Per- and Polyfluoroalkyl Substance-Induced Skin Barrier Disruption and the Potential Role of Calcitriol in Atopic Dermatitis
Abstract
1. Introduction
2. Results
2.1. PFAS Exposure Reduces HEKn Cell Viability in a Dose-Dependent Manner
2.2. PFAS Exposure Alters Cell Morphology and Induces Cell Death
2.3. PFASs Disrupt Epidermal Barrier-Related Gene Expression in HEKn
2.4. PFNA and PFOA Exposure Induces Differential Expression of AD-Related Genes
2.5. Calcitriol Functions as an Upstream Regulator of PFNA- and PFOA-Associated Gene Expression in AD
2.6. Calcitriol Modulates the Expression of Antimicrobial Peptide Genes in AD
3. Discussion
4. Materials and Methods
4.1. Cell Culture
4.2. MTS Assay
4.3. Cell Morphology and Hoechst 33342/PI Double Staining
4.4. RT-qPCR
4.5. Differentially Expressed Gene (DEG) Analysis
4.6. Ingenuity Pathway Analysis (IPA)
4.7. Ethical Considerations
4.8. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AD | Atopic dermatitis |
AMP | Antimicrobial peptide |
calcitriol | 1,25-dihydroxyvitamin D3 |
CAMP | Cathelicidin antimicrobial peptide |
CLDN1 | Claudin-1 |
DEFB4A | Defensin beta 4A |
DEG | Differential gene expression |
EDC | Epidermal differentiation complex |
FLG | Filaggrin |
FOXO1 | Forkhead Box O1 |
GAPDH | Glyceraldehyde-3-phosphate dehydrogenase |
GATA3 | GATA binding protein 3 |
GSTM1 | Glutathione S-transferase mu 1 |
GSTT1 | Glutathione S-transferase theta 1 |
HEKn | Human Epithelial Keratinocyte, neonatal |
HKGS | Human Keratinocyte Growth Supplement |
IC | Inhibitory concentration |
IL6 | Interleukin 6 |
IPA | Ingenuity Pathway Analysis |
IVL | Involucrin |
JUN | Jun proto-oncogene, AP-1 transcription factor subunit |
LOR | Loricrin |
PBMC | Peripheral blood mononuclear cell |
PFAS | Per- and polyfluroalkyl substances |
PFCA | Perfluorocarboxylic acid |
PFNA | Perfluorononanoic acid |
PFOA | Perfluorooctanoic acid |
PFOA | Perfluorooctanesulfonic acid |
PI | Propidium iodide |
PM | Particulate matter |
PPARGC1 | Peroxisome proliferator-activated receptor gamma coactivator 1-alpha |
RELA | RELA proto-oncogene, NF-κB subunit |
STAT3 | Signal transducer and activator of transcription 3 |
TEWL | Transepidermal water loss |
VDR | Vitamin D receptor |
VOC | Volatile organic compound |
ZO | Zonula occludens |
References
- Bonamonte, D.; Filoni, A.; Vestita, M.; Romita, P.; Foti, C.; Angelini, G. The role of the environmental risk factors in the pathogenesis and clinical outcome of atopic dermatitis. BioMed Res. Int. 2019, 2019, 2450605. [Google Scholar] [CrossRef] [PubMed]
- Kantor, R.; Silverberg, J.I. Environmental risk factors and their role in the management of atopic dermatitis. Expert Rev. Clin. Immunol. 2017, 13, 15–26. [Google Scholar] [CrossRef] [PubMed]
- Stefanovic, N.; Irvine, A.D.; Flohr, C. The role of the environment and exposome in atopic dermatitis. Curr. Treat. Options Allergy 2021, 8, 222–241. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.; Chaudhary, F.; Agrawal, D.K. Environmental Influences on Atopic Eczema. J. Environ. Sci. Public Health 2024, 8, 101–115. [Google Scholar] [CrossRef] [PubMed]
