Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,431)

Search Parameters:
Keywords = skin toxicities

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 2057 KiB  
Review
Therapeutic Opportunities in Overcoming Premature Termination Codons in Epidermolysis Bullosa via Translational Readthrough
by Kathleen L. Miao, Ryan Huynh, David Woodley and Mei Chen
Cells 2025, 14(15), 1215; https://doi.org/10.3390/cells14151215 - 7 Aug 2025
Abstract
Epidermolysis Bullosa (EB) comprises a group of inherited blistering disorders caused by pathogenic variants in genes essential for skin and mucosal integrity. Nonsense mutations, which generate premature termination codons (PTCs), result in reduced or absent protein expression and contribute to severe disease phenotypes [...] Read more.
Epidermolysis Bullosa (EB) comprises a group of inherited blistering disorders caused by pathogenic variants in genes essential for skin and mucosal integrity. Nonsense mutations, which generate premature termination codons (PTCs), result in reduced or absent protein expression and contribute to severe disease phenotypes in EB. Readthrough therapies, which may continue translation past PTCs to restore full-length functional proteins, have emerged as promising approaches. This review summarizes findings from preclinical studies investigating readthrough therapies in EB models, clinical studies demonstrating efficacy in EB patients, and emerging readthrough agents with potential application to EB. Preclinical and clinical studies with gentamicin have demonstrated restored type VII collagen and laminin-332 expression, leading to measurable clinical improvements. Parallel development of novel compounds—including aminoglycoside analogs (e.g., ELX-02), translation termination factor degraders (e.g., CC-90009, SRI-41315, SJ6986), tRNA post-transcriptional inhibitors (e.g., 2,6-diaminopurine, NV848), and nucleoside analogs (e.g., clitocine)—has expanded the therapeutic pipeline. Although challenges remain regarding toxicity, codon specificity, and variable protein restoration thresholds, continued advances in molecular targeting and combination therapies offer the potential to establish readthrough therapies as localized or systemic treatments addressing both cutaneous and extracutaneous disease manifestations in EB. Full article
Show Figures

Figure 1

15 pages, 1624 KiB  
Article
Cytotoxicity Evaluation of Cyprodinil, Potentially Carcinogenic Chemical Micropollutant, for Oxidative Stress, Apoptosis and Cell Membrane Interactions
by Agata Jabłońska-Trypuć, Nina Wiśniewska, Gabriela Sitko, Urszula Wydro, Elżbieta Wołejko, Rafał Krętowski, Monika Naumowicz, Joanna Kotyńska, Marzanna Cechowska-Pasko, Bożena Łozowicka, Piotr Kaczyński and Adam Cudowski
Appl. Sci. 2025, 15(15), 8631; https://doi.org/10.3390/app15158631 (registering DOI) - 4 Aug 2025
Viewed by 136
Abstract
Fungicides are compounds with potentially toxic effects on the human body, but the molecular mechanisms of their action have not yet been explained. The effect of cyprodinil on cell viability, apoptosis level, cell membrane function, cell morphology and expression of antioxidant enzyme genes [...] Read more.
Fungicides are compounds with potentially toxic effects on the human body, but the molecular mechanisms of their action have not yet been explained. The effect of cyprodinil on cell viability, apoptosis level, cell membrane function, cell morphology and expression of antioxidant enzyme genes in the A-375 and DLD-1 cell lines was examined. The cell lines were selected because they can be an excellent in vitro model of neoplastic changes occurring in the skin and large intestine after exposure to a fungicide. The fungicide selected for the study is commonly used in Poland to protect crops against fungi. Our results showed that the tested compound increased cell viability and proliferation, probably activated by mechanisms related to oxidative stress. Cyprodinil caused an increase in glutathione level (in A-375 by about 37% and in DLD-1 by about 28%) and oxidative stress enzymes activity, but not in apoptosis level. Its membrane interactions and its penetration into cells was concentration dependent. It is worth emphasizing that the novelty of our work lies in the use of non-traditional toxicological methods based on molecular analyses using human cell lines. This allowed us to demonstrate not only the toxicity of a single substance but also its behavior within cellular structures. Our findings suggest that cyprodinil may have tumor-promoting properties in skin and colorectal cancer cells. Full article
(This article belongs to the Special Issue Exposure Pathways and Health Implications of Environmental Chemicals)
Show Figures

