Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,817)

Search Parameters:
Keywords = sizing power distribution

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1584 KiB  
Article
Peer-to-Peer Distributed Algorithms for Wide-Area Monitoring and Control in Power Systems
by Rossano Musca and Eleonora Riva Sanseverino
Energies 2025, 18(15), 3972; https://doi.org/10.3390/en18153972 - 25 Jul 2025
Abstract
This paper proposes peer-to-peer distributed algorithms for locally determining global power system quantities—specifically the total inertia and average frequency—which are critical for wide-area monitoring and control. These algorithms use a network of distributed measurement units that communicate locally, based on the push-sum protocol, [...] Read more.
This paper proposes peer-to-peer distributed algorithms for locally determining global power system quantities—specifically the total inertia and average frequency—which are critical for wide-area monitoring and control. These algorithms use a network of distributed measurement units that communicate locally, based on the push-sum protocol, to compute global information without centralized coordination. Applied to the large-scale European power system, these methods demonstrate an effective performance across varying time scales and system sizes, offering technical and economic advantages over centralized approaches. Full article
(This article belongs to the Section F: Electrical Engineering)
Show Figures

Figure 1

13 pages, 271 KiB  
Article
Association Between Gum Chewing and Temporomandibular Disorders
by Yana Yushchenko, Michał Zemowski, Daniil Yefimchuk and Aneta Wieczorek
J. Clin. Med. 2025, 14(15), 5253; https://doi.org/10.3390/jcm14155253 - 24 Jul 2025
Abstract
Background: Gum chewing is a common habit among young adults, often promoted for its oral health and psychological benefits. However, as a repetitive and non-functional activity, it is also considered a potential risk factor for temporomandibular disorder (TMD), particularly when practiced chronically. [...] Read more.
Background: Gum chewing is a common habit among young adults, often promoted for its oral health and psychological benefits. However, as a repetitive and non-functional activity, it is also considered a potential risk factor for temporomandibular disorder (TMD), particularly when practiced chronically. The aim of this study was to evaluate whether excessive gum chewing is associated with a higher prevalence of TMD among young adults presumed to be under elevated academic stress based on their demographic characteristics. Methods: Participants were examined in Krakow, Poland, using the Diagnostic Criteria for Temporomandibular Disorders (DC/TMD) protocol. Participants completed a structured questionnaire assessing gum-chewing frequency, duration, and chronicity. Associations between chewing behaviors and TMD presence were analyzed using univariate logistic regression (α = 0.05). Results: This study included young adults 66 participants aged 19–30. TMD was diagnosed in 55 participants (83.3%), including muscular disorders (n = 9; 16.4%), articular disorders (n = 10; 18.2%), and combined muscular–articular disorders (n = 38; 57.6%). More than 70% of participants reported chewing gum for over five years. No statistically significant associations were found between TMD occurrence and the frequency, duration, or chronicity of gum chewing (p > 0.05). Conclusions: These findings suggest that, in the absence of other contributing factors, gum chewing may not independently contribute to TMD development. The elevated TMD prevalence may reflect confounding variables such as high academic stress, narrow age distribution, or female predominance. However, the limited sample size limits statistical power, particularly for detecting subtle effects potentially distorted by other variables. Additionally, the cross-sectional nature of this study precludes causal interpretation. Further studies in larger and more heterogeneous populations are recommended. Full article
20 pages, 3338 KiB  
Article
Mitigation of Reverse Power Flows in a Distribution Network by Power-to-Hydrogen Plant
by Fabio Massaro, John Licari, Alexander Micallef, Salvatore Ruffino and Cyril Spiteri Staines
Energies 2025, 18(15), 3931; https://doi.org/10.3390/en18153931 - 23 Jul 2025
Viewed by 56
Abstract
The increase in power generation facilities from nonprogrammable renewable sources is posing several challenges for the management of electrical systems, due to phenomena such as congestion and reverse power flows. In mitigating these phenomena, Power-to-Gas plants can make an important contribution. In this [...] Read more.
The increase in power generation facilities from nonprogrammable renewable sources is posing several challenges for the management of electrical systems, due to phenomena such as congestion and reverse power flows. In mitigating these phenomena, Power-to-Gas plants can make an important contribution. In this paper, a linear optimisation study is presented for the sizing of a Power-to-Hydrogen plant consisting of a PEM electrolyser, a hydrogen storage system composed of multiple compressed hydrogen tanks, and a fuel cell for the eventual reconversion of hydrogen to electricity. The plant was sized with the objective of minimising reverse power flows in a medium-voltage distribution network characterised by a high presence of photovoltaic systems, considering economic aspects such as investment costs and the revenue obtainable from the sale of hydrogen and excess energy generated by the photovoltaic systems. The study also assessed the impact that the electrolysis plant has on the power grid in terms of power losses. The results obtained showed that by installing a 737 kW electrolyser, the annual reverse power flows are reduced by 81.61%, while also reducing losses in the transformer and feeders supplying the ring network in question by 17.32% and 29.25%, respectively, on the day with the highest reverse power flows. Full article
(This article belongs to the Special Issue Advances in Hydrogen Energy IV)
Show Figures

Figure 1

30 pages, 10173 KiB  
Article
Integrated Robust Optimization for Lightweight Transformer Models in Low-Resource Scenarios
by Hui Huang, Hengyu Zhang, Yusen Wang, Haibin Liu, Xiaojie Chen, Yiling Chen and Yuan Liang
Symmetry 2025, 17(7), 1162; https://doi.org/10.3390/sym17071162 - 21 Jul 2025
Viewed by 191
Abstract
With the rapid proliferation of artificial intelligence (AI) applications, an increasing number of edge devices—such as smartphones, cameras, and embedded controllers—are being tasked with performing AI-based inference. Due to constraints in storage capacity, computational power, and network connectivity, these devices are often categorized [...] Read more.
With the rapid proliferation of artificial intelligence (AI) applications, an increasing number of edge devices—such as smartphones, cameras, and embedded controllers—are being tasked with performing AI-based inference. Due to constraints in storage capacity, computational power, and network connectivity, these devices are often categorized as operating in resource-constrained environments. In such scenarios, deploying powerful Transformer-based models like ChatGPT and Vision Transformers is highly impractical because of their large parameter sizes and intensive computational requirements. While lightweight Transformer models, such as MobileViT, offer a promising solution to meet storage and computational limitations, their robustness remains insufficient. This poses a significant security risk for AI applications, particularly in critical edge environments. To address this challenge, our research focuses on enhancing the robustness of lightweight Transformer models under resource-constrained conditions. First, we propose a comprehensive robustness evaluation framework tailored for lightweight Transformer inference. This framework assesses model robustness across three key dimensions: noise robustness, distributional robustness, and adversarial robustness. It further investigates how model size and hardware limitations affect robustness, thereby providing valuable insights for robustness-aware model design. Second, we introduce a novel adversarial robustness enhancement strategy that integrates lightweight modeling techniques. This approach leverages methods such as gradient clipping and layer-wise unfreezing, as well as decision boundary optimization techniques like TRADES and SMART. Together, these strategies effectively address challenges related to training instability and decision boundary smoothness, significantly improving model robustness. Finally, we deploy the robust lightweight Transformer models in real-world resource-constrained environments and empirically validate their inference robustness. The results confirm the effectiveness of our proposed methods in enhancing the robustness and reliability of lightweight Transformers for edge AI applications. Full article
(This article belongs to the Section Mathematics)
Show Figures