- Lai, A.; Owens, K.; Patel, S.; Nicholas, M. The impact of air pollution on atopic dermatitis. Curr. Allergy Asthma Rep. 2023, 23, 435–442. [Google Scholar] [CrossRef] [PubMed]
- Umehara, Y.; Trujillo-Paez, J.V.; Yue, H.; Peng, G.; Nguyen, H.L.T.; Okumura, K.; Ogawa, H.; Niyonsaba, F. Calcitriol, an active form of vitamin D3, mitigates skin barrier dysfunction in atopic dermatitis NC/Nga mice. Int. J. Mol. Sci. 2023, 24, 9347. [Google Scholar] [CrossRef] [PubMed]
- Ramanathan Jr, M.; Lee, W.-K.; Spannhake, E.W.; Lane, A.P. Th2 cytokines associated with chronic rhinosinusitis with polyps down-regulate the antimicrobial immune function of human sinonasal epithelial cells. Am. J. Rhinol. 2008, 22, 115–121. [Google Scholar] [CrossRef] [PubMed]
- Kotthoff, M.; Müller, J.; Jürling, H.; Schlummer, M.; Fiedler, D. Perfluoroalkyl and polyfluoroalkyl substances in consumer products. Environ. Sci. Pollut. Res. 2015, 22, 14546–14559. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Huang, R.; Hua, L.; Guo, Y.; Huang, L.; Zhao, Y.; Wang, X.; Zhang, J. Prenatal exposure to perfluoroalkyl and polyfluoroalkyl substances and childhood atopic dermatitis: A prospective birth cohort study. Environ. Health 2018, 17, 8. [Google Scholar] [CrossRef] [PubMed]
- Rosato, I.; Bonato, T.; Fletcher, T.; Batzella, E.; Canova, C. Estimation of per-and polyfluoroalkyl substances (PFAS) half-lives in human studies: A systematic review and meta-analysis. Environ. Res. 2024, 242, 117743. [Google Scholar] [CrossRef] [PubMed]
- Skinner, J.P.; Raderstorf, A.; Rittmann, B.E.; Delgado, A.G. Biotransforming the “Forever Chemicals”: Trends and Insights from Microbiological Studies on PFAS. Environ. Sci. Technol. 2025, 59, 5417–5430. [Google Scholar] [CrossRef] [PubMed]
- Figuière, R.; Miaz, L.T.; Savvidou, E.; Cousins, I.T. An Overview of Potential Alternatives for the Multiple Uses of Per-and Polyfluoroalkyl Substances. Environ. Sci. Technol. 2025, 59, 2031–2042. [Google Scholar] [CrossRef] [PubMed]
- Eriksen, K.T.; Raaschou-Nielsen, O.; Sørensen, M.; Roursgaard, M.; Loft, S.; Møller, P. Genotoxic potential of the perfluorinated chemicals PFOA, PFOS, PFBS, PFNA and PFHxA in human HepG2 cells. Mutat. Res./Genet. Toxicol. Environ. Mutagen. 2010, 700, 39–43. [Google Scholar] [CrossRef] [PubMed]
- Hatem, G.; Faria, A.M.; Pinto, M.B.; Salamova, A.; Teixeira, J.P.; Costa, C.; Madureira, J. Exposure to per-and poly-fluoroalkyl substances and respiratory and skin effects in children and adolescents: A systematic review and meta-analysis. J. Hazard. Mater. 2025, 491, 137978. [Google Scholar] [CrossRef] [PubMed]
- Wen, H.-J.; Wang, S.-L.; Chuang, Y.-C.; Chen, P.-C.; Guo, Y.L. Prenatal perfluorooctanoic acid exposure is associated with early onset atopic dermatitis in 5-year-old children. Chemosphere 2019, 231, 25–31. [Google Scholar] [CrossRef] [PubMed]
- Wen, H.-J.; Wang, S.-L.; Chen, P.-C.; Guo, Y.L. Prenatal perfluorooctanoic acid exposure and glutathione s-transferase T1/M1 genotypes and their association with atopic dermatitis at 2 years of age. PLoS ONE 2019, 14, e0210708. [Google Scholar] [CrossRef] [PubMed]
