A.F.S.; Bengtsson-Palme, J.; Jeppesen, T.S.; Schigel, D.; Kennedy, P.; Picard, K.; Glöckner, F.O.; Tedersoo, L. The UNITE database for molecular identification of fungi: Handling dark taxa and parallel taxonomic classifications. Nucleic Acids Res. 2019, 47, D259–D264. [Google Scholar] [CrossRef] [PubMed]
- Tyurin, I.V. Analytical Procedure for a Comparative Study of Soil Humus. In Selected Works on Soil Humus, 2nd ed.; Dokuchaev Soil Science Institute, Ed.; USSR Academy of Sciences: Moscow, Russia, 1951; Volume 38, pp. 5–9. [Google Scholar]
- Shao, L.; Yan, P.; Ye, S.; Bai, H.; Zhang, R.; Shi, G.; Ni, X. Soil organic matter and water content affect the community characteristics of arbuscular mycorrhizal fungi in Helan mountain, an arid desert grassland area in China. Front. Microbiol. 2024, 15, 1377763. [Google Scholar] [CrossRef] [PubMed]
- Duan, Y.A.; Zhou, Y.F.; Li, Z. Effects of Bacillus amyloliquefaciens QSB-6 on the Growth of Replanted Apple Trees and the Soil Microbial Environment. Horticulturae 2022, 8, 83. [Google Scholar] [CrossRef]
Treatments | Yield (kg/ha) | 1000-Kernel Weight (g) | Rows per Ear | Grains per Row | Number of Ears per Hectare |
---|---|---|---|---|---|
CK | 6649.30 b | 203.17 c | 16.60 a | 29.1 b | 62,500 ab |
NC0 | 9031.70 a | 264.33 ab | 17.40 a | 31.2 ab | 65,741 ab |
CN0 | 7455.41 b | 280.83 a | 16.20 a | 32.4 ab | 61,111 b |
CN1 | 9764.87 a | 263.83 ab | 16.20 a | 33.70 a | 70,730 ab |
CN2 | 9474.75 a | 268.17 ab | 16.60 a | 33.30 a | 69,444 ab |
CN3 | 9303.28 a | 253.17 b | 16.60 a | 32.20 ab | 72,222 a |
Treatment | SOM g/kg | AN mg/kg | Urease U/g | Invertase U/g | pH |
---|---|---|---|---|---|
CK | 10.99 b | 47.87 a | 4287.10 ab | 53.61 c | 8.83 ab |
NC0 | 11.73 ab | 52.50 a | 3752.9 b | 61.59 bc | 8.76 b |
CN0 | 13.55 ab | 54.27 a | 4367.8 a | 70.84 a | 8.90 a |
CN1 | 13.33 ab | 64.77 a | 4739.7 a | 64.74 ab | 8.90 a |
CN2 | 13.99 a | 58.33 a | 4878.6 a | 69.70 ab | 8.74 a |
CN3 | 11.25 ab | 53.83 a | 4833.6 a | 61.92 b | 8.74 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Li, Y.; Yuan, J.; Wang, L.; Wei, G.; Liang, Z. Optimizing Maize Production and Soil Microbiome Structure Through Reduced Chemical Nitrogen Supplemented with Organic Fertilizer. Plants 2025, 14, 2275. https://doi.org/10.3390/plants14152275
Zhang J, Li Y, Yuan J, Wang L, Wei G, Liang Z. Optimizing Maize Production and Soil Microbiome Structure Through Reduced Chemical Nitrogen Supplemented with Organic Fertilizer. Plants. 2025; 14(15):2275. https://doi.org/10.3390/plants14152275
Chicago/Turabian StyleZhang, Jian, Yaoyao Li, Jiawei Yuan, Lu Wang, Guoying Wei, and Zhejun Liang. 2025. "Optimizing Maize Production and Soil Microbiome Structure Through Reduced Chemical Nitrogen Supplemented with Organic Fertilizer" Plants 14, no. 15: 2275. https://doi.org/10.3390/plants14152275
APA StyleZhang, J., Li, Y., Yuan, J., Wang, L., Wei, G., & Liang, Z. (2025). Optimizing Maize Production and Soil Microbiome Structure Through Reduced Chemical Nitrogen Supplemented with Organic Fertilizer. Plants, 14(15), 2275. https://doi.org/10.3390/plants14152275