Figure 1

32 pages, 10028 KiB  
Article
Natural Gas Heating in Serbian and Czech Towns: The Role of Urban Topologies and Building Typologies
by Dejan Brkić, Zoran Stajić and Dragana Temeljkovski Novaković
Urban Sci. 2025, 9(7), 284; https://doi.org/10.3390/urbansci9070284 - 21 Jul 2025
Viewed by 287
Abstract
This article presents an analysis on natural gas heating in residential areas, focusing on two primary systems: (1) local heating, where piped gas is delivered directly to individual dwellings equipped with autonomous gas boilers, and (2) district heating, where gas or an alternative [...] Read more.
This article presents an analysis on natural gas heating in residential areas, focusing on two primary systems: (1) local heating, where piped gas is delivered directly to individual dwellings equipped with autonomous gas boilers, and (2) district heating, where gas or an alternative fuel powers a central heating plant, and the generated heat is distributed to buildings via a thermal network. The choice between these systems should first consider safety and environmental factors, followed by the urban characteristics of the settlement. In particular, building typology—such as size, function, and spatial configuration—and urban topology, referring to the relative positioning of buildings, play a crucial role. For example, very tall buildings often exclude the use of piped gas due to safety concerns, whereas in other cases, economic efficiency becomes the determining factor. To support decision-making, a comparative cost analysis is conducted, assessing the required infrastructure for both systems, including pipelines, boilers, and associated components. The study identifies representative residential building types in selected urban areas of Serbia and Czechia that are suitable for either heating approach. Additionally, the article examines the broader energy context in both countries, with emphasis on recent developments in the natural gas sector and their implications for urban heating strategies. Full article
(This article belongs to the Special Issue Urban Building Energy Analysis)
Show Figures

Figure 1

23 pages, 4267 KiB  
Article
Proof of Concept of an Integrated Laser Irradiation and Thermal/Visible Imaging System for Optimized Photothermal Therapy in Skin Cancer
by Diogo Novas, Alessandro Fortes, Pedro Vieira and João M. P. Coelho
Sensors 2025, 25(14), 4495; https://doi.org/10.3390/s25144495 - 19 Jul 2025
Viewed by 270
Abstract
Laser energy is widely used as a selective photothermal heating agent in cancer treatment, standing out for not relying on ionizing radiation. However, in vivo tests have highlighted the need to develop irradiation techniques that allow precise control over the illuminated area, adapting [...] Read more.
Laser energy is widely used as a selective photothermal heating agent in cancer treatment, standing out for not relying on ionizing radiation. However, in vivo tests have highlighted the need to develop irradiation techniques that allow precise control over the illuminated area, adapting it to the tumor size to further minimize damage to surrounding healthy tissue. To address this challenge, a proof of concept based on a laser irradiation system has been designed, enabling control over energy, exposure time, and irradiated area, using galvanometric mirrors. The control software, implemented in Python, employs a set of cameras (visible and infrared) to detect and monitor real-time thermal distributions in the region of interest, transmitting this information to a microcontroller responsible for adjusting the laser power and controlling the scanning process. Image alignment procedures, tunning of the controller’s gain parameters and the impact of the different engineering parameters are illustrated on a dedicated setup. As proof of concept, this approach has demonstrated the ability to irradiate a phantom of black modeling clay within an area of up to 5 cm × 5 cm, from 15 cm away, as well as to monitor and regulate the temperature over time (5 min). Full article
Show Figures

Graphical abstract

32 pages, 907 KiB  
Article
A New Exponentiated Power Distribution for Modeling Censored Data with Applications to Clinical and Reliability Studies
by Kenechukwu F. Aforka, H. E. Semary, Sidney I. Onyeagu, Harrison O. Etaga, Okechukwu J. Obulezi and A. S. Al-Moisheer
Symmetry 2025, 17(7), 1153; https://doi.org/10.3390/sym17071153 - 18 Jul 2025
Viewed by 208
Abstract
This paper presents the exponentiated power shanker (EPS) distribution, a fresh three-parameter extension of the standard Shanker distribution with the ability to extend a wider class of data behaviors, from right-skewed and heavy-tailed phenomena. The structural properties of the distribution, namely complete and [...] Read more.
This paper presents the exponentiated power shanker (EPS) distribution, a fresh three-parameter extension of the standard Shanker distribution with the ability to extend a wider class of data behaviors, from right-skewed and heavy-tailed phenomena. The structural properties of the distribution, namely complete and incomplete moments, entropy, and the moment generating function, are derived and examined in a formal manner. Maximum likelihood estimation (MLE) techniques are used for estimation of parameters, as well as a Monte Carlo simulation study to account for estimator performance across varying sample sizes and parameter values. The EPS model is also generalized to a regression paradigm to include covariate data, whose estimation is also conducted via MLE. Practical utility and flexibility of the EPS distribution are demonstrated through two real examples: one for the duration of repairs and another for HIV/AIDS mortality in Germany. Comparisons with some of the existing distributions, i.e., power Zeghdoudi, power Ishita, power Prakaamy, and logistic-Weibull, are made through some of the goodness-of-fit statistics such as log-likelihood, AIC, BIC, and the Kolmogorov–Smirnov statistic. Graphical plots, including PP plots, QQ plots, TTT plots, and empirical CDFs, further confirm the high modeling capacity of the EPS distribution. Results confirm the high goodness-of-fit and flexibility of the EPS model, making it a very good tool for reliability and biomedical modeling. Full article
(This article belongs to the Section Mathematics)
Show Figures