- Belloc, F.; Dumain, P.; Boisseau, M.R.; Jalloustre, C.; Reiffers, J.; Bernard, P.; Lacombe, F. A flow cytometric method using Hoechst 33342 and propidium iodide for simultaneous cell cycle analysis and apoptosis determination in unfixed cells. Cytom. J. Int. Soc. Anal. Cytol. 1994, 17, 59–65. [Google Scholar] [CrossRef] [PubMed]
- Barthe, M.; Clerbaux, L.-A.; Thénot, J.-P.; Braud, V.M.; Osman-Ponchet, H. Systematic characterization of the barrier function of diverse ex vivo models of damaged human skin. Front. Med. 2024, 11, 1481645. [Google Scholar] [CrossRef] [PubMed]
- Bao, L.; Zhang, H.; Chan, L.S. The involvement of the JAK-STAT signaling pathway in chronic inflammatory skin disease atopic dermatitis. Jak-Stat 2013, 2, e24137. [Google Scholar] [CrossRef] [PubMed]
- Diago, C.A.A.; García-Unzueta, M.T.; Fariñas, M.d.C.; Amado, J.A. Calcitriol-modulated human antibiotics: New pathophysiological aspects of vitamin D. Endocrinol. Y Nutr. (Engl. Ed.) 2016, 63, 87–94. [Google Scholar]
- White, J.H. Emerging roles of vitamin D-induced antimicrobial peptides in antiviral innate immunity. Nutrients 2022, 14, 284. [Google Scholar] [CrossRef] [PubMed]
- Glüge, J.; Scheringer, M.; Cousins, I.T.; DeWitt, J.C.; Goldenman, G.; Herzke, D.; Lohmann, R.; Ng, C.A.; Trier, X.; Wang, Z. An overview of the uses of per-and polyfluoroalkyl substances (PFAS). Environ. Sci. Process. Impacts 2020, 22, 2345–2373. [Google Scholar] [CrossRef] [PubMed]
- Brennan, N.M.; Evans, A.T.; Fritz, M.K.; Peak, S.A.; von Holst, H.E. Trends in the regulation of per-and polyfluoroalkyl substances (PFAS): A scoping review. Int. J. Environ. Res. Public Health 2021, 18, 10900. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Sun, J.; Li, P. Exposure routes, bioaccumulation and toxic effects of per-and polyfluoroalkyl substances (PFASs) on plants: A critical review. Environ. Int. 2022, 158, 106891. [Google Scholar] [CrossRef] [PubMed]
- Tukker, A.M.; Bouwman, L.M.S.; van Kleef, R.G.D.M.; Hendriks, H.S.; Legler, J.; Westerink, R.H.S. Perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) acutely affect human α1β2γ2L GABAA receptor and spontaneous neuronal network function in vitro. Sci. Rep. 2020, 10, 5311. [Google Scholar] [CrossRef] [PubMed]
- Frølunde, A.S.; Vestergaard, C.; Deleuran, M. Skin Barrier Abnormalities in Atopic Dermatitis. Curr. Treat. Options Allergy 2022, 9, 107–117. [Google Scholar] [CrossRef]
- Leung, D.Y.; Berdyshev, E.; Goleva, E. Cutaneous barrier dysfunction in allergic diseases. J. Allergy Clin. Immunol. 2020, 145, 1485–1497. [Google Scholar] [CrossRef] [PubMed]
- Katsarou, S.; Makris, M.; Vakirlis, E.; Gregoriou, S. The role of tight junctions in atopic dermatitis: A systematic review. J. Clin. Med. 2023, 12, 1538. [Google Scholar] [CrossRef] [PubMed]
- Hashimoto-Hachiya, A.; Tsuji, G.; Murai, M.; Yan, X.; Furue, M. Upregulation of FLG, LOR, and IVL expression by Rhodiola crenulata root extract via aryl hydrocarbon receptor: Differential involvement of OVOL1. Int. J. Mol. Sci. 2018, 19, 1654. [Google Scholar] [CrossRef] [PubMed]