Figure 1

33 pages, 8604 KiB  
Article
Sulforaphane-Rich Broccoli Sprout Extract Promotes Hair Regrowth in an Androgenetic Alopecia Mouse Model via Enhanced Dihydrotestosterone Metabolism
by Laxman Subedi, Duc Dat Le, Eunbin Kim, Susmita Phuyal, Arjun Dhwoj Bamjan, Vinhquang Truong, Nam Ah Kim, Jung-Hyun Shim, Jong Bae Seo, Suk-Jung Oh, Mina Lee and Jin Woo Park
Int. J. Mol. Sci. 2025, 26(15), 7467; https://doi.org/10.3390/ijms26157467 - 1 Aug 2025
Viewed by 382
Abstract
Androgenetic alopecia (AGA) is a common progressive hair loss disorder driven by elevated dihydrotestosterone (DHT) levels, leading to follicular miniaturization. This study investigated sulforaphane-rich broccoli sprout extract (BSE) as a potential oral therapy for AGA. BSE exhibited dose-dependent proliferative and migratory effects on [...] Read more.
Androgenetic alopecia (AGA) is a common progressive hair loss disorder driven by elevated dihydrotestosterone (DHT) levels, leading to follicular miniaturization. This study investigated sulforaphane-rich broccoli sprout extract (BSE) as a potential oral therapy for AGA. BSE exhibited dose-dependent proliferative and migratory effects on keratinocytes, dermal fibroblasts, and dermal papilla cells, showing greater in vitro activity than sulforaphane (SFN) and minoxidil under the tested conditions, while maintaining low cytotoxicity. In a testosterone-induced AGA mouse model, oral BSE significantly accelerated hair regrowth, with 20 mg/kg achieving 99% recovery by day 15, alongside increased follicle length, density, and hair weight. Mechanistically, BSE upregulated hepatic and dermal DHT-metabolizing enzymes (Akr1c21, Dhrs9) and activated Wnt/β-catenin signaling in the skin, suggesting dual actions via androgen metabolism modulation and follicular regeneration. Pharmacokinetic analysis revealed prolonged SFN plasma exposure following BSE administration, and in silico docking showed strong binding affinities of key BSE constituents to Akr1c2 and β-catenin. No systemic toxicity was observed in liver histology. These findings indicate that BSE may serve as a safe, effective, and multitargeted natural therapy for AGA. Further clinical studies are needed to validate its efficacy in human populations. Full article
Show Figures

Figure 1

24 pages, 1288 KiB  
Review
Counteracting the Harms of Microplastics on Humans: An Overview from the Perspective of Exposure
by Kuok Ho Daniel Tang
Microplastics 2025, 4(3), 47; https://doi.org/10.3390/microplastics4030047 - 1 Aug 2025
Viewed by 369
Abstract
Microplastics are pervasive environmental pollutants that pose risks to human health through ingestion and inhalation. This review synthesizes current practices to reduce exposure and toxicity by examining major exposure routes and dietary interventions. More than 130 papers were analyzed to achieve this aim. [...] Read more.
Microplastics are pervasive environmental pollutants that pose risks to human health through ingestion and inhalation. This review synthesizes current practices to reduce exposure and toxicity by examining major exposure routes and dietary interventions. More than 130 papers were analyzed to achieve this aim. The findings show that microplastics contaminate a wide range of food products, with particular concern over seafood, drinking water, plastic-packaged foods, paper cups, and tea filter bags. Inhalation exposure is mainly linked to indoor air quality and smoking, while dermal contact poses minimal risk, though the release of additives from plastics onto the skin remains an area of concern. Recommended strategies to reduce dietary exposure include consuming only muscle parts of seafood, moderating intake of high-risk items like anchovies and mollusks, limiting canned seafood liquids, and purging mussels in clean water before consumption. Avoiding plastic containers, especially for hot food or microwaving, using wooden cutting boards, paper tea bags, and opting for tap or filtered water over bottled water are also advised. To mitigate inhalation exposure, the use of air filters with HyperHEPA systems, improved ventilation, regular vacuuming, and the reduction of smoking are recommended. While antioxidant supplementation shows potential in reducing microplastic toxicity, further research is needed to confirm its effectiveness. This review provides practical, evidence-based recommendations for minimizing daily microplastic exposure. Full article
Show Figures