Figure 1

32 pages, 3289 KiB  
Article
Optimal Spot Market Participation of PV + BESS: Impact of BESS Sizing in Utility-Scale and Distributed Configurations
by Andrea Scrocca, Roberto Pisani, Diego Andreotti, Giuliano Rancilio, Maurizio Delfanti and Filippo Bovera
Energies 2025, 18(14), 3791; https://doi.org/10.3390/en18143791 - 17 Jul 2025
Viewed by 253
Abstract
Recent European regulations promote distributed energy resources as alternatives to centralized generation. This study compares utility-scale and distributed photovoltaic (PV) systems coupled with Battery Energy-Storage Systems (BESSs) in the Italian electricity market, analyzing different battery sizes. A multistage stochastic mixed-integer linear programming model, [...] Read more.
Recent European regulations promote distributed energy resources as alternatives to centralized generation. This study compares utility-scale and distributed photovoltaic (PV) systems coupled with Battery Energy-Storage Systems (BESSs) in the Italian electricity market, analyzing different battery sizes. A multistage stochastic mixed-integer linear programming model, using Monte Carlo PV production scenarios, optimizes day-ahead and intra-day market offers while incorporating PV forecast updates. In real time, battery flexibility reduces imbalances. Here we show that, to ensure dispatchability—defined as keeping annual imbalances below 5% of PV output—a 1 MW PV system requires 220 kWh of storage for utility-scale and 50 kWh for distributed systems, increasing the levelized cost of electricity by +13.1% and +1.94%, respectively. Net present value is negative for BESSs performing imbalance netting only. Therefore, a multiple service strategy, including imbalance netting and energy arbitrage, is introduced. Performing arbitrage while keeping dispatchability reaches an economic optimum with a 1.7 MWh BESS for utility-scale systems and 1.1 MWh BESS for distributed systems. These results show lower PV firming costs than previous studies, and highlight that under a multiple-service strategy, better economic outcomes are obtained with larger storage capacities. Full article
(This article belongs to the Section A2: Solar Energy and Photovoltaic Systems)
Show Figures

Figure 1

23 pages, 4585 KiB  
Article
Power Losses in the Multi-Turn Windings of High-Speed PMSM Electric Machine Armatures
by Oleksandr Makarchuk and Dariusz Całus
Energies 2025, 18(14), 3761; https://doi.org/10.3390/en18143761 - 16 Jul 2025
Viewed by 214
Abstract
This paper investigates the dependencies between the design parameters of the armature (stator) winding of a high-speed PMSM machine and the electrical losses in its windings resulting from eddy currents. In addition, the factors accounting for the occurrence of parasitic circulating currents, whose [...] Read more.
This paper investigates the dependencies between the design parameters of the armature (stator) winding of a high-speed PMSM machine and the electrical losses in its windings resulting from eddy currents. In addition, the factors accounting for the occurrence of parasitic circulating currents, whose presence in the phase windings is associated with the design specificity, are analyzed. Quantitative analysis is carried out by the application of a newly developed mathematical model for the calculation of fundamental and additional losses in a multi-turn coil enclosed in the slots of a ferromagnetic core. The analysis takes into account the actual design of the slot and the conductor, the variable arrangement of individual conductors in the slot, the core saturation and the presence of the excitation field—to represent the main factors that affect the process of additional losses in the slot of the electric machine. The verification of the mathematical model developed in this study was carried out by comparing the distribution of power losses in the slot section of the coil, consisting of several elementary conductors connected in parallel and located in a rectangular open slot, with an identical distribution derived on the basis of an analytical method from the classical circuit theory. For the purpose of confirming the results and conclusions derived from simulation studies, a number of physical experiments were carried out, consisting in determining the power losses in multi-turn coils of different designs. Recommendations have been developed to minimize additional losses by optimizing the arrangement of conductors within the slot, selecting the appropriate cross-sectional size of a single conductor and the saturation level of the tooth zone. Full article
Show Figures

