Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (536)

Search Parameters:
Keywords = single-walled carbon nanotubes(SWCNTs)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 5844 KiB  
Article
Scaling, Leakage Current Suppression, and Simulation of Carbon Nanotube Field-Effect Transistors
by Weixu Gong, Zhengyang Cai, Shengcheng Geng, Zhi Gan, Junqiao Li, Tian Qiang, Yanfeng Jiang and Mengye Cai
Nanomaterials 2025, 15(15), 1168; https://doi.org/10.3390/nano15151168 - 28 Jul 2025
Viewed by 348
Abstract
Carbon nanotube field-effect transistors (CNTFETs) are becoming a strong competitor for the next generation of high-performance, energy-efficient integrated circuits due to their near-ballistic carrier transport characteristics and excellent suppression of short-channel effects. However, CNT FETs with large diameters and small band gaps exhibit [...] Read more.
Carbon nanotube field-effect transistors (CNTFETs) are becoming a strong competitor for the next generation of high-performance, energy-efficient integrated circuits due to their near-ballistic carrier transport characteristics and excellent suppression of short-channel effects. However, CNT FETs with large diameters and small band gaps exhibit obvious bipolarity, and gate-induced drain leakage (GIDL) contributes significantly to the off-state leakage current. Although the asymmetric gate strategy and feedback gate (FBG) structures proposed so far have shown the potential to suppress CNT FET leakage currents, the devices still lack scalability. Based on the analysis of the conduction mechanism of existing self-aligned gate structures, this study innovatively proposed a design strategy to extend the length of the source–drain epitaxial region (Lext) under a vertically stacked architecture. While maintaining a high drive current, this structure effectively suppresses the quantum tunneling effect on the drain side, thereby reducing the off-state leakage current (Ioff = 10−10 A), and has good scaling characteristics and leakage current suppression characteristics between gate lengths of 200 nm and 25 nm. For the sidewall gate architecture, this work also uses single-walled carbon nanotubes (SWCNTs) as the channel material and uses metal source and drain electrodes with good work function matching to achieve low-resistance ohmic contact. This solution has significant advantages in structural adjustability and contact quality and can significantly reduce the off-state current (Ioff = 10−14 A). At the same time, it can solve the problem of off-state current suppression failure when the gate length of the vertical stacking structure is 10 nm (the total channel length is 30 nm) and has good scalability. Full article
(This article belongs to the Special Issue Advanced Nanoscale Materials and (Flexible) Devices)
Show Figures

Figure 1

14 pages, 2680 KiB  
Article
Optimization of Ultrasonic Dispersion of Single-Walled SWCNT Inks for Improvement of Thermoelectric Performance in SWCNT Films Using Heat Source-Free Water-Floating SWCNT Thermoelectric Generators
by Yutaro Okano, Shuya Ochiai, Hiroto Nakayama, Kiyofumi Nagai and Masayuki Takashiri
Materials 2025, 18(14), 3339; https://doi.org/10.3390/ma18143339 - 16 Jul 2025
Viewed by 357
Abstract
Single-walled carbon nanotube (SWCNT) inks were prepared by mixing SWCNTs with ethanol and varying the amplitude of ultrasonic dispersion. When the SWCNT inks were prepared by dispersion amplitudes at 60% (nominal value of 200 W), the SWCNT inks had low viscosity and a [...] Read more.
Single-walled carbon nanotube (SWCNT) inks were prepared by mixing SWCNTs with ethanol and varying the amplitude of ultrasonic dispersion. When the SWCNT inks were prepared by dispersion amplitudes at 60% (nominal value of 200 W), the SWCNT inks had low viscosity and a small variation of the particle size. The SWCNT films fabricated under this dispersion condition had well-distributed SWCNT bundles and exhibited the highest power factor. However, when the dispersion amplitude was excessive, the viscosity of the SWCNT ink increased due to the reduced contact between the SWCNTs owing to over-dispersion, and the crystallinity of the SWCNT films decreased, exhibiting a lower power factor. When the optimized SWCNT films at 60% were applied to heat-source-free water-floating SWCNT-TEGs, an output voltage of 2.0 mV could be generated under sunlight irradiation. These findings are useful for preparing various electronic devices with SWCNT films to improve the film quality using ultrasonic dispersion. Full article
(This article belongs to the Special Issue Advanced Thermoelectric Materials and Micro/Nanoscale Heat Transfer)
Show Figures

Figure 1

15 pages, 2527 KiB  
Article
A Disposable SWCNTs/AuNPs-Based Screen-Printed ISE at Different Temperatures to Monitor Ca2+ for Hypocalcemia Diagnosis
by Zhixue Yu, Hui Wang, Yue He, Ruipeng Chen, Xiangfang Tang and Benhai Xiong
Chemosensors 2025, 13(7), 252; https://doi.org/10.3390/chemosensors13070252 - 12 Jul 2025
Viewed by 383
Abstract
In this paper, screen-printed ion-selective electrodes combined with single-walled carbon nanotubes (SWCNTs) and gold nanoparticles (AuNPs) were used to rapidly and accurately measure serum Ca2+ concentration. Due to the susceptibility of cows to hypocalcemia after delivery, this disease can affect the health [...] Read more.
In this paper, screen-printed ion-selective electrodes combined with single-walled carbon nanotubes (SWCNTs) and gold nanoparticles (AuNPs) were used to rapidly and accurately measure serum Ca2+ concentration. Due to the susceptibility of cows to hypocalcemia after delivery, this disease can affect the health of cows and reduce milk production. Therefore, the development of an economical and swift detection method holds paramount importance for facilitating early diagnosis and subsequent treatment. In this study, by combining the high electrical conductivity and large surface area of SWCNTs with the strong catalytic activity of AuNPs, a SWCNTs/AuNPs composite with high sensitivity and good stability was prepared, achieving efficient selective recognition and signal conversion of Ca2+. The experimental results indicate that the screen-printed electrode modified with SWCNTs/AuNPs exhibited excellent performance in the determination of Ca2+ concentration. Its linear response range is 10−5.5–10−1 M, covering the normal and pathological concentration range of Ca2+ in cow blood, and the detection limit is far below the clinical detection requirements. In addition, the electrode also has good anti-interference ability and fast response time (about 15 s), showing good performance in the range of 5–45 °C. In practical applications, the combination of the electrode and portable detection equipment can realize the field rapid determination of cow blood Ca2+ concentration. This method is easy to operate, cost-effective, and easy to promote, providing strong technical support for the health management of dairy farms. Full article
(This article belongs to the Section Electrochemical Devices and Sensors)
Show Figures

Figure 1

17 pages, 5437 KiB  
Article
Characterization of Different Types of Screen-Printed Carbon Electrodes Modified Electrochemically by Ceria Coatings
by Reni Andreeva, Aleksandar Tsanev, Georgi Avdeev and Dimitar Stoychev
Metals 2025, 15(7), 741; https://doi.org/10.3390/met15070741 - 30 Jun 2025
Viewed by 226
Abstract
Electrochemical formation of ceria (mixed Ce2O3 and CeO2) coatings on different types of screen-printed carbon electrodes (SPCEs) (based on graphite (C110), carbon nanotubes (CNT), single-walled carbon nanotubes (SWCNT), carbon nanofibers (CNF), and mesoporous carbon (MC)) were studied. Their [...] Read more.
Electrochemical formation of ceria (mixed Ce2O3 and CeO2) coatings on different types of screen-printed carbon electrodes (SPCEs) (based on graphite (C110), carbon nanotubes (CNT), single-walled carbon nanotubes (SWCNT), carbon nanofibers (CNF), and mesoporous carbon (MC)) were studied. Their potential applications as catalysts for various redox reactions and electrochemical sensors were investigated. The ceria oxide layers were electrodeposited on SPCEs at various current densities and deposition time. The morphology, structure, and chemical composition in the bulk of the ceria layers were studied by SEM and EDS methods. XRD was used to identify the formed phases. The concentration, chemical composition and chemical state of the elements on the surface of studied samples were characterized by XPS. It was established that the increase of the concentration of CeCl3 in the solution and the cathode current density strongly affected the surface structure and concentration (relation between Ce3+ and Ce4+, respectively) in the formed ceria layers. At low concentration of CeCl3 (0.1M) and low values of cathode current density (0.5 mA·cm−2), porous samples were obtained, while with their increase, the ceria coatings grew denser. Full article
Show Figures

Figure 1

49 pages, 9659 KiB  
Article
Machine Learning Approach to Nonlinear Fluid-Induced Vibration of Pronged Nanotubes in a Thermal–Magnetic Environment
by Ahmed Yinusa, Ridwan Amokun, John Eke, Gbeminiyi Sobamowo, George Oguntala, Adegboyega Ehinmowo, Faruq Salami, Oluwatosin Osigwe, Adekunle Adelaja, Sunday Ojolo and Mohammed Usman
Vibration 2025, 8(3), 35; https://doi.org/10.3390/vibration8030035 - 27 Jun 2025
Viewed by 437
Abstract
Exploring the dynamics of nonlinear nanofluidic flow-induced vibrations, this work focuses on single-walled branched carbon nanotubes (SWCNTs) operating in a thermal–magnetic environment. Carbon nanotubes (CNTs), renowned for their exceptional strength, conductivity, and flexibility, are modeled using Euler–Bernoulli beam theory alongside Eringen’s nonlocal elasticity [...] Read more.
Exploring the dynamics of nonlinear nanofluidic flow-induced vibrations, this work focuses on single-walled branched carbon nanotubes (SWCNTs) operating in a thermal–magnetic environment. Carbon nanotubes (CNTs), renowned for their exceptional strength, conductivity, and flexibility, are modeled using Euler–Bernoulli beam theory alongside Eringen’s nonlocal elasticity to capture nanoscale effects for varying downstream angles. The intricate interactions between nanofluids and SWCNTs are analyzed using the Differential Transform Method (DTM) and validated through ANSYS simulations, where modal analysis reveals the vibrational characteristics of various geometries. To enhance predictive accuracy and system stability, machine learning algorithms, including XGBoost, CATBoost, Random Forest, and Artificial Neural Networks, are employed, offering a robust comparison for optimizing vibrational and thermo-magnetic performance. Key parameters such as nanotube geometry, magnetic flux density, and fluid flow dynamics are identified as critical to minimizing vibrational noise and improving structural stability. These insights advance applications in energy harvesting, biomedical devices like artificial muscles and nanosensors, and nanoscale fluid control systems. Overall, the study demonstrates the significant advantages of integrating machine learning with physics-based simulations for next-generation nanotechnology solutions. Full article
(This article belongs to the Special Issue Nonlinear Vibration of Mechanical Systems)
Show Figures

Figure 1

11 pages, 2178 KiB  
Article
Actuator-Driven, Purge-Free Formaldehyde Gas Sensor Based on Single-Walled Carbon Nanotubes
by Shinsuke Ishihara, Mandeep K. Chahal, Jan Labuta, Takeshi Tanaka, Hiromichi Kataura, Jonathan P. Hill and Takashi Nakanishi
Nanomaterials 2025, 15(13), 962; https://doi.org/10.3390/nano15130962 - 21 Jun 2025
Viewed by 396
Abstract
Formaldehyde vapor (HCHO) is a harmful chemical substance and a potential air contaminant, with a permissible level in indoor spaces below 0.08 ppm (80 ppb). Thus, highly sensitive gas sensors for the continuous monitoring of HCHO are in demand. The electrical conductivity of [...] Read more.
Formaldehyde vapor (HCHO) is a harmful chemical substance and a potential air contaminant, with a permissible level in indoor spaces below 0.08 ppm (80 ppb). Thus, highly sensitive gas sensors for the continuous monitoring of HCHO are in demand. The electrical conductivity of semiconducting nanomaterials (e.g., single-walled carbon nanotubes (SWCNTs)) makes them sensitive to chemical substances adsorbed on their surfaces, and a variety of portable and highly sensitive chemiresistive gas sensors, including those capable of detecting HCHO, have been developed. However, when monitoring low levels of vapors (<1 ppm) found in ambient air, most chemiresistive sensors face practical issues, including false responses to interfering effects (e.g., fluctuations in room temperature and humidity), baseline drift, and the need to apply a purge gas. Here, we report an actuator-driven, purge-free chemiresistive gas sensor that is capable of reliably detecting 0.05 ppm of HCHO in the air. This sensor is composed of an HCHO→HCl converter (powdery hydroxylamine salt, HA), an HCl detector (a SWCNT-based chemiresistor), and an HCl blocker (a thin plastic plate). Upon exposure to HCHO, the HA emits HCl vapor, which diffuses onto the adjacent SWCNTs, increasing their electrical conductivity through p-doping. Meanwhile, inserting a plastic plate between HA and SWCNTs makes the conductivity of SWCNTs insensitive to HCHO. Thus, via periodic actuation (insertion and removal) of the plastic plate, HCHO can be detected reliably over a wide concentration range (0.05–15 ppm) with excellent selectivity over other volatile organic compounds. This actuator-driven system is beneficial because it does not require a purge gas for sensor recovery or baseline correction. Moreover, since the response to HCHO is synchronized with the actuation timing of the plate, even small (~0.8%) responses to 0.05 ppm of HCHO can be clearly separated from larger noise responses (>1%) caused by interfering effects and baseline drift. We believe that this work provides substantial insights into the practical implementation of nanomaterial-based chemiresistive gas sensors. Full article
Show Figures

Figure 1

68 pages, 2430 KiB  
Review
Unlocking the Future: Carbon Nanotubes as Pioneers in Sensing Technologies
by Nargish Parvin, Sang Woo Joo, Jae Hak Jung and Tapas K. Mandal
Chemosensors 2025, 13(7), 225; https://doi.org/10.3390/chemosensors13070225 - 21 Jun 2025
Cited by 1 | Viewed by 1056
Abstract
Carbon nanotubes (CNTs) have emerged as pivotal nanomaterials in sensing technologies owing to their unique structural, electrical, and mechanical properties. Their high aspect ratio, exceptional surface area, excellent electrical conductivity, and chemical tunability enable superior sensitivity and rapid response in various sensor platforms. [...] Read more.
Carbon nanotubes (CNTs) have emerged as pivotal nanomaterials in sensing technologies owing to their unique structural, electrical, and mechanical properties. Their high aspect ratio, exceptional surface area, excellent electrical conductivity, and chemical tunability enable superior sensitivity and rapid response in various sensor platforms. This review presents a comprehensive overview of recent advancements in CNT-based sensors, encompassing both single-walled (SWCNTs) and multi-walled carbon nanotubes (MWCNTs). We discuss their functional roles in diverse sensing applications, including gas sensing, chemical detection, biosensing, and pressure/strain monitoring. Particular emphasis is placed on the mechanisms of sensing, such as changes in electrical conductivity, surface adsorption phenomena, molecular recognition, and piezoresistive effects. Furthermore, we explore strategies for enhancing sensitivity and selectivity through surface functionalization, hybrid material integration, and nanostructuring. The manuscript also covers the challenges of reproducibility, selectivity, and scalability that hinder commercial deployment. In addition, emerging directions such as flexible and wearable CNT-based sensors, and their role in real-time environmental, biomedical, and structural health monitoring systems, are critically analyzed. By outlining both current progress and existing limitations, this review underscores the transformative potential of CNTs in the design of next-generation sensing technologies across interdisciplinary domains. Full article
(This article belongs to the Special Issue Application of Carbon Nanotubes in Sensing)
Show Figures

Figure 1

14 pages, 2983 KiB  
Article
Coating Formulations Based on Carbon Black: An Alternative to Develop Environmentally Friendly Conductive Cellulose Paper
by Adriana Millan, Anny Morales, Richard A. Venditti and Joel J. Pawlak
Materials 2025, 18(12), 2708; https://doi.org/10.3390/ma18122708 - 9 Jun 2025
Viewed by 531
Abstract
The current economic growth and increasing needs of society have led to developing processes that harm our environment and have severe long-term consequences. For this reason, different attempts have been made to mitigate these effects by substituting conventional toxic materials with environmentally friendly [...] Read more.
The current economic growth and increasing needs of society have led to developing processes that harm our environment and have severe long-term consequences. For this reason, different attempts have been made to mitigate these effects by substituting conventional toxic materials with environmentally friendly ones. Industry sectors related to energy storage, printed electronics, and wearable technology are moving towards applying sustainable strategies. Renewable biopolymers such as cellulose and its derivatives, as well as carbon-based alternatives, which include carbon nanotubes (CNTs), single-wall carbon nanotubes (SWCNTs), graphite, graphene, and carbon black (CB), are leading the advances in this field. The present research aimed to develop conductive cellulose paper using environmentally friendly components compatible with the paper recycling process. Coating formulations based on carbon black were proposed using three different types of binders: polytetrafluoroethylene (PTFE), latex (styrene butadiene), and sodium carboxymethyl cellulose (CMC). The formulation, composition, and preparation were studied, and they were related to the coating’s electrical resistance and integrity. This last parameter was determined through a new method described in this research, implementing a mechanical/optical technique to measure the coating’s durability. The formulation with the best performance in terms of electrical resistance (0.29 kΩ), integrity, and non-toxicity was obtained using sodium carboxymethyl cellulose (CMC) as a binder and dispersant. Full article
(This article belongs to the Section Green Materials)
Show Figures

Graphical abstract

14 pages, 2190 KiB  
Article
Flow-Based Dielectrophoretic Biosensor for Detection of Bacteriophage MS2 as a Foodborne Virus Surrogate
by Inae Lee, Heejin So, Kacie K. H. Y. Ho, Yong Li and Soojin Jun
Biosensors 2025, 15(6), 353; https://doi.org/10.3390/bios15060353 - 3 Jun 2025
Viewed by 641
Abstract
Norovirus, a foodborne pathogen, causes a significant economic and health burden globally. Although detection methods exist, they are expensive and non-field deployable. A flow-based dielectrophoretic biosensor was designed for the detection of foodborne pathogenic viruses and was tested using bacteriophage MS2 as a [...] Read more.
Norovirus, a foodborne pathogen, causes a significant economic and health burden globally. Although detection methods exist, they are expensive and non-field deployable. A flow-based dielectrophoretic biosensor was designed for the detection of foodborne pathogenic viruses and was tested using bacteriophage MS2 as a norovirus surrogate. The flow-based MS2 sensor comprises a concentrator and a detector. The concentrator is an interdigitated electrode array designed to impart dielectrophoretic effects to manipulate viral particles toward the detector in a fluidic channel. The detector is made of a silver electrode conjugated with anti-MS2 IgG to allow for antibody–antigen biorecognition events and is supplied with the electrical current for the purpose of measurement. Serially diluted MS2 suspensions were continuously injected into the fluidic channel at 0.1 mL/min. A cyclic voltammogram indicated that current measurements from single-walled carbon nanotube (SWCNT)-coated electrodes increased compared to uncoated electrodes. Additionally, a drop in the current measurements after antibody immobilization and MS2 capture was observed with the developed electrodes. Antibody immobilization at the biorecognition site provided greater current changes with the antibody-MS2 complexes vs. the assays without antibodies. The electric field applied to the fluidic channel at 10 Vpp and 1 MHz contributed to an increase in current changes in response to MS2 bound on the detector and was dependent on the MS2 concentrations in the sample. The developed biosensor was able to detect MS2 with a sensitivity of 102 PFU/mL within 15 min. Overall, this work demonstrates a proof of concept for a rapid and field-deployable strategy to detect foodborne pathogens. Full article
Show Figures

Figure 1

19 pages, 12928 KiB  
Article
DFT and Molecular Docking Study of HA-Conjugated SWCNTs for CD44-Targeted Delivery of Platinum-Based Chemotherapeutics
by Muhammad Uzