Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,979)

Search Parameters:
Keywords = size distribution characteristics

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 4553 KB  
Article
Removal Dynamics of Water Droplets in the Orientated Gas Flow Channel of Proton Exchange Membrane Fuel Cells
by Dan Wang, Song Yang, Ping Sun, Xiqing Cheng, Huili Dou, Wei Dong, Zezhou Guo and Xia Sheng
Energies 2026, 19(3), 645; https://doi.org/10.3390/en19030645 (registering DOI) - 26 Jan 2026
Abstract
Understanding the dynamic characteristics of droplets in the orientated flow channels of Proton Exchange Membrane Fuel Cells (PEMFCs) is crucial for their effective heat and water management and bipolar plate design. Therefore, the transient transport dynamics of liquid water within orientated gas flow [...] Read more.
Understanding the dynamic characteristics of droplets in the orientated flow channels of Proton Exchange Membrane Fuel Cells (PEMFCs) is crucial for their effective heat and water management and bipolar plate design. Therefore, the transient transport dynamics of liquid water within orientated gas flow channels (OGFCs) of PEMFCs are investigated, and a two-phase model based on the volume of fluid (VOF) method is established in the current study. Moreover, the impacts of the size of droplets and the geometrical parameters of baffles on the removal dynamics of liquid water are examined. The results show that baffles effectively promote droplet breakup and accelerate their detachment from the Gas Diffusion Layer (GDL) surface by increasing flow instability and local shear forces. The morphology of water is altered by the high velocity of gaseous flow, which can break up into several smaller droplets and distribute them on the surface of GDL by the gas flow. The shape of the liquid water film changes from a regular cuboid to a big droplet due to the surface tension of the liquid water droplets and the hydrophobicity of the GDL surfaces. Increasing the baffle height can reduce the time needed for the removal of droplets. With the increase in L1* from 0.25 to 0.75, the drainage time decreases slightly; however, for L1* increasing from 0.75 to 1.25, the drainage time remains almost the same. The impacts of different leeward lengths, L2*, on the water coverage ratio and pressure drop are minor. Full article
(This article belongs to the Section A5: Hydrogen Energy)
Show Figures

Figure 1

28 pages, 3459 KB  
Article
Influence of Molecular Architecture of Polycarboxylate Ether Grinding Aids on Cement Grinding Efficiency and Powder Flowability
by Yahya Kaya, Veysel Kobya, Yunus Kaya, Ali Mardani and Kambiz Ramyar
Polymers 2026, 18(3), 326; https://doi.org/10.3390/polym18030326 (registering DOI) - 26 Jan 2026
Abstract
In this study, the effects of molecular structure parameters of polycarboxylate ether (PCE)-based grinding aids (GAs) on grinding efficiency, cement properties, and powder flowability were systematically investigated. Existing literature indicates that only limited attention has been given to a comprehensive evaluation of the [...] Read more.
In this study, the effects of molecular structure parameters of polycarboxylate ether (PCE)-based grinding aids (GAs) on grinding efficiency, cement properties, and powder flowability were systematically investigated. Existing literature indicates that only limited attention has been given to a comprehensive evaluation of the combined influence of PCE molecular weight, main chain-to-side chain ratio, and side chain characteristics on the grinding process and powder behavior. Within this framework, seven different PCE-based GAs were synthesized by systematically varying the main chain length, side chain length, and side chain/main chain ratio. The structural characterization of the synthesized additives was carried out using Fourier transform infrared spectroscopy (FTIR) and gel permeation chromatography (GPC). Subsequently, the grinding efficiency, particle size distribution (PSD), and powder flowability of cements produced at two different GA dosages were evaluated in detail. The results demonstrated that increasing the GA dosage generally enhanced grinding efficiency and led to a narrower particle size distribution. An increase in main chain length at a constant side chain length improved grinding performance, whereas PCEs with a medium main chain length exhibited superior powder flowability. In contrast, increasing the side chain length alone had a limited effect on grinding efficiency. Considering all structural parameters collectively, the PCE5 additive—characterized by medium main and side chain lengths and a low side chain/main chain ratio—exhibited the most balanced and overall highest performance. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