Figure 1

14 pages, 2680 KiB  
Article
Optimization of Ultrasonic Dispersion of Single-Walled SWCNT Inks for Improvement of Thermoelectric Performance in SWCNT Films Using Heat Source-Free Water-Floating SWCNT Thermoelectric Generators
by Yutaro Okano, Shuya Ochiai, Hiroto Nakayama, Kiyofumi Nagai and Masayuki Takashiri
Materials 2025, 18(14), 3339; https://doi.org/10.3390/ma18143339 - 16 Jul 2025
Viewed by 298
Abstract
Single-walled carbon nanotube (SWCNT) inks were prepared by mixing SWCNTs with ethanol and varying the amplitude of ultrasonic dispersion. When the SWCNT inks were prepared by dispersion amplitudes at 60% (nominal value of 200 W), the SWCNT inks had low viscosity and a [...] Read more.
Single-walled carbon nanotube (SWCNT) inks were prepared by mixing SWCNTs with ethanol and varying the amplitude of ultrasonic dispersion. When the SWCNT inks were prepared by dispersion amplitudes at 60% (nominal value of 200 W), the SWCNT inks had low viscosity and a small variation of the particle size. The SWCNT films fabricated under this dispersion condition had well-distributed SWCNT bundles and exhibited the highest power factor. However, when the dispersion amplitude was excessive, the viscosity of the SWCNT ink increased due to the reduced contact between the SWCNTs owing to over-dispersion, and the crystallinity of the SWCNT films decreased, exhibiting a lower power factor. When the optimized SWCNT films at 60% were applied to heat-source-free water-floating SWCNT-TEGs, an output voltage of 2.0 mV could be generated under sunlight irradiation. These findings are useful for preparing various electronic devices with SWCNT films to improve the film quality using ultrasonic dispersion. Full article
(This article belongs to the Special Issue Advanced Thermoelectric Materials and Micro/Nanoscale Heat Transfer)
Show Figures

Figure 1

19 pages, 2359 KiB  
Article
Technical and Economic Feasibility Analysis to Implement a Solid-State Transformer in Local Distribution Systems in Colombia
by Juan Camilo Ramírez, Eduardo Gómez-Luna and Juan C. Vasquez
Energies 2025, 18(14), 3723; https://doi.org/10.3390/en18143723 - 14 Jul 2025
Viewed by 301
Abstract
Today’s power grids are being modernized with the integration of new technologies, making them increasingly efficient, secure, and flexible. One of these technologies, which is beginning to make great contributions to distribution systems, is solid-state transformers (SSTs), motivating the present technical and economic [...] Read more.
Today’s power grids are being modernized with the integration of new technologies, making them increasingly efficient, secure, and flexible. One of these technologies, which is beginning to make great contributions to distribution systems, is solid-state transformers (SSTs), motivating the present technical and economic study of local level 2 distribution systems in Colombia. Taking into account Resolution 015 of 2018 issued by the Energy and Gas Regulatory Commission (CREG), which establishes the economic and quality parameters for the remuneration of electricity operators, the possibility of using these new technologies in electricity networks, particularly distribution networks, was studied. The methodology for developing this study consisted of creating a reference framework describing the topologies implemented in local distribution systems (LDSs), followed by a technical and economic evaluation based on demand management and asset remuneration through special construction units, providing alternatives for the digitization and modernization of the Colombian electricity market. The research revealed the advantages of SST technologies, such as reactive power compensation, surge protection, bidirectional flow, voltage drops, harmonic mitigation, voltage regulation, size reduction, and decreased short-circuit currents. These benefits can be leveraged by distribution network operators to properly manage these types of technologies, allowing them to be better prepared for the transition to smart grids. Full article
Show Figures