- Evich, M.G.; Davis, M.J.; McCord, J.P.; Acrey, B.; Awkerman, J.A.; Knappe, D.R.; Lindstrom, A.B.; Speth, T.F.; Tebes-Stevens, C.; Strynar, M.J. Per-and polyfluoroalkyl substances in the environment. Science 2022, 375, eabg9065. [Google Scholar] [CrossRef] [PubMed]
- Buck, R.C.; Franklin, J.; Berger, U.; Conder, J.M.; Cousins, I.T.; De Voogt, P.; Jensen, A.A.; Kannan, K.; Mabury, S.A.; van Leeuwen, S.P. Perfluoroalkyl and polyfluoroalkyl substances in the environment: Terminology, classification, and origins. Integr. Environ. Assess. Manag. 2011, 7, 513–541. [Google Scholar] [CrossRef] [PubMed]
- Fenton, S.E.; Ducatman, A.; Boobis, A.; DeWitt, J.C.; Lau, C.; Ng, C.; Smith, J.S.; Roberts, S.M. Per-and polyfluoroalkyl substance toxicity and human health review: Current state of knowledge and strategies for informing future research. Environ. Toxicol. Chem. 2021, 40, 606–630. [Google Scholar] [CrossRef] [PubMed]
- Lu, R.; Peng, Z.; Lian, P.; Wazir, J.; Gu, C.; Ma, C.; Wei, L.; Li, L.; Pu, W.; Liu, J.; et al. Vitamin D attenuates DNCB-induced atopic dermatitis-like skin lesions by inhibiting immune response and restoring skin barrier function. Int. Immunopharmacol. 2023, 122, 110558. [Google Scholar] [CrossRef] [PubMed]
- Hong, S.; Oh, Y.; Jung, M.; Lee, S.; Jeon, H.; Cho, M.Y.; Lee, S.; Choi, E. Topical calcitriol restores the impairment of epidermal permeability and antimicrobial barriers induced by corticosteroids. Br. J. Dermatol. 2010, 162, 1251–1260. [Google Scholar] [CrossRef] [PubMed]
- Singam, E.R.A.; Durkin, K.A.; La Merrill, M.A.; Furlow, J.D.; Wang, J.-C.; Smith, M.T. The vitamin D receptor as a potential target for the toxic effects of per-and polyfluoroalkyl substances (PFASs): An in-silico study. Environ. Res. 2023, 217, 114832. [Google Scholar] [CrossRef] [PubMed]
- Muindi, J.R.; Yu, W.-D.; Ma, Y.; Engler, K.L.; Kong, R.-X.; Trump, D.L.; Johnson, C.S. CYP24A1 inhibition enhances the antitumor activity of calcitriol. Endocrinology 2010, 151, 4301–4312. [Google Scholar] [CrossRef] [PubMed]
- Suwanchote, S.; Waitayangkoon, P.; Chancheewa, B.; Inthanachai, T.; Niwetbowornchai, N.; Edwards, S.W.; Virakul, S.; Thammahong, A.; Kiatsurayanon, C.; Rerknimitr, P.; et al. Role of antimicrobial peptides in atopic dermatitis. Int. J. Dermatol. 2022, 61, 532–540. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Curiel, I.; Trujillo, V.; Montoya-Rosales, A.; Rincon, K.; Rivas-Calderon, B.; deHaro-Acosta, J.; Marin-Luevano, P.; Lozano-Lopez, D.; Enciso-Moreno, J.A.; Rivas-Santiago, B. 1, 25-dihydroxyvitamin D3 induces LL-37 and HBD-2 production in keratinocytes from diabetic foot ulcers promoting wound healing: An in vitro model. PLoS ONE 2014, 9, e111355. [Google Scholar] [CrossRef] [PubMed]
- Roy, S.; Danasekaran, K.; Moran, J.; O’Brien, K.; Dakshanamurthy, S. Comprehensive Analysis and Large-Scale Screening of Binding Interactions Between PFAS and Their Mixtures with Nuclear Receptors. Preprints 2024. [Google Scholar] [CrossRef]
- Wang, T.-T.; Nestel, F.P.; Bourdeau, V.; Nagai, Y.; Wang, Q.; Liao, J.; Tavera-Mendoza, L.; Lin, R.; Hanrahan, J.W.; Mader, S.; et al. Cutting edge: 1, 25-dihydroxyvitamin D3 is a direct inducer of antimicrobial peptide gene expression. J. Immunol. 2004, 173, 2909–2912. [Google Scholar] [CrossRef] [PubMed]
PFNA | PFOA | Combined | |
---|---|---|---|
IC10 (μM) | 26.0 | 113.9 | 22.7 |
IC25 (μM) | 50.9 | 167.2 | 40.4 |
IC50 (μM) | 92.3 | 255.8 | 69.8 |
PFAS Type | Group Name | Exposure Level | Atopic Status | Sample Size (n) | Sex | PFAS Concentration (μg/L) | |
---|---|---|---|---|---|---|---|
Boy | Girl | ||||||
PFNA | PFNA_H_A | High | AD | 10 | 8 | 2 | 0.797 ± 0.146 |
PFNA_H_NA | High | Non-AD | 18 | 12 | 6 | 0.767 ± 0.116 | |
PFNA_L_A | Low | AD | 7 | 5 | 2 | 0.394 ± 0.035 | |
PFNA_L_NA | Low | Non-AD | 21 | 9 | 12 | 0.321 ± 0.105 | |
PFOA | PFOA_H_A | High | AD | 8 | 8 | 0 | 4.072 ± 0.514 |
PFOA_H_NA | High | Non-AD | 20 | 12 | 8 | 4.362 ± 1.200 | |
PFOA_L_A | Low | AD | 10 (1 unknown) | 6 | 3 | 1.432 ± 0.224 | |
PFOA_L_NA | Low | Non-AD | 18 | 6 | 12 | 1.518 ± 0.342 |
Gene | Sequence (5′ → 3′) | Amplicon Size (Basepair) | |
---|---|---|---|
CAMP | Forward | TGGTGAAGCGGTGTATG | 92 |
Reverse | CAGGGCAAATCTCTTGTTATC | ||
CLDN1 | Forward | CTGTGGCTAAACAGATGTAATG | 117 |
Reverse | GGGCATCACTGAACAGATA | ||
CYP24A1 | Forward | GGCAGAAGATTTGAGGAATATG | 97 |
Reverse | GTCAAGAGTCCGAGTTGTAA | ||
DEFB4A | Forward | CCATGAGGGTCTTGTATCTC | 92 |
Reverse | GGTAACAGGATCGCCTATAC | ||
FLG | Forward | CCAGATATGGTTGATGTCTTC | 166 |
Reverse | GACTGTGCTTTCTGTGC | ||
IVL | Forward | GTGACCCTCTCCCCT | 172 |
Reverse | CAGTCATGTGCTTTTCCTC | ||
LOR | Forward | TGATGCTACCCGAGGTT | 122 |
Reverse | TGGGAGGTAGTTGTACAGAA | ||
VDR | Forward | AAGCCACGTTCCTTACTG | 122 |
Reverse | GTACCTGCTACCCTGTATATTAG | ||
GAPDH | Forward | CAAGGTCATCCCTGAGC | 143 |
Reverse | CTGCTTCACCACCTTCT |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, J.; Yu, S.; Choo, J.; Lee, H.; Hwang, S.Y. Per- and Polyfluoroalkyl Substance-Induced Skin Barrier Disruption and the Potential Role of Calcitriol in Atopic Dermatitis. Int. J. Mol. Sci. 2025, 26, 7085. https://doi.org/10.3390/ijms26157085
Kim J, Yu S, Choo J, Lee H, Hwang SY. Per- and Polyfluoroalkyl Substance-Induced Skin Barrier Disruption and the Potential Role of Calcitriol in Atopic Dermatitis. International Journal of Molecular Sciences. 2025; 26(15):7085. https://doi.org/10.3390/ijms26157085
Chicago/Turabian StyleKim, JinKyeong, SoYeon Yu, JeongHyeop Choo, HyeonYeong Lee, and Seung Yong Hwang. 2025. "Per- and Polyfluoroalkyl Substance-Induced Skin Barrier Disruption and the Potential Role of Calcitriol in Atopic Dermatitis" International Journal of Molecular Sciences 26, no. 15: 7085. https://doi.org/10.3390/ijms26157085
APA StyleKim, J., Yu, S., Choo, J., Lee, H., & Hwang, S. Y. (2025). Per- and Polyfluoroalkyl Substance-Induced Skin Barrier Disruption and the Potential Role of Calcitriol in Atopic Dermatitis. International Journal of Molecular Sciences, 26(15), 7085. https://doi.org/10.3390/ijms26157085