21 pages, 6164 KB  
Review
Insulation Design of Gas–Solid Interface at HVDC Condition-Part I: The Research Progress on Surface Charge Accumulation and Dissipation
by Bowen Tang, Yi Xu, Ran Zhuo, Jiaming Xiong and Ju Tang
Coatings 2026, 16(2), 154; https://doi.org/10.3390/coatings16020154 - 24 Jan 2026
Viewed by 56
Abstract
High voltage direct current (HVDC) gas-insulated equipment (GIE) has become a critical component in long-distance power transmission projects, owing to its advantages such as compact structure and high reliability. However, the gas–solid interface insulation of DC GIE under long-term operation faces charge accumulation [...] Read more.
High voltage direct current (HVDC) gas-insulated equipment (GIE) has become a critical component in long-distance power transmission projects, owing to its advantages such as compact structure and high reliability. However, the gas–solid interface insulation of DC GIE under long-term operation faces charge accumulation phenomenon, which will distort the electric field distribution and cause insulation flashover. Due to the lack of technical guidelines for the insulation design of DC gas-insulated equipment, the method of insulation design usually adopts increasing the insulation structure size to ensure sufficient creepage along the surface, which greatly increases the dimensions and manufacturing costs of the final equipment, and fails to fully leverage the unique advantages of GIE in compactness and lightness. Therefore, it is of importance to clarify the mechanism of charge accumulation on the surface of insulators under HVDC, and to propose an insulation design method that can effectively inhibit the charge accumulation and adjust the electric field distribution at the gas–solid interface, which holds practical significance for the safe application of large-scale DC GIE projects. In view of this, this paper firstly summarizes the characteristics of surface charge accumulation at gas–solid interface, and then reviews the existing research progress from two perspectives: surface charge suppression of insulation structure and gas–solid interface electric field regulation, providing theoretical and technical support for optimizing the design of GIE insulation structure, formulating scientific operation and maintenance measures. Full article
(This article belongs to the Section Functional Polymer Coatings and Films)
Show Figures

Figure 1

26 pages, 9362 KB  
Article
Sedimentological and Ecological Controls on Heavy Metal Distributions in a Mediterranean Shallow Coastal Lake (Lake Ganzirri, Italy)
by Roberta Somma, Mohammadali Ghanadzadeh Yazdi, Majed Abyat, Raymart Keiser Manguerra, Salvatore Zaccaro, Antonella Cinzia Marra and Salvatore Giacobbe
Quaternary 2026, 9(1), 9; https://doi.org/10.3390/quat9010009 (registering DOI) - 23 Jan 2026
Viewed by 51
Abstract
Coastal lakes are highly vulnerable transitional systems in which sedimentological processes and benthic ecological conditions jointly control contaminant accumulation and preservation, particularly in densely urbanized settings. A robust understanding of the physical and ecological characteristics of bottom sediments is therefore essential for the [...] Read more.
Coastal lakes are highly vulnerable transitional systems in which sedimentological processes and benthic ecological conditions jointly control contaminant accumulation and preservation, particularly in densely urbanized settings. A robust understanding of the physical and ecological characteristics of bottom sediments is therefore essential for the correct interpretation of contaminant distributions, including those of potentially toxic metals. In this study, an integrated sedimentological–ecological approach was applied to Lake Ganzirri, a Mediterranean shallow coastal lake located in northeastern Sicily (Italy), where recent investigations have identified localized heavy metal anomalies in surface sediments. Sediment texture, petrographic and mineralogical composition, malacofaunal assemblages, and lake-floor morpho-bathymetry were systematically analysed using grain-size statistics, faunistic determinations, GIS-based spatial mapping, and bivariate and multivariate statistical methods. The modern lake bottom is dominated by bioclastic quartzo-lithic sands with low fine-grained fractions and variable but locally high contents of calcareous skeletal remains, mainly derived from molluscs. Sediments are texturally heterogeneous, consisting predominantly of coarse-grained sands with lenses of very coarse sand, along with gravel and subordinate medium-grained sands. Both sedimentological features and malacofaunal death assemblages indicate deposition under open-lagoon conditions characterized by brackish waters and relatively high hydrodynamic energy. Spatial comparison between sedimentological–ecological parameters and previously published heavy metal distributions reveals no significant correlations with metal hotspots. The generally low metal concentrations, mostly below regulatory threshold values, are interpreted as being favoured by the high permeability and mobility of coarse sediments and by energetic hydrodynamic conditions limiting fine-particle accumulation. Overall, the integration of sedimentological and ecological data provides a robust framework for interpreting contaminant patterns and offers valuable insights for the environmental assessment and management of vulnerable coastal lake systems, as well as for the understanding of modern lagoonal sedimentary processes. Full article
Show Figures

Figure 1

20 pages, 802 KB  
Article
Assessment of the Possibility of Grinding Glass Mineral Wool Without the Addition of Abrasive Material for Use in Cement Materials
by Beata Łaźniewska-Piekarczyk and Dominik Smyczek
Sustainability 2026, 18(3), 1169; https://doi.org/10.3390/su18031169 - 23 Jan 2026
Viewed by 69
Abstract
Glass wool waste constitutes a rapidly increasing fraction of construction and demolition residues, yet it remains one of the most challenging insulation materials to recycle. Its non-combustible nature, extremely low bulk density, and high fibre elasticity preclude energy recovery and severely limit conventional [...] Read more.
Glass wool waste constitutes a rapidly increasing fraction of construction and demolition residues, yet it remains one of the most challenging insulation materials to recycle. Its non-combustible nature, extremely low bulk density, and high fibre elasticity preclude energy recovery and severely limit conventional mechanical recycling routes, resulting in long-term landfilling and loss of mineral resources. Converting glass wool waste into a fine mineral powder represents a potentially viable pathway for its integration into low-carbon construction materials, provided that industrial scalability, particle-size control, and chemical compatibility with cementitious binders are ensured. This study investigates the industrial-scale milling of end-of-life glass wool waste in a ventilated horizontal ball mill. It compares two grinding routes: a corundum-free route (BK) and an abrasive-assisted route (ZK) employing α-Al2O3 corundum to intensify fibre fragmentation. Particle size distribution was quantified by laser diffraction using cumulative and differential analyses, as well as characteristic diameters. The results confirm that abrasive-assisted milling significantly enhances fragmentation efficiency and reduces the coarse fibre fraction. However, the study demonstrates that this gain in fineness is inherently coupled with the incorporation of α-Al2O3 into the milled powder, introducing a chemically foreign crystalline phase that cannot be removed by post-processing. From a cement-oriented perspective, this contamination represents a critical limitation, as α-Al2O3 may interfere with hydration reactions, aluminate–sulfate equilibria, and microstructural development in Portland and calcium sulfoaluminate binders. In contrast, the corundum-free milling route yields a slightly coarser, chemically unmodified powder, offering improved process robustness, lower operational complexity, and greater compatibility with circular economy objectives. The study establishes that, for the circular reuse of fibrous insulation waste in cementitious systems, particle fineness alone is insufficient as an optimization criterion. Instead, the combined consideration of fineness, chemical purity, and binder compatibility governs the realistic and sustainable reuse potential of recycled glass wool powders. Full article
(This article belongs to the Section Sustainable Engineering and Science)
28 pages, 12747 KB  
Article
Full-Scale Pore Structure and Multi-Scale Fractal Characteristics of the Wufeng–Longmaxi Formations Shales in Sichuan Basin, China
by Taotao Cao, Wenqing Yuan, Jiacheng Zeng, Anyang Pan, Wenquan Xie, Jing Liao, Gaofei Ning and Ye Chen
Fractal Fract. 2026, 10(2), 75; https://doi.org/10.3390/fractalfract10020075 - 23 Jan 2026
Viewed by 47
Abstract
Unique fractal characteristics are significantly controlled by shale lithofacies, mineralogical characteristics, and OM features, which in turn determine reservoir properties and gas-bearing capacity. However, a comprehensive understanding of fractal features has remained insufficient. This study presents a systematic investigation into the full-scale pore [...] Read more.
Unique fractal characteristics are significantly controlled by shale lithofacies, mineralogical characteristics, and OM features, which in turn determine reservoir properties and gas-bearing capacity. However, a comprehensive understanding of fractal features has remained insufficient. This study presents a systematic investigation into the full-scale pore size distribution for the Wufeng–Longmaxi shales in Sichuan Basin which employed low-pressure CO2 adsorption (CO2GA), N2 adsorption (N2GA), and mercury injection capillary pressure (MICP), as well as field emission scanning electron microscope (FE-SEM) techniques. The fractal dimensions of pores across different pressure ranges were revealed by different fractal models. The results demonstrate that the shale pores are dominated by micro- to mesopores and partial extremely larger pores, contributed primarily by organic matter (OM) pores and microcracks, respectively. Fractal dimensions follow a consistent increasing order: DC < DN1 < DN2 < DM or DC < DN1 < DM < DN2, suggesting that larger pores with diameters lager than 5 nm are more heterogeneous and complex compared to the pores less than 5 nm (smaller pores). This is because smaller pores are predominantly composed of OM pores, while larger pores comprise a mixture of OM pores, mineral-related pores, and microcracks. Different fractal dimensions, in turn, are influenced by distinct factors. The DC value exhibits a positive correlation with micropore volume. DN1 and DN2 values are positively correlated with the content of brittle minerals and TOC, while they show negative correlations with the content of clay minerals. Notably, DM values do not demonstrate a significant correlation with shale compositions, primarily owing to the development of microcracks. Fractal dimensions, particularly DN1 and DN2, are significantly controlled by the lithofacies of shale. The highest DN1 and DN2 values occur in the siliceous shale lithofacies, and the mixed shale lithofacies exhibit moderate DN1 and DN2 values, whereas the lowest DN1 and DN2 values primarily occur in clay-rich shale lithofacies. Different fractal dimensions show various correlations with shale gas content. The Langmuir volume as well as total gas content exhibit significant correlations with DN1 and DN2 values, while they exhibit no obvious correlations with DC and DM values. This implies that pores with diameters of 1.8–55 nm serve as primary storage sites for both adsorbed and free gas. The findings can significantly improve the cognition of adsorbed gas and free gas behavior in shale reservoirs. Full article
(This article belongs to the Special Issue Analysis of Geological Pore Structure Based on Fractal Theory)
Show Figures

Figure 1

21 pages, 1699 KB  
Article
Linking Grain Size and Geospatial Indices: Sediment Transport Dynamics in the Ganga River at Varanasi, India
by Abhishek Pandey, Komali Kantamaneni, Pradyumna Kumar Behera, Vishal Deshpande, Ranjan Sarukkalige and Upaka Rathnayake
Earth 2026, 7(1), 11; https://doi.org/10.3390/earth7010011 - 23 Jan 2026
Viewed by 82
Abstract
Sediment transport in alluvial channels is strongly controlled by the grain-size distribution of bed and suspended materials. This, in turn, influences river morphology by modifying the cross-sectional area and course of the channel. Statistical parameters such as mean, standard deviation, skewness, and kurtosis [...] Read more.
Sediment transport in alluvial channels is strongly controlled by the grain-size distribution of bed and suspended materials. This, in turn, influences river morphology by modifying the cross-sectional area and course of the channel. Statistical parameters such as mean, standard deviation, skewness, and kurtosis provide quantitative indicators of the energy conditions that control sediment transport and deposition. This study examines the depositional characteristics of sediments in the Ganga River in Varanasi City, India, employing a novel combination of linear discriminant function (LDF) and sediment transport index (STI). The LDF results reveal distinct depositional environments: Y1 and Y2 values indicate deposition in a low-energy fluvial environment similar to beaches, Y3 values suggest shallow marine settings, and Y4 values point to mixed deltaic and turbid current depositional environments. Additionally, CM diagrams show rolling and suspension as the dominant sediment transport mechanisms. Shear stress analysis combined with STI highlights significant depositional features, with minimal erosion observed throughout the study area. The study provides an operational framework for mapping erosion-deposition patterns on alluvial point bars that are transferable to other sand-bed rivers worldwide where detailed hydraulic data are limited but detailed grain-size and DEM information are available. Full article
23 pages, 6461 KB  
Article
Enhanced Qualities of High-Density Lipoproteins (HDLs) with Antioxidant Abilities Are Associated with Lower Susceptibility of Hypertension in Middle-Aged Korean Participants: Impaired HDL Quality and Hypertension Risk
by Kyung-Hyun Cho, Chae-Eun Yang, Sang Hyuk Lee, Yunki Lee and Ashutosh Bahuguna
Int. J. Mol. Sci. 2026, 27(2), 1108; https://doi.org/10.3390/ijms27021108 - 22 Jan 2026
Viewed by 115
Abstract
The quality of high-density lipoproteins (HDLs) is characterized by lipid and protein composition, oxidation and glycation extent, and particle size, while the quantity of HDL-C is just the cholesterol amount in HDL. The inverse association between HDL-C and cardiovascular disease (CVD) and hypertension [...] Read more.
The quality of high-density lipoproteins (HDLs) is characterized by lipid and protein composition, oxidation and glycation extent, and particle size, while the quantity of HDL-C is just the cholesterol amount in HDL. The inverse association between HDL-C and cardiovascular disease (CVD) and hypertension has been well established; however, the U-shaped mortality risk observed from HDL-C underscores that HDL quality and function are equally important. The present cross-sectional study assessed the correlations of serum lipid and glucose profiles, and low-density lipoprotein (LDL) and HDL characteristics, with blood pressure (BP) distribution in ordinary middle-aged Korean participants (n = 50; mean age 47.0 ± 11.7 years; males: n = 25, 49.2.0 ± 11.7 years; females: n = 25, 44.8 ± 11.5 years), with particular focus on HDL quality and its antioxidant capacity. This study observed that serum elevated triglyceride (TG) and glucose levels were directly proportional to elevated systolic BP (SBP) and diastolic BP (DBP), whereas serum total cholesterol (TC), LDL-C, and HDL-C were not correlated with BP. However, HDL-C/TC (%) was negatively associated with SBP (p = 0.036), while TG/HDL-C and glucose/HDL-C ratios were positively associated with both SBP and DBP, suggesting that TG and glucose proportions relative to HDL-C are probable predictors of hypertension. Elevations of TG, oxidation, and glycation in LDL were positively associated with elevations of BP, whereas LDL particle size was negatively correlated with BP. Similarly, elevations of TG and glycation in HDL2 and HDL3 were positively correlated with elevations of BP, while the particle size of HDL2 was negatively correlated with BP. The heightened HDL2-associated paraoxonase (PON) activity and ferric ion reduction ability (FRA) negatively correlated with LDL oxidation and particle size, whereas elevated HDL3-associated PON and FRA activities were inversely related to LDL glycation. An enhanced glycation in HDL2 was negatively correlated with HDL2-associated PON activity and FRA, while an increase in HDL2 particle size was only dependent on the associated PON activity but not on FRA. In conclusion, observational outcomes demonstrated that improved HDL quality and functionality (characterized by large particle size, reduced glycation, and higher FRA and PON activities) were inversely correlated with LDL oxidation, glycation, particle shrinkage, and the risk of hypertension. Full article
(This article belongs to the Special Issue The Role of Diet in Lipid and Lipoprotein Metabolism)
Show Figures

Graphical abstract

33 pages, 1664 KB  
Article
Modeling Healthcare Data with a Novel Flexible Three-Parameter Distribution
by Thamer Manshi, Ammar M. Sarhan and M. E. Sobh
Mathematics 2026, 14(2), 359; https://doi.org/10.3390/math14020359 - 21 Jan 2026
Viewed by 47
Abstract
Developing flexible lifetime distributions is essential for accurately modeling reliability and lifetime data across various scientific and engineering contexts. In this work, we introduce a new three-parameter lifetime distribution, which extends the well-known two-parameter Sarhan–Tadj–Hamilton model. We derive and discuss several of its [...] Read more.
Developing flexible lifetime distributions is essential for accurately modeling reliability and lifetime data across various scientific and engineering contexts. In this work, we introduce a new three-parameter lifetime distribution, which extends the well-known two-parameter Sarhan–Tadj–Hamilton model. We derive and discuss several of its important theoretical properties, including the reliability characteristics and moments. The parameter estimation is carried out using both maximum likelihood and Bayesian approaches, providing a comprehensive comparison of inferential techniques. To further examine the efficiency and robustness of the proposed estimators, a detailed Monte Carlo simulation study is conducted under different sample sizes and parameter settings. The practical usefulness of the distribution is illustrated through its application to three real-world datasets, namely cancer and COVID-19 data, where it demonstrates superior fit and flexibility compared to existing and nested lifetime models. These findings highlight the potential of the proposed model as a valuable addition to the toolbox of applied statisticians and reliability practitioners. Full article
10 pages, 16865 KB  
Proceeding Paper
Predictive Load Balancing in Distributed Systems: A Comparative Study of Round Robin, Weighted Round Robin, and a Machine Learning Approach
by Elshan Rahimov and Tamerlan Aghayev
Eng. Proc. 2026, 122(1), 26; https://doi.org/10.3390/engproc2026122026 - 21 Jan 2026
Viewed by 83
Abstract
Load balancing is a widely adopted strategy in modern distributed systems because it distributes workloads across servers, mitigating overload and improving overall performance. However, the rapid growth of such systems has created a need for more adaptive strategies to ensure optimal utilization and [...] Read more.
Load balancing is a widely adopted strategy in modern distributed systems because it distributes workloads across servers, mitigating overload and improving overall performance. However, the rapid growth of such systems has created a need for more adaptive strategies to ensure optimal utilization and responsiveness of resources. Traditional algorithms such as Round Robin (RR) and Weighted Round Robin (WRR) assign requests without considering server states or request characteristics. We implement a machine learning (ML)–based predictive load balancer, forecasting the latency of a request based on the request itself and container parameters, specifically the average latency of the last 50 requests and the count of active requests, and evaluate it against RR and WRR. For the experiment, synthetic data were generated to replicate real-world requests by creating random URL and method combinations, attaching a task size in Million Instructions (MI), and distributing them among three containers with varying resources according to the load balancing strategies described above. Under the conditions tested, the ML approach achieved the worst performance, trailing both RR and WRR in terms of throughput and average latency, although the model accuracy was sufficiently high (R2 = 0.8+). Post hoc analysis indicates that limited and occasionally stale runtime features caused the load balancer to direct all requests to a single container until the next statistics update, since that container was considered the ‘best’ during that interval. Full article
Show Figures

Figure 1

24 pages, 396 KB  
Article
Multi-Objective Optimization for the Location and Sizing of Capacitor Banks in Distribution Grids: An Approach Based on the Sine and Cosine Algorithm
by Laura Camila Garzón-Perdomo, Brayan David Duque-Chavarro, Carlos Andrés Torres-Pinzón and Oscar Danilo Montoya
Appl. Syst. Innov. 2026, 9(1), 24; https://doi.org/10.3390/asi9010024 - 21 Jan 2026
Viewed by 70
Abstract
This article presents a hybrid optimization model designed to determine the optimal location and operation of capacitor banks in medium-voltage distribution networks, aiming to reduce energy losses and enhance the system’s economic efficiency. The use of reactive power compensation through fixed-step capacitor banks [...] Read more.
This article presents a hybrid optimization model designed to determine the optimal location and operation of capacitor banks in medium-voltage distribution networks, aiming to reduce energy losses and enhance the system’s economic efficiency. The use of reactive power compensation through fixed-step capacitor banks is highlighted as an effective and cost-efficient solution; however, their optimal placement and sizing pose a mixed-integer nonlinear programming optimization challenge of a combinatorial nature. To address this issue, a multi-objective optimization methodology based on the Sine Cosine Algorithm (SCA) is proposed to identify the ideal location and capacity of capacitor banks within distribution networks. This model simultaneously focuses on minimizing technical losses while reducing both investment and operational costs, thereby producing a Pareto front that facilitates the analysis of trade-offs between technical performance and economic viability. The methodology is validated through comprehensive testing on the 33- and 69-bus reference systems. The results demonstrate that the proposed SCA-based approach is computationally efficient, easy to implement, and capable of effectively exploring the search space to identify high-quality Pareto-optimal solutions. These characteristics render the approach a valuable tool for the planning and operation of efficient and resilient distribution networks. Full article
Show Figures

Figure 1

20 pages, 1685 KB  
Article
Nutritional and Antioxidant Profile of Brown Eragrostis tef (Zucc.) Trotter Flour in Blends with Glycine max (L.) Merr. Flour
by Shewangzaw Addisu Mekuria, Kamil Czwartkowski and Joanna Harasym
Molecules 2026, 31(2), 365; https://doi.org/10.3390/molecules31020365 - 20 Jan 2026
Viewed by 214
Abstract
The still-growing demand for nutritious gluten-free products necessitates the development of a composite flour that addresses the nutritional deficiencies common in conventional gluten-free formulations. This study aimed to comprehensively characterize brown teff (Eragrostis tef (Zucc.) Trotter) and soybean (Glycine max (L.) [...] Read more.
The still-growing demand for nutritious gluten-free products necessitates the development of a composite flour that addresses the nutritional deficiencies common in conventional gluten-free formulations. This study aimed to comprehensively characterize brown teff (Eragrostis tef (Zucc.) Trotter) and soybean (Glycine max (L.) Merr.) composite flours at 0%, 10%, 20%, 30%, and 40% soybean inclusion levels (w/w) to establish evidence-based formulation guidelines for future products. Proximate composition, antioxidant properties (total polyphenol content—TPC, antioxidant capacity vs. 2,2-diphenyl-1-picrylhydrazyl radical—DPPH and 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid radical—ABTS, ferric reducing antioxidant power—FRAP), particle size distribution, pasting properties, color characteristics, and molecular fingerprints (Fourier transform infrared spectroscopy—FTIR) were evaluated. A principal component analysis (PCA) was employed to identify compositional–functional relationships. Soybean inclusion significantly enhanced protein content from 9.93% (pure teff) to 23.07% (60:40 blend, dry matter), fat from 2.14% to 10.47%, and fiber from 3.43% to 6.72%. The antioxidant capacity increased proportionally with soybean content, with a 40% inclusion yielding FRAP values of 5.19 mg FeSO4/g DM and TPC of 3.44 mg GAE/g DM. However, pasting viscosity decreased notably from 12,198.00 mPa·s (pure teff) to 129.00 mPa·s (60:40 blend), indicating a reduced gel-forming capacity caused by soybean addition. PCA revealed that nutritional composition (PC1: 70.6% variance) and pasting properties (PC2: 21.0% variance) vary independently, suggesting non-additive functional behavior in blends. Brown teff–soybean blends at a 20–30% soybean inclusion optimize the balance between protein enhancement, antioxidant preservation, and the maintenance of functional properties suitable for traditional applications, providing a nutritionally superior alternative for gluten-free product development. Full article
Show Figures

Figure 1

20 pages, 5587 KB  
Article
Pollution Characteristics and Ecological Risk Assessment of Organochlorine Pesticides and Polychlorinated Biphenyls in the Maoming Coastal Zone, China
by Qiqi Chen, Xuewan Wu, Tongzhi Lu, Lifeng Xu, Yan Li and Zhifeng Wan
Water 2026, 18(2), 263; https://doi.org/10.3390/w18020263 - 19 Jan 2026
Viewed by 204
Abstract
Coastal zones, as critical ocean–land–atmosphere ecotones, face significant ecological threats from persistent organic pollutants like organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs). However, there are still obvious deficiencies in the understanding of the pollution characteristics and ecological risks of OCPs and PCBs in [...] Read more.
Coastal zones, as critical ocean–land–atmosphere ecotones, face significant ecological threats from persistent organic pollutants like organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs). However, there are still obvious deficiencies in the understanding of the pollution characteristics and ecological risks of OCPs and PCBs in the coastal environment of South China, especially in western Guangdong. Due to the absence of prior research on these pollutants in the Maoming area, we measured the grain sizes from 157 sediment samples and the concentrations of PCBs and OCPs from 11 key locations to assess their environmental occurrence and risks. As analyzed by the GC-MS system, OCP levels range from 0.39 to 50.20 ng/g (mean 10.25 ng/g), while PCB concentrations range from 1.6 to 92.59 ng/g. Through the analysis of pollutant data and analysis of similar areas, we found that OCPs and PCBs in the Maoming coastal zone primarily originate from fishing port operations, ship antifouling paints, and historical legacy pollutants. In addition, the distribution of pollution is significantly controlled by hydrodynamic conditions and the semi-enclosed geomorphological characteristics of the bay. As grain size increases, the correlation with pollutant concentrations shifts from positive to negative. This trend reveals that finer-grained sediments in low-energy environments accumulate significantly higher levels of pollution compared to their coarser counterparts in more dynamic settings. Compared to other coastal regions globally, the study area demonstrates relatively lower pollution intensity. Dual assessments using Sediment Quality Guidelines (SQGs) and Sediment Quality Standards (SQSs) indicate a generally low probability of adverse biological effects, with elevated risk localized to sites near port activities. This study provides a scientific basis for the prevention and control of OCP and PCB pollution in the Maoming coastal zone and also provides a reference for pollution assessment in similar areas. Full article
(This article belongs to the Special Issue Sediment Pollution: Methods, Processes and Remediation Technologies)
Show Figures

Figure 1

24 pages, 6437 KB  
Article
Wildfire Mitigation in Small-to-Medium-Scale Industrial Hubs Using Cost-Effective Optimized Wireless Sensor Networks
by Juan Luis Gómez-González, Effie Marcoulaki, Alexis Cantizano, Myrto Konstantinidou, Raquel Caro and Mario Castro
Fire 2026, 9(1), 43; https://doi.org/10.3390/fire9010043 - 19 Jan 2026
Viewed by 206
Abstract
Wildfires are increasingly recognized as a climatological hazard, able to threaten industrial and critical infrastructure safety and operations and lead to Natech disasters. Future projections of exacerbated fire regimes increase the likelihood of Natech disasters, therefore increasing expected direct damage costs, clean-up costs, [...] Read more.
Wildfires are increasingly recognized as a climatological hazard, able to threaten industrial and critical infrastructure safety and operations and lead to Natech disasters. Future projections of exacerbated fire regimes increase the likelihood of Natech disasters, therefore increasing expected direct damage costs, clean-up costs, and long-term economic losses due to business interruption and environmental remediation. While large industrial complexes, such as oil, gas, and chemical facilities have sufficient resources for the implementation of effective prevention and mitigation plans, small-to-medium-sized industrial hubs are particularly vulnerable due to their scattered distribution and limited resources for investing in comprehensive fire prevention systems. This study targets the vulnerability of these communities by proposing the deployment of Wireless Sensor Networks (WSNs) as cost-effective Early Wildfire Detection Systems (EWDSs) to safeguard wildland and industrial domains. The proposed approach leverages wildland–industrial interface (WII) geospatial data, simulated wildfire dynamics data, and mathematical optimization to maximize detection efficiency at minimal cost. The WII delimits the boundary where the presence of wildland fires impacts industrial activity, thus representing a proxy for potential Natech disasters. The methodology is tested in Cocentaina, Spain, a municipality characterized by a highly flammable Mediterranean landscape and medium-scale industrial parks. Results reveal the complex trade-offs between detection characteristics and the degree of protection in the combined wildland and WII areas, enabling stakeholders to make informed decisions. This methodology is easily replicable for any municipality and industrial installation, or for generic wildland–human interface (WHI) scenarios, provided there is access to wildfire dynamics data and geospatial boundaries delimiting the areas to protect. Full article
(This article belongs to the Section Fire Science Models, Remote Sensing, and Data)
Show Figures

Figure 1

19 pages, 27717 KB  
Article
Acoustic–Electric Conversion Characteristics of a Quadruple Parallel-Cavity Helmholtz Resonator-Based Triboelectric Nanogenerator (4C–HR TENG)
by Xinjun Li, Chaoming Huang and Zhilin Wang
Processes 2026, 14(2), 341; https://doi.org/10.3390/pr14020341 - 18 Jan 2026
Viewed by 230
Abstract
This paper presents the design and fabrication of a triboelectric nanogenerator based on a Quadruple Parallel-cavity Helmholtz Resonator (4C–HR TENG) for the efficient harvesting of noise energy in marine engine room environments. The device utilizes sound waves to drive periodic contact and separation [...] Read more.
This paper presents the design and fabrication of a triboelectric nanogenerator based on a Quadruple Parallel-cavity Helmholtz Resonator (4C–HR TENG) for the efficient harvesting of noise energy in marine engine room environments. The device utilizes sound waves to drive periodic contact and separation between polytetrafluoroethylene (PTFE) particles in the resonant cavity and the vibrating diaphragm as well as the upper electrode plate, thereby converting sound energy into mechanical energy and finally into electrical energy. The device consists of an acoustic waveguide with a length of 350 mm and both width and height of 60 mm, along with a Helmholtz Resonator with a diameter of 60 mm and a height of 40 mm. Experimental results indicate that under resonance conditions with a sound pressure level of 109.8 dB and a frequency of 110 Hz, the device demonstrates excellent output performance, achieving a peak output voltage of 250 V and a current of 4.85 μA. We analyzed and investigated the influence mechanism of key parameters (filling ratio, sound pressure level, the height between the electrode plates, and particle size) on the output performance. Through COMSOL Multiphysics simulation analysis, the sound pressure enhancement effect and the characteristic of concentrated diaphragm center displacement at the first-order resonance frequency were revealed, verifying the advantage of the four-cavity structure in terms of energy distribution uniformity. In practical applications, the minimum responsive sound pressure level corresponding to the operating frequency range of the 4C–HR TENG was determined. The output power reaches a maximum of 0.27 mW at a load resistance of 50 MΩ. At a sound pressure level of 115.1 dB, the device can charge a 1 μF capacitor to 4.73 V in just 32 s and simultaneously illuminate 180 LEDs in real-time, demonstrating its potential for environmental noise energy harvesting and micro-energy supply applications. This study provides new insights and experimental evidence for the efficient recovery of noise energy. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

Back to TopTop