Figure 1

17 pages, 1706 KiB  
Article
Mid- to Long-Term Distribution System Planning Using Investment-Based Modeling
by Hosung Ryu, Wookyu Chae, Hongjoo Kim and Jintae Cho
Energies 2025, 18(14), 3702; https://doi.org/10.3390/en18143702 - 14 Jul 2025
Viewed by 159
Abstract
This study presents a practical and scalable framework for the mid- to long-term distribution network planning that reflects real-world infrastructure constraints and investment requirements. While traditional methods often rely on simplified network models or reactive reinforcement strategies, the proposed approach introduces an investment-oriented [...] Read more.
This study presents a practical and scalable framework for the mid- to long-term distribution network planning that reflects real-world infrastructure constraints and investment requirements. While traditional methods often rely on simplified network models or reactive reinforcement strategies, the proposed approach introduces an investment-oriented planning model that explicitly incorporates physical elements such as duct capacity, pole availability, and installation feasibility. A linear programming (LP) formulation is adopted to determine the optimal routing and sizing of new facilities under technical constraints including voltage regulation, power balance, and substation capacity limits. To validate the model’s effectiveness, actual infrastructure and load data were used. The results show that the model can derive cost-efficient expansion strategies over a five-year horizon by prioritizing existing infrastructure use and flexibly adapting to spatial limitations. The proposed approach enables utility planners to make realistic, data-driven decisions and supports diverse scenario analyses through a modular structure. By embedding investment logic directly into the network model, this framework bridges the gap between high-level planning strategies and the engineering realities of distribution system expansion. Full article
(This article belongs to the Section F2: Distributed Energy System)
Show Figures

Figure 1

26 pages, 3806 KiB  
Article
A Novel Approach for Voltage Stability Assessment and Optimal Siting and Sizing of DGs in Radial Power Distribution Networks
by Salah Mokred, Yifei Wang, Mohammed Alruwaili and Moustafa Ahmed Ibrahim
Processes 2025, 13(7), 2239; https://doi.org/10.3390/pr13072239 - 14 Jul 2025
Viewed by 371
Abstract
The increasing integration of renewable energy sources and the rising demand for electricity has intensified concerns over voltage stability in radial distribution systems. These networks are particularly susceptible to voltage collapse under heavy loading conditions, posing serious system reliability and efficiency risks. Integrating [...] Read more.
The increasing integration of renewable energy sources and the rising demand for electricity has intensified concerns over voltage stability in radial distribution systems. These networks are particularly susceptible to voltage collapse under heavy loading conditions, posing serious system reliability and efficiency risks. Integrating distributed generation (DG) has emerged as a strategic solution to strengthen voltage profiles and reduce power losses. To address this challenge, this study proposes a novel distribution voltage stability index (NDVSI) for accurately assessing voltage stability and guiding optimal DG placement and sizing. The NDVSI provides a reliable tool to identify weak buses and their neighboring nodes that critically impact stability. By targeting these locations, the method ensures DG units are installed where they offer maximum improvement in voltage support and minimum power losses. The approach is implemented using MATLAB R2019a (MathWorks Inc., Natick, MA, USA) and validated on three benchmark radial distribution systems, including IEEE 12-bus, 33-bus, and 69-bus systems, demonstrating its scalability and effectiveness across different grid complexities. Comparative analysis with existing voltage stability indices confirms the superiority of NDVSI in both diagnostic precision and practical application. The proposed approach offers a technically sound and economically viable tool for enhancing the reliability, stability, and performance of modern distribution networks. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

36 pages, 3682 KiB  
Article
Enhancing s-CO2 Brayton Power Cycle Efficiency in Cold Ambient Conditions Through Working Fluid Blends
by Paul Tafur-Escanta, Luis Coco-Enríquez, Robert Valencia-Chapi and Javier Muñoz-Antón
Entropy 2025, 27(7), 744; https://doi.org/10.3390/e27070744 - 11 Jul 2025
Viewed by 172
Abstract
Supercritical carbon dioxide (s-CO2) Brayton cycles have emerged as a promising technology for high-efficiency power generation, owing to their compact architecture and favorable thermophysical properties. However, their performance degrades significantly under cold-climate conditions—such as those encountered in Greenland, Russia, Canada, Scandinavia, [...] Read more.
Supercritical carbon dioxide (s-CO2) Brayton cycles have emerged as a promising technology for high-efficiency power generation, owing to their compact architecture and favorable thermophysical properties. However, their performance degrades significantly under cold-climate conditions—such as those encountered in Greenland, Russia, Canada, Scandinavia, and Alaska—due to the proximity to the fluid’s critical point. This study investigates the behavior of the recompression Brayton cycle (RBC) under subzero ambient temperatures through the incorporation of low-critical-temperature additives to create CO2-based binary mixtures. The working fluids examined include methane (CH4), tetrafluoromethane (CF4), nitrogen trifluoride (NF3), and krypton (Kr). Simulation results show that CH4- and CF4-rich mixtures can achieve thermal efficiency improvements of up to 10 percentage points over pure CO2. NF3-containing blends yield solid performance in moderately cold environments, while Kr-based mixtures provide modest but consistent efficiency gains. At low compressor inlet temperatures, the high-temperature recuperator (HTR) becomes the dominant performance-limiting component. Optimal distribution of recuperator conductance (UA) favors increased HTR sizing when mixtures are employed, ensuring effective heat recovery across larger temperature differentials. The study concludes with a comparative exergy analysis between pure CO2 and mixture-based cycles in RBC architecture. The findings highlight the potential of custom-tailored working fluids to enhance thermodynamic performance and operational stability of s-CO2 power systems under cold-climate conditions. Full article
(This article belongs to the Section Thermodynamics)
Show Figures

Figure 1

23 pages, 8911 KiB  
Article
Porosity Analysis and Thermal Conductivity Prediction of Non-Autoclaved Aerated Concrete Using Convolutional Neural Network and Numerical Modeling
by Alexey N. Beskopylny, Evgenii M. Shcherban’, Sergey A. Stel’makh, Diana Elshaeva, Andrei Chernil’nik, Irina Razveeva, Ivan Panfilov, Alexey Kozhakin, Emrah Madenci, Ceyhun Aksoylu and Yasin Onuralp Özkılıç
Buildings 2025, 15(14), 2442; https://doi.org/10.3390/buildings15142442 - 11 Jul 2025
Viewed by 225
Abstract
Currently, the visual study of the structure of building materials and products is gradually supplemented by intelligent algorithms based on computer vision technologies. These algorithms are powerful tools for the visual diagnostic analysis of materials and are of great importance in analyzing the [...] Read more.
Currently, the visual study of the structure of building materials and products is gradually supplemented by intelligent algorithms based on computer vision technologies. These algorithms are powerful tools for the visual diagnostic analysis of materials and are of great importance in analyzing the quality of production processes and predicting their mechanical properties. This paper considers the process of analyzing the visual structure of non-autoclaved aerated concrete products, namely their porosity, using the YOLOv11 convolutional neural network, with a subsequent prediction of one of the most important properties—thermal conductivity. The object of this study is a database of images of aerated concrete samples obtained under laboratory conditions and under the same photography conditions, supplemented by using the author’s augmentation algorithm (up to 100 photographs). The results of the porosity analysis, obtained in the form of a log-normal distribution of pore sizes, show that the developed computer vision model has a high accuracy of analyzing the porous structure of the material under study: Precision = 0.86 and Recall = 0.88 for detection; precision = 0.86 and recall = 0.91 for segmentation. The Hellinger and Kolmogorov–Smirnov statistical criteria, for determining the belonging of the real distribution and the one obtained using the intelligent algorithm to the same general population show high significance. Subsequent modeling of the material using the ANSYS 2024 R2 Material Designer module, taking into account the stochastic nature of the pore size, allowed us to predict the main characteristics—thermal conductivity and density. Comparison of the predicted results with real data showed an error less than 7%. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

Back to TopTop