Figure 1

18 pages, 2188 KiB  
Article
Rational Engineering of a Brevinin-2 Peptide: Decoupling Potency from Toxicity Through C-Terminal Truncation and N-Terminal Chiral Substitution
by Aifang Yao, Zeyu Zhang, Zhengmin Song, Yi Yuan, Xiaoling Chen, Chengbang Ma, Tianbao Chen, Chris Shaw, Mei Zhou and Lei Wang
Antibiotics 2025, 14(8), 784; https://doi.org/10.3390/antibiotics14080784 - 1 Aug 2025
Viewed by 116
Abstract
Background/Objectives: The clinical potential of antimicrobial peptides (AMPs) against dual threats like antimicrobial resistance (AMR) and cancer is often limited by their high host cell toxicity. Here, we focused on brevinin-2OS (B2OS), a novel peptide from the skin of Odorrana schmackeri with [...] Read more.
Background/Objectives: The clinical potential of antimicrobial peptides (AMPs) against dual threats like antimicrobial resistance (AMR) and cancer is often limited by their high host cell toxicity. Here, we focused on brevinin-2OS (B2OS), a novel peptide from the skin of Odorrana schmackeri with potent haemolytic activity. The objective was to study the structure–activity relationship and optimise the safety via targeted modifications. Methods: A dual-modification strategy involving C-terminal truncation and subsequent N-terminal D-amino acid substitution was employed. The bioactivities and safety profiles of the resulting analogues were evaluated using antimicrobial, haemolysis, and cytotoxicity assays. Result: Removal of the rana box in B2OS(1-22)-NH2 substantially reduced haemolysis while maintaining bioactivities. Remarkably, the D-leucine substitution in [D-Leu2]B2OS(1-22)-NH2 displayed a superior HC50 value of 118.1 µM, representing a more than ten-fold improvement compared to its parent peptide (HC50 of 10.44 µM). This optimised analogue also demonstrated faster bactericidal kinetics and enhanced membrane permeabilisation, leading to a greater than 22-fold improvement in its therapeutic index against Gram-positive bacteria. Conclusions: The C-terminal rana box is a primary determinant of toxicity rather than a requirement for activity in the B2OS scaffold. The engineered peptide [D-Leu2]B2OS(1-22)-NH2 emerges as a promising lead compound, and this dual-modification strategy provides a powerful design principle for developing safer, more effective peptide-based therapeutics. Full article
(This article belongs to the Section Antimicrobial Peptides)
Show Figures

Figure 1

6 pages, 771 KiB  
Case Report
Sustained Complete Response to Trastuzumab Deruxtecan Beyond Treatment Discontinuation in a Heavily Pretreated HER2-Positive Breast Cancer Patient with Skin Metastases: A Case Report
by Maria Puleo, Sarah Pafumi, Martina Di Pietro, Giuseppina Rosaria Rita Ricciardi and Maria Vita Sanò
Reports 2025, 8(3), 126; https://doi.org/10.3390/reports8030126 - 31 Jul 2025
Viewed by 192
Abstract
Background and Clinical Significance: Breast cancer is a heterogeneous disease with different spread of metastases. In particular, skin metastases are common in HER2-positive metastatic breast cancer (mBC). However, anti-HER2 therapies have shown limited activity in this context. Recently, Trastuzumab Deruxtecan (T-DXd), a [...] Read more.
Background and Clinical Significance: Breast cancer is a heterogeneous disease with different spread of metastases. In particular, skin metastases are common in HER2-positive metastatic breast cancer (mBC). However, anti-HER2 therapies have shown limited activity in this context. Recently, Trastuzumab Deruxtecan (T-DXd), a novel potent anti-HER2 antibody–drug conjugate (ADC), has revolutionized the therapeutic armamentarium of HER2 mBC with unprecedented evidence of efficacy in pretreated patients. However, the activity of this drug in patients with skin involvement is largely unknown. Case Presentation: Here, we report a case of extensive cutaneous involvement in a heavily pretreated patient who achieved a long-lasting complete response to T-DXd, which, unexpectedly, remained sustained for more than three years following treatment discontinuation. Conclusions: Skin toxicity is not a common adverse event with this agent, and, as demonstrated in the present case, it might not be drug-related, and additional causes might be ruled out before treatment discontinuation. However, the possibility of discontinuing anti-Her2 treatment in a patient who has achieved a complete response could represent a field of research, potentially using liquid biopsy or other new technologies. Full article
(This article belongs to the Section Oncology)
Show Figures

Figure 1

24 pages, 2611 KiB  
Article
Enhancing the Cosmetic Potential of Aloe Vera Gel by Kombucha-Mediated Fermentation: Phytochemical Analysis and Evaluation of Antioxidant, Anti-Aging and Moisturizing Properties
by Aleksandra Ziemlewska, Martyna Zagórska-Dziok, Anna Nowak, Anna Muzykiewicz-Szymańska, Magdalena Wójciak, Ireneusz Sowa, Dariusz Szczepanek and Zofia Nizioł-Łukaszewska
Molecules 2025, 30(15), 3192; https://doi.org/10.3390/molecules30153192 - 30 Jul 2025
Viewed by 351
Abstract
Aloe vera gel is a valuable raw material used in the cosmetic industry for its skin care properties. The present study analyzed the effects of the fermentation of aloe vera gel with a tea fungus kombucha, which is a symbiotic consortium of bacteria [...] Read more.
Aloe vera gel is a valuable raw material used in the cosmetic industry for its skin care properties. The present study analyzed the effects of the fermentation of aloe vera gel with a tea fungus kombucha, which is a symbiotic consortium of bacteria and yeast, carried out for 10 and 20 days (samples F10 and F20, respectively). The resulting ferments and unfermented gel were subjected to chromatographic analysis to determine the content of biologically active compounds. The permeability and accumulation of these compounds in pig skin were evaluated. In addition, the methods of DPPH, ABTS and the determination of intracellular free radical levels in keratinocytes (HaCaT) and fibroblasts (HDF) cell lines were used to determine antioxidant potential. The results showed a higher content of phenolic acids and flavonoids and better antioxidant properties of the ferments, especially after 20 days of fermentation. Cytotoxicity tests against HaCaT and HDF cells confirmed the absence of toxic effects; moreover, samples at the concentrations tested (mainly 10 and 25 mg/mL) showed cytoprotective effects. The analysis of enzymatic activity (collagenase, elastase and hyaluronidase) by the ELISA technique showed higher levels of inhibition for F10 and F20. The kombucha ferments also exhibited better moisturizing properties and lower levels of transepidermal water loss (TEWL), confirming their cosmetic potential. Full article
(This article belongs to the Special Issue New Development in Fermented Products—Third Edition)
Show Figures

Figure 1

19 pages, 3200 KiB  
Article
Polyphosphoramidate Glycohydrogels with Biorecognition Properties and Potential Antibacterial Activity
by Zornica Todorova, Oyundari Tumurbaatar, Violeta Mitova, Neli Koseva, Iva Ugrinova, Penka Petrova and Kolio Troev
Molecules 2025, 30(15), 3140; https://doi.org/10.3390/molecules30153140 - 26 Jul 2025
Viewed by 250
Abstract
In the present study, for the first time, a biodegradable and non-toxic polyphosphoramidate glycohydrogel (PPAGHGel) was prepared by crosslinking a polyphosphoramidate glycoconjugate (PPAG) with hexamethylene diisocyanate (HMDI) under mild conditions. Poly(oxyethylene H-phosphonate) (POEHP) was used as a precursor and was converted into PPAG [...] Read more.
In the present study, for the first time, a biodegradable and non-toxic polyphosphoramidate glycohydrogel (PPAGHGel) was prepared by crosslinking a polyphosphoramidate glycoconjugate (PPAG) with hexamethylene diisocyanate (HMDI) under mild conditions. Poly(oxyethylene H-phosphonate) (POEHP) was used as a precursor and was converted into PPAG via the Staudinger reaction with glucose-containing azide (2-p-azidobenzamide-2-deoxy-1,3,4,6-tetra-O-trimethylsilyl-α-D-glucopyranose). Then, crosslinking of PPAG was performed to yield PPAGHGel, which was thoroughly characterized. The gel showed a gel fraction of 83%, a swelling degree of 1426 ± 98%, and G″ = 1560 ± 65 Pa. The gel was fully degraded by alkaline phosphatase (400 U/L, pH 9) in 19 days, while hydrolytically, up to 52% degradation was observed under similar conditions. Multivalent studies of the obtained hydrogel with lectin–Concanavalin A were performed. PPAGHGel binds 92% of Concanavalin A within 24 h and the complex remains stable until the amount of glucose reaches 0.3 mM. PPAGHGel acts as a stabilizer for silver nanoparticles (12 nm). SEM shows pores measuring 10 µm (surface) and 0.1 mm (interior) with capillary channels, confirming the gel’s suitability for biosensors, drug delivery, or wound dressings. The cytotoxic (IC50) and cell-adhesive properties of the obtained hydrogel were investigated on human cell lines (HeLa). Antibacterial activity tests were also performed with gel containing silver nanoparticles against skin-associated pathogenic bacteria. The results show that PPAGHGel possesses excellent biocompatibility, non-adhesive properties and antibacterial activity. Full article
Show Figures

Figure 1

14 pages, 925 KiB  
Article
Late-Onset Immune-Related Adverse Events in Patients with Advanced Melanoma: The LATENT Study
by Javier Pozas, Sowmya Cheruvu, Poorni Priya Jaganathan, Priya Ganesan, Arjun Modi, James Larkin, Laura Cossar, Anna Olsson-Brown, Alexandra Johnson, Nicholas Garbutt, Rebecca Lee, James Jones, Aislinn Macklin-Doherty, Kate Young and LATENT Study Investigators
Cancers 2025, 17(15), 2461; https://doi.org/10.3390/cancers17152461 - 25 Jul 2025
Viewed by 316
Abstract
Background/Objectives: Immune checkpoint inhibitors have significantly transformed the treatment paradigm of advanced melanoma, leading to substantial improvements in survival outcomes. However, this therapeutic success is accompanied by a spectrum of treatment-related adverse events, some of which are increasingly recognised as enduring and non-reversible. [...] Read more.
Background/Objectives: Immune checkpoint inhibitors have significantly transformed the treatment paradigm of advanced melanoma, leading to substantial improvements in survival outcomes. However, this therapeutic success is accompanied by a spectrum of treatment-related adverse events, some of which are increasingly recognised as enduring and non-reversible. Whilst early-onset immune-related toxicities have been well characterized, late-onset toxicities, often emerging in patients with long-term disease control, remain understudied and are frequently overlooked. Methods: To address this knowledge gap, we conducted a retrospective multicentre study in three UK tertiary referral centres, exploring immune-related adverse events in 246 patients with melanoma who received immune checkpoint inhibitors in the advanced setting. We defined late-onset immune-related adverse events as those occurring at least 3 months after the last cycle of immune checkpoint inhibitors. Results: Although most patients experienced early-onset toxicity, almost 15% of patients developed late-onset immune-related adverse events, including skin rash, colitis, hepatitis, and arthritis, among others. These were often challenging to manage and necessitated the use of systemic steroids. Up to 2% of patients presented ultra-late-onset toxicities, defined as those events occurring at least 12 months after treatment completion. Conclusions: This study provides valuable insights into the characteristics of late-onset immune-related adverse events. To further advance our understanding of these late-onset toxicities, dedicated prospective studies are needed to assess risk factors associated with their development and their impact on quality of life. Additionally, translational research focused on finding predictive biomarkers is essential to identify patients at a higher risk of developing delayed adverse events and to understand how best to manage them. Full article
(This article belongs to the Special Issue Immune-Related Adverse Events in Cancer Immunotherapy)
Show Figures

Figure 1

17 pages, 2400 KiB  
Article
Per- and Polyfluoroalkyl Substance-Induced Skin Barrier Disruption and the Potential Role of Calcitriol in Atopic Dermatitis
by JinKyeong Kim, SoYeon Yu, JeongHyeop Choo, HyeonYeong Lee and Seung Yong Hwang
Int. J. Mol. Sci. 2025, 26(15), 7085; https://doi.org/10.3390/ijms26157085 - 23 Jul 2025
Viewed by 202
Abstract
Environmental exposure to per- and polyfluoroalkyl substances (PFASs) has been increasingly associated with skin disorders, including atopic dermatitis (AD); however, the underlying molecular mechanisms remain unclear. This study aimed to evaluate the effects of perfluorononanoic acid (PFNA) and perfluorooctanoic acid (PFOA)—two widely detected [...] Read more.
Environmental exposure to per- and polyfluoroalkyl substances (PFASs) has been increasingly associated with skin disorders, including atopic dermatitis (AD); however, the underlying molecular mechanisms remain unclear. This study aimed to evaluate the effects of perfluorononanoic acid (PFNA) and perfluorooctanoic acid (PFOA)—two widely detected PFASs—on epidermal function and gene expression in Human Epithelial Keratinocyte, neonatal (HEKn). We assessed cell viability, morphology, and transcriptomic changes using in vitro assays and RNA-seq analysis from a neonatal cohort. PFASs induced dose-dependent cytotoxicity and downregulation of barrier-related genes. Ingenuity pathway analysis identified calcitriol as a suppressed upstream regulator. Functional validation revealed that calcitriol partially reversed the PFAS-induced suppression of antimicrobial peptide genes. These findings support the hypothesis that PFASs may contribute to AD-like skin pathology by impairing vitamin D receptor signaling and antimicrobial defense, and calcitriol demonstrates potential as a protective modulator. This study provides mechanistic insights into the impact of environmental toxicants on skin homeostasis and suggests a potential protective role for calcitriol in PFAS-induced skin barrier damage. Full article
(This article belongs to the Special Issue Dermatology: Advances in Pathophysiology and Therapies (3rd Edition))
Show Figures

Figure 1

15 pages, 3673 KiB  
Article
Photodegradation Assessment of Calcipotriol in the Presence of UV Absorbers by UHPLC/MSE
by Małgorzata Król, Paweł Żmudzki, Adam Bucki and Agata Kryczyk-Poprawa
Appl. Sci. 2025, 15(15), 8124; https://doi.org/10.3390/app15158124 - 22 Jul 2025
Viewed by 374
Abstract
Calcipotriol, a synthetic vitamin D3 analogue widely used in psoriasis treatment, requires a detailed stability assessment due to its topical application and potential exposure to UV radiation. As a drug applied directly to the skin, calcipotriol is particularly susceptible to photodegradation, which [...] Read more.
Calcipotriol, a synthetic vitamin D3 analogue widely used in psoriasis treatment, requires a detailed stability assessment due to its topical application and potential exposure to UV radiation. As a drug applied directly to the skin, calcipotriol is particularly susceptible to photodegradation, which may affect its therapeutic efficacy and safety profile. The present study focuses on the analysis of calcipotriol photostability. An advanced UHPLC/MSE method was employed for the precise determination of calcipotriol and its degradation products. Particular attention was given to the effects of commonly used organic UV filters—approved for use in cosmetic products in both Europe and the USA (benzophenone-3, dioxybenzone, meradimate, sulisobenzone, homosalate, and avobenzone)—on the stability of calcipotriol. Unexpected degradation of calcipotriol was observed in the presence of sulisobenzone. Importantly, this effect was consistently detected in methanolic solution and in the pharmaceutical formulation containing calcipotriol and betamethasone, which is particularly significant from a practical perspective. This finding underscores the necessity of evaluating photostability under real-life conditions, as cosmetic ingredients, when co-applied with topical drugs on the skin, may substantially influence the stability profile of the pharmaceutical active ingredient. The research resulted in the first-time characterization of four degradation products of calcipotriol. The degradation process was found to primarily affect the E-4-cyclopropyl-4-hydroxy-1-methylbut-2-en-1-yl moiety, causing its isomerization to the Z isomer and the formation of diastereomers with either the R or S configuration. Computational analyses using the OSIRIS Property Explorer indicated that none of the five degradation products exhibit a toxicity effect, whereas molecular docking studies suggested possible binding of two of the five degradation products of calcipotriol with the VDR. Full article
(This article belongs to the Section Chemical and Molecular Sciences)
Show Figures

Graphical abstract

22 pages, 4534 KiB  
Article
Upcycled Cocoa Pod Husk: A Sustainable Source of Phenol and Polyphenol Ingredients for Skin Hydration, Whitening, and Anti-Aging
by Aknarin Anatachodwanit, Setinee Chanpirom, Thapakorn Tree-Udom, Sunsiri Kitthaweesinpoon, Sudarat Jiamphun, Ongon Aryuwat, Cholpisut Tantapakul, Maria Pilar Vinardell and Tawanun Sripisut
Life 2025, 15(7), 1126; https://doi.org/10.3390/life15071126 - 17 Jul 2025
Viewed by 726
Abstract
Theobroma cacao L. (cocoa) pod husk, a byproduct of the chocolate industry, has potential for commercial applications due to its bioactive compounds. This study aimed to determine the phytochemical composition, biological activity, and clinical efficacy of a standardized extract. This study compared 80% [...] Read more.
Theobroma cacao L. (cocoa) pod husk, a byproduct of the chocolate industry, has potential for commercial applications due to its bioactive compounds. This study aimed to determine the phytochemical composition, biological activity, and clinical efficacy of a standardized extract. This study compared 80% ethanol (CE) and 80% ethanol acidified (CEA) as extraction solvents. The result indicated that CEA yielded higher total phenolic content (170.98 ± 7.41 mg GAE/g extract) and total flavonoid content (3.91 ± 0.27 mg QE/g extract) than CE. Liquid chromatography–tandem mass spectrometry (LC/MS/MS) identified various phenolic and flavonoid compounds. CEA demonstrated stronger anti-oxidant (IC50 = 5.83 ± 0.11 μg/mL in the DPPH assay and 234.17 ± 4.01 mg AAE/g extract in the FRAP assay) compared to CE. Additionally, CEA exhibited anti-tyrosinase (IC50 = 9.51 ± 0.01 mg/mL), anti-glycation (IC50 = 62.32 ± 0.18 µg/mL), and anti-collagenase (IC50 = 0.43 ± 0.01 mg/mL), nitric oxide (NO) production inhibitory (IC50 = 62.68 μg/mL) activities, without causing toxicity to cells. A formulated lotion containing CEA (0.01–1.0% w/w) demonstrated stability over six heating–cooling cycles. A clinical study with 30 volunteers showed no skin irritation. The 1.0% w/w formulation (F4) improved skin hydration (+52.48%), reduced transepidermal water loss (−7.73%), and decreased melanin index (−9.10%) after 4 weeks of application. These findings suggest cocoa pod husk extract as a promising active ingredient for skin hydrating and lightening formulation. Nevertheless, further long-term studies are necessary to evaluate its efficacy in anti-aging treatments. Full article
(This article belongs to the Special Issue Bioactive Compounds for Medicine and Health)
Show Figures

Figure 1

12 pages, 652 KiB  
Article
Staphylococcus Strains in Atopic Dermatitis in Children: Toxins Production and Resistance Properties
by Asya Kudryavtseva, Fyodor Fluer, Lusine Khachatryan, Svetlana Makarova, Oksana Osipenko, Elena Ryzhii, Sergei Titarev, Denis Zaslavsky and Katerina Gelezhe
Life 2025, 15(7), 1120; https://doi.org/10.3390/life15071120 - 17 Jul 2025
Viewed by 331
Abstract
Staphylococcus spp. skin colonization is involved in the pathogenesis of atopic dermatitis (AD). While coagulase-positive Staphylococcus aureus strains are known to worsen symptoms, the role of coagulase-negative staphylococci (CoNS) remains controversial. Further research is needed to clarify the pathogenicity of CoNS in AD [...] Read more.
Staphylococcus spp. skin colonization is involved in the pathogenesis of atopic dermatitis (AD). While coagulase-positive Staphylococcus aureus strains are known to worsen symptoms, the role of coagulase-negative staphylococci (CoNS) remains controversial. Further research is needed to clarify the pathogenicity of CoNS in AD patients. A study involving 329 children with AD (mean age: 4.89 years) assessed the frequency of staphylococcal colonization on affected skin, along with the toxin-producing properties and antibiotic resistance of isolated strains. Mild AD: Predominantly colonized by CoNS (especially S. epidermidis). Moderate/Severe AD: Showed a significant increase in S. aureus colonization. CoNS (including S. epidermidis) could produce enterotoxins (A, B, C) and toxic shock syndrome toxin-1 (TSST-1), though less frequently than S. aureus strains. In severe AD, the number of toxin-producing CoNS strains (especially enterotoxin A producers) was higher than in mild AD, and the number of non-toxin-producing strains was lower. CoNS exhibited higher resistance rates than S. aureus. Methicillin-resistant S. epidermidis (MRSE): 23.4%. Methicillin-resistant S. aureus (MRSA): 1.27%. CoNS may contribute to AD pathogenesis through toxin production (exacerbating inflammation) and antibiotic resistance (limiting treatment options). Severe AD may involve a synergistic effect between S. aureus and toxin-producing CoNS. Full article
(This article belongs to the Section Microbiology)
Show Figures

Figure 1

29 pages, 2840 KiB  
Review
Compositional Variability of Essential Oils and Their Bioactivity in Native and Invasive Erigeron Species
by Asta Judžentienė
Molecules 2025, 30(14), 2989; https://doi.org/10.3390/molecules30142989 - 16 Jul 2025
Viewed by 346
Abstract
To date, various species of Erigeron genus have been used both in the ethnopharmacology of numerous nations across the world and in contemporary herbal practices. The objective of this study is to revise the phytochemical data on the essential oils (EOs) of various [...] Read more.
To date, various species of Erigeron genus have been used both in the ethnopharmacology of numerous nations across the world and in contemporary herbal practices. The objective of this study is to revise the phytochemical data on the essential oils (EOs) of various fleabanes species and to evaluate the variability of their biological activities. Up to June 2025, this review provides an updated overview of 105 literature sources (published during last 25 years) related to 14 Erigeron sp. (native, naturalized, or invasive) which have been investigated extensively and are of the greatest significance. It summarizes the compositional variability of the EOs and their pharmacological and toxic effects, such as anti-inflammatory, anticancer, antiproliferative, skin regeneration, antioxidant, antifungal, antibacterial, insecticidal, larvicidal, repellent, and allelopathic activity. The EOs of each Erigeron species were characterized, and a chemical structure of 43 major constituents is presented herein. The most characteristic and prevalent compounds were found to be limonene, δ-3-carene, matricaria ester, lachnophyllum ester, germacrene D, β-caryophyllene, β-farnesene, α-bergamotene, allo-aromadendrene, etc., in the EOs from the E. acris, E. annuus, E. bonariensis, E. canadensis, E. floribundus E. mucronatus, and E. speciosus plants. Major constituents, such as borneol, bornyl acetate, modhephen-8-β-ol, cis-arteannuic alcohol, β-caryophyllene, and τ-cadinol, were found in the oils of E. graveolens (Inula graveolens). A paucity of data concerning E. incanus EOs was revealed, with the prevalence of 3-hydroxy-4-methoxy cinammic acid and thymol acetate noted in the oils. The EOs from E. multiradiatus and E. sublyratus were comprised mainly of matricaria and lachnophyllum esters. The available data on EOs of E. ramosus is limited, but the main constituents are known to be α-humulene, 1,8-cineole, eugenol, and globulol. The EOs containing appreciable amounts of matricaria and lachnophyllum esters exhibited strong anticancer, anti-inflammatory, antimicrobial, larvicidal, and repellent activities. Repellence is also related to borneol, bornyl acetate, caryophyllene derivatives, τ-cadinol, modhephen-8-β-ol, and cis-arteannuic alcohol. Cytotoxicity was determined due to the presence of limonene, δ-3-carene, α- and β-farnesene, (E)-β-ocimene, ledene oxide, sesquiphellandrene, and dendrolasin in the fleabanes EOs. Skin regeneration and antifungal properties were related to germacrene D; and anti-inflammatory effects were determined due to high amounts of limonene (E)-β-ocimene, lachnophyllum ester, and germacrene D. The antimicrobial properties of the oils were conditioned by appreciable quantities of limonene, β-pinene, 1,8-cineole, carvacrol, thymol acetae, β-eudesmol, 2,6,7,7α-tetrahydro-1,5-dimethyl-1H-indene-3-carboxaldehyde, caryophyllene and its oxide, allo-aromadendrene, α-humulene, farnesene, carvacrol, and eugenol. This review provides a foundation for further studies on volatile secondary metabolites to explore the potential sources of new biologically active compounds in Erigeron sp. Full article
(This article belongs to the Collection Featured Reviews in Natural Products Chemistry)
Show Figures

Graphical abstract

21 pages, 3187 KiB  
Article
Green Extract from Pre-Harvest Tobacco Waste as a Non-Conventional Source of Anti-Aging Ingredients for Cosmetic Applications
by Mariana Leal, María A. Moreno, María E. Orqueda, Mario Simirgiotis, María I. Isla and Iris C. Zampini
Plants 2025, 14(14), 2189; https://doi.org/10.3390/plants14142189 - 15 Jul 2025
Viewed by 510
Abstract
The cigarette production from Nicotiana tabacum generates significant amounts of waste, with an estimated 68.31 million tons of pre- and post-harvest waste discarded annually. The pre-harvest waste includes the upper parts of the plant, inflorescences, and bracts, which are removed to help the [...] Read more.
The cigarette production from Nicotiana tabacum generates significant amounts of waste, with an estimated 68.31 million tons of pre- and post-harvest waste discarded annually. The pre-harvest waste includes the upper parts of the plant, inflorescences, and bracts, which are removed to help the growth of the lower leaves. This study explores the potential of apical leaves from Nicotiana tabacum var. Virginia, discarded during the budding stage (pre-harvest waste). The leaves were extracted using environmentally friendly solvents (green solvents), including distilled water (DW) and two natural deep eutectic solvents (NaDESs), one consisting of simple sugars, fructose, glucose, and sucrose (FGS) and the other consisting of choline chloride and urea (CU). The anti-inflammatory and anti-aging potential of these green extracts was assessed by the inhibition of key enzymes related to skin aging. The xanthine oxidase and lipoxygenase activities were mostly inhibited by CU extracts with IC50 values of 63.50 and 8.0 μg GAE/mL, respectively. The FGS extract exhibited the greatest hyaluronidase inhibition (49.20%), followed by the CU extract (33.20%) and the DW extract (20.80%). Regarding elastase and collagenase inhibition, the CU extract exhibited the highest elastase inhibition, while all extracts inhibited collagenase activity, with values exceeding 65%. Each extract had a distinct chemical profile determined by LC-ESI-QTOF-MS/MS and spectrophotometric methods, with several shared compounds present in different proportions. CU extract is characterized by high concentrations of rutin, nicotiflorin, and azelaic acid, while FGS and DW extracts share major compounds such as quinic acid, fructosyl pyroglutamate, malic acid, and gluconic acid. Ames test and Caenorhabditis elegans assay demonstrated that at the concentrations at which the green tobacco extracts exhibit biological activities, they did not show toxicity. The results support the potential of N. tabacum extracts obtained with NaDESs as antiaging and suggest their promising applications in the cosmetic and cosmeceutical industries. Full article
(This article belongs to the Section Phytochemistry)
Show Figures

Figure 1

Back to TopTop