Technical and Economic Feasibility Analysis to Implement a Solid-State Transformer in Local Distribution Systems in Colombia
Abstract
1. Introduction
- Input series output parallel topology (ISOP) can be used in applications where the input voltage is relatively high and the output voltage is relatively low. To ensure integration with electrical distribution systems, the consistency of electrical variables between connected modules must be maintained [5].
- Input parallel output series (IPOS) topology meets the requirement of improving controllability in the delivery of current to the load of a local distribution system [6].
- Input parallel output parallel (IPOP) topology allows the use of low-current, low-power converter modules for high-power SDL applications [7].
- Series input series output topology (ISOS) allows the use of low-voltage switches in high-voltage input and high-voltage output applications that require galvanic isolation [8].
- A technical and economic study of the solid-state transformers in level 2 local distribution systems in Colombia.
- A new methodology for technical evaluation of SSTs, focusing on their impact on the demand curve of a LDS.
- An economic evaluation of SST implementation in the SDL, projected under the current regulatory conditions in Colombia for the operation of electricity systems.
2. Methodology
2.1. Theoretical Concepts
2.1.1. Technical Specifications of the SST
Type A
Type B
Type C
Type D
High-Frequency Transformers
2.1.2. SST Requirements in Distribution Networks
3. Comparison of SSTs and Conventional Transformers
4. Case Study
Local Distribution Systems (LDSs) in Colombia
- Level 4: Systems with a voltage greater than or equal to 57.5 kV and less than 220 kV.
- Level 3: Systems with a voltage greater than or equal to 30 kV and less than 57.6 kV.
- Level 2: Systems with a voltage greater than or equal to 1 kV and less than 30 kV.
- Level 1: Systems with a voltage less than 1 kV.
5. Regulatory Assessment of SST Integration
Resolution CREG 015–2018
6. SST Analysis Model for Electricity Demand Operation
6.1. Result of the Impact of SSTs on the Demand Profiles of a Local Distribution System
6.2. Identification of the Solution
7. Financial Evaluation of SST in SDLs
7.1. Cost Advantage Comparison Between an SST and a Conventional Transformer
7.2. Benefit Cost of Implementing an SST in SDL
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AC/AC | Alternating Current |
AOM | Administration, Operation, Maintenance |
LT | Low Voltage |
DC/DC | Direct Current |
CREG | Energy and Gas Regulatory Commission |
HFT | High-Frequency Transformer |
HVAC | High-Voltage Alternators |
kVA | Kilovolt-Ampere |
LVAC | Low-Voltage Alternators |
MCT | Modular Controllable Transformer |
MMC | Modular Multilevel Converters |
MV | Medium Voltage |
PWM | Pulse Width Modulation |
SDL | Local Distribution System |
STR | Regional Distribution System |
STN | National Transmission System |
SST | Solid-State Transformer |
UC | Construction Unit |
UCE | Special Construction Unit |
USD | United States Dollar |
References
- Huber, J.E.; Kolar, J.W. Applicability of solid-state transformers in today’s and future distribution grids. IEEE Trans. Smart Grid 2019, 10, 317–326. [Google Scholar] [CrossRef]
- Rodriguez, J.; Lai, J.-S.; Peng, F.Z. Multilevel inverters: A survey of topologies, controls, and applications. IEEE Trans. Ind. Electron. 2002, 4, 724–738. [Google Scholar] [CrossRef]
- Carpita, M.; Marchesoni, M.; Pellerin, M.; Moser, D. Multilevel converter for traction applications: Small-scale prototype test results. IEEE Trans. Ind. Electron. 2008, 55, 2203–2212. [Google Scholar] [CrossRef]
- Mishra, D.K.; Ghadi, M.J.; Li, L.; Hossain, M.J.; Zhang, J.; Ray, P.K.; Mohanty, A. A review on solid-state transformer: A breakthrough tecnology for future Smart distribution grids. Int. J. Electr. Power Energy Syst. 2021, 133, 107255. [Google Scholar] [CrossRef]
- Wei, H.; Lei, L. Input-series output-parallel AC/AC convert. In Proceedings of the 2010 5th IEEE Conference on Industrial Electronics and Applications, Taichung, Taiwan, 15–17 June 2010; pp. 1018–1022. [Google Scholar]
- Agarwal, A.; Prabowo, Y.; Bhattacharya, S. Analysis and design considerations of input parallel output series-phase shifted full bridge converter for a high-voltage capacitor charging power supply. In Proceedings of the 2021 IEEE 12th Energy Conversion Congress & Exposition-Asia (ECCE-Asia), Singapore, 24–27 May 2021; pp. 1068–1075. [Google Scholar]
- Cheng, J.; Shi, J.; He, X. A novel input-parallel output-parallel connected DC-DC converter modules with automatic sharing of currents. In Proceedings of the 7th International Power Electronics and Motion Control Conference, Harbin, China, 2–5 June 2012; pp. 1871–1876. [Google Scholar]
- Sha, D.; Guo, Z.; Luo, T.; Liao, X. A general control strategy for input series output series modular DC-DC converters. IEEE Trans. Power Electron. 2014, 29, 3766–3775. [Google Scholar] [CrossRef]
- Caipe Quenan, E.A. Critical Review of the Technical Feasibility of SST in Electrical Distribution Networks. Bachelor’s Thesis, Universidad del Valle, Cali, Colombia, 2024. [Google Scholar]
- Macías, E.F.A.; Gainaz, F.I.K. Profesional De Alto Nivel. 2019. Available online: https://dspace.ups.edu.ec/bitstream/123456789/21011/1/UPS-GT003411.pdf (accessed on 10 March 2024).
- Santos, N.; Chaves, M.; Gamboa, P.; Cordeiro, A.; Santos, N.; Pinto, S.F. High Frequency Transformers for Solid-State Transformer Applications. Appl. Sci. 2023, 13, 7262. [Google Scholar] [CrossRef]
- Poojari, M.S.; Joshi, P.M. Advance technology using solid state transformer in power grids. Mater. Today Proc. 2022, 56, 3450–3454. [Google Scholar] [CrossRef]
- Volnyi, V.; Ilyushin, P.; Boyko, E. Approaches to Construction of Active Distribution Networks with Distributed Power Sources Based on Solid-State Transformers. In Proceedings of the 2024 International Russian Automation Conference (RusAutoCon), Sochi, Russian, 8–14 September 2024; pp. 492–497. [Google Scholar] [CrossRef]
- Yanez, V. Elaborar un manual de procedimientos para el diseño y construcción de transformadores. 2010. Available online: https://bibdigital.epn.edu.ec/bitstream/15000/2030/1/CD-2850.pdf (accessed on 9 July 2025).
- Rico, H. Diseño y Construcción de Transformador Monofásico de Media Tensión. Insti. Tecnologico Metropolitano, 2019. Available online: https://repositorio.itm.edu.co/bitstream/handle/20.500.12622/1669/Rep_Itm_pre_Rico.pdf?sequence=1&isAllowed=y (accessed on 9 July 2025).
- Camejo, H.A. Método de Diseño Para Transformadores Monofásicos de Distribución. Bachelor’s Thesis, Universidad Central de Venezuela, Caracas, Venezuela, 2017. Available online: https://www.studocu.com/bo/document/instituto-tecnologico-incos-beni/electronica/metodo-de-diseno-para-transformadores-monofasicos-de-distribuciontra-5/98818711 (accessed on 11 July 2025).
- Saldívar, J. Estudio de Niveles de Eficiencia en Transformadores de Distribución en Función de Perfil de Carga. 2018. Available online: https://repositorio.tec.mx/bitstream/handle/11285/632565/Tesis%20Eficiencia%20en%20Transformadores%20%28V0%29.pdf?sequence=1&isAllowed=y (accessed on 9 July 2025).
- Londero, R.; de Mello, P.; Da Silva, G. Comparison between conventional and solid state transformers in smart distributión grids. In Proceedings of the 2019 IEEE PES Innovative Smart Grid Technologies Conference-Latin America (ISGT Latin America), Gramado, Brazil, 15–18 September 2019. [Google Scholar]
- Solid State Transformers for Energy Grid 2.0. Energy Research Institute @NTU. Available online: https://www.celluleenergie.cnrs.fr/wp-content/uploads/2020/02/lecture_7_-_vaisambhayana_brihadeeswara_sriram.pdf (accessed on 11 July 2025).
- Wang, K.; Lei, Q.; Liu, C. Methodology of Reliability and Power Density. In Proceedings of the 2017 IEEE Applied Power Electronics Conference and Exposition (APEC), Tampa, FL, USA, 26–30 March 2017. [Google Scholar]
- XM Administradores del Mercado. Available online: https://www.xm.com.co/transmisi%C3%B3n/sistema-de-transmision-regional-str (accessed on 11 July 2025).
- Dávalos, V.; Luna, N.; Montaño, C.Q.; Salazar, G.; Orbe, D. Modelos de Mercado, Regulación Económica y Tarifas del Sector Eléctrico en América Latina y Caribe–Colombia. 2013. Available online: https://www.olade.org/wp-content/uploads/2021/03/Informe-final-COLOMBIA.pdf (accessed on 11 July 2025).
- CREG. Metodología Para La Remuneración de Distribución de Energía Eléctrica; CREG 015; CREG: Bogotá, Colombia, 2018. [Google Scholar]
- González, J.; Restrepo, M. Aspectos Técnicos, Regulatorios y Económicos De Los Sistemas FACTS Distribuidos; CIGRE: Medellín, Colombia, 2021. [Google Scholar]
- Zahid, J.; Karaagac, U.; Kocar, I.; Holderbaum, W. Solid-State transformer modelling in power flow calculation. Energy Rep. 2023, 9, 448–453. [Google Scholar]
- Fortune Business Insights. Solid State Transformer Market Size, Share & Industry Analysis, by Voltage Level (MV/LV and HV/MV), by Application (Renewable Power Generation, Electric Vehicle Charging Stations, Power Grids, Traction Locomotives, and Others), and Regional Forecast, 2024. 2024. Available online: https://www.fortunebusinessinsights.com/solid-statetransformer-market-106374 (accessed on 9 July 2025).
- Divan, D.; Kandula, P. Demonstration of 5 Mva Modular Controllable Transformer (MCT) for a Resilient and Controllable Grid; Departmet of Energy Office of Electricity: Washington, DC, USA, 2019. [Google Scholar]
- Mazumder, S.K. A Modular and Flexible High-Frequency-Link Transformer with a Reduced Device Count and Zero High-Side Devices; The Department of Energy: Washington, DC, USA, 2018. [Google Scholar]
- Resolución CREG-15 de 2018. Comisión de Regulación de Energía y Gas. 2018. Available online: https://gestornormativo.creg.gov.co/gestor/entorno/docs/resolucion_creg_0015_2018.htm (accessed on 9 July 2025).
- Ceron, J.A.; Gomez-Luna, E.; Vasquez, J.C. Driving the Energy Transition in Colombia for Off-Grid Regions: Microgrids and Non-Conventional Renewable Energy Sources. Energies 2025, 18, 1010. [Google Scholar] [CrossRef]
- Gómez-Luna, E.; Tariacurí, J.; De la cruz, J.; Vasquez, J.C. A Novel Technical Framework for Colombia’s Distribution System Operator with Distributed Energy Resources Integration. Energies 2025, 18, 2881. [Google Scholar] [CrossRef]
Topologies | Advantages | Disadvantages | Cost |
---|---|---|---|
Type A |
|
| Low |
Types B, C |
|
| Medium |
Type D |
|
| High |
Description | Conventional Transformer | Solid-State Transformer |
---|---|---|
1. Technical Characteristics * | ||
1.1. Operating Power Range [kVA] | Single phase: 5-10-15-25 | SST capacities range from 6 kW to 1 MVA, with a projected capacity of 10 MVA by 2026 [17] |
Three phase: 15-30-45-75-112.5-150 | ||
1.2. Voltage Level Operative MT [kV] | Single phase: 11.4-13.2 | 22 kV, 3 phase, 4 wires |
Three phase: 114.4-13.2 | ||
1.3. Voltage Level Operative LT [V] | Single phase: 240/120 | 415 V/250 AC, 3 phase, 4 wires |
Three phase: 208/120-380/220 | ||
1.4. Frequency of Operation Hz | 50-60 | Programmable |
1.5. Maximum Weight [kg] | Between 450 to 650 | 42% weight reduction compared to conventional transformers |
2. General Information | ||
2.1. Permissible Electrical Losses [W] | Vacuum: between 135 to 450 | Switching losses are reduced by 25% compared to conventional transformers |
On-load at 85 °C: between 515 to 1960 | ||
2.2. Protection Response | Overload and overvoltage management | Short circuit currents are reduced, applications feature inductive filters of ≥ 8% to limit current |
2.3. Efficiency ** | Most have an efficiency of 98% | The efficiency of an 11 kV–500 kVA SST is 94.46% depending on the control technique implemented [18] |
3. Operation | Supervision of electrical variables under the transformation process | Provides communication and remote control of the transformed electrical variables |
4. Cost Impacts | Costs are impacted by energy losses that constitute two-thirds of conventional transformer lifetime costs | Cost reduction of 60% for the SDL compared to conventional transformers |
Technical Characteristics of the SDL | |
---|---|
Operating voltage level | 13.2 kV |
Minimum operating loads | 1.5 MVA |
Maximum operating loads | 817 MVA |
Average load per circuit | 2.3 MVA |
Average number of pole-mounted transformers installed | 15–150 kVA |
Time | DAY 15-June_SST | DAY 16-June_SST | SST Variation [%] |
---|---|---|---|
00:00 | 1.812 | 1.824 | 0.66% |
01:00 | 1.680 | 1.681 | 0.08% |
02:00 | 1.606 | 1.605 | 0.07% |
03:00 | 1.581 | 1.583 | 0.13% |
04:00 | 1.614 | 1.615 | 0.03% |
05:00 | 1.862 | 1.848 | 0.76% |
06:00 | 2.096 | 2.091 | 0.23% |
07:00 | 2.271 | 2.293 | 0.93% |
08:00 | 2.643 | 2.668 | 0.97% |
09:00 | 2.842 | 2.861 | 0.69% |
10:00 | 2.898 | 2.913 | 0.54% |
11:00 | 3.062 | 3.081 | 0.62% |
12:00 | 3.060 | 3.079 | 0.61% |
13:00 | 2.920 | 2.932 | 0.42% |
14:00 | 2.953 | 2.976 | 0.79% |
15:00 | 3.020 | 3.062 | 1.39% |
16:00 | 2.960 | 3.010 | 1.66% |
17:00 | 2.824 | 2.852 | 0.97% |
18:00 | 2.826 | 2.830 | 0.11% |
19:00 | 2.850 | 2.850 | 0.00% |
20:00 | 2.749 | 2.749 | 0.01% |
21:00 | 2.628 | 2.630 | 0.06% |
22:00 | 2.366 | 2.367 | 0.06% |
23:00 | 2.092 | 2.093 | 0.02% |
SST Equipment | kVA-Operational | Unit Cost (USD/kVA) | Total Cost (USD) | Project Team |
---|---|---|---|---|
Modular controllable transformer for resilient networks | 75 | 21,107 | 15.830 | Georgia Tech |
15 | 3.166 | |||
Modular solid-state high-power transformer (LPT) | 75 | 22 | 1.650 | NCREPT Universidad Arkansas |
15 | 330 | |||
Modular SST | 75 | 86 | 6.450 | Market projection |
15 | 1.290 |
Level | Description Category | Description UCE | Cost SST (USD) | Useful Life |
---|---|---|---|---|
N1 | Distribution transformers | Modular solid-state transformation AC/AC-AC/CC o CC/CC de 15 kVA | 1750 | 25 |
N1 | Distribution transformers | Modular solid-state transformation AC/AC-AC/CC o CC/CC de 75 kVA | 6480 | 25 |
UC | Description | New or Replacement? | Level Voltage | AOM (USD) Ipp_Sep_2024 | Unit Value (kUSD) | Useful Life (Years) | Rating CREG (kUSD) Ipp_Sep_2024 |
---|---|---|---|---|---|---|---|
UCE01 | Modular solid-state transformation AC/AC-AC/CC o CC/CC de 15 kVA | New | 1 | 830 | 1.73 | 20 | 4.14 |
UCE02 | Modular solid-state transformation AC/AC-AC/CC o CC/CC de 75 kVA | New | 1 | 315 | 6.53 | 20 | 15.6 |
N1T9 | Urban three-phase aerial transformer de 15 kVA | Replaced by another asset | 1 | 270 | 1.42 | 25 | 1.43 |
N1T14 | Urban three-phase aerial transformer 75 kVA | Replaced by another asset | 1 | 285 | 2.98 | 25 | 4.01 |
Scenario | Benefit/Cost Ratio | Years Return on Investment | TIR (%) | VPN (k USD COL) (Benefit/Cost) | WACC | Year 2035 Recovery Before |
---|---|---|---|---|---|---|
1 | 0.56 | 10.00 | −2% | −12 | 11.36% | Yes |
2 | 1.04 | 6.02 | 13% | 1.2 | 11.36% | Yes |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramírez, J.C.; Gómez-Luna, E.; Vasquez, J.C. Technical and Economic Feasibility Analysis to Implement a Solid-State Transformer in Local Distribution Systems in Colombia. Energies 2025, 18, 3723. https://doi.org/10.3390/en18143723
Ramírez JC, Gómez-Luna E, Vasquez JC. Technical and Economic Feasibility Analysis to Implement a Solid-State Transformer in Local Distribution Systems in Colombia. Energies. 2025; 18(14):3723. https://doi.org/10.3390/en18143723
Chicago/Turabian StyleRamírez, Juan Camilo, Eduardo Gómez-Luna, and Juan C. Vasquez. 2025. "Technical and Economic Feasibility Analysis to Implement a Solid-State Transformer in Local Distribution Systems in Colombia" Energies 18, no. 14: 3723. https://doi.org/10.3390/en18143723
APA StyleRamírez, J. C., Gómez-Luna, E., & Vasquez, J. C. (2025). Technical and Economic Feasibility Analysis to Implement a Solid-State Transformer in Local Distribution Systems in Colombia. Energies, 18(14), 3723. https://doi.org/10.3390/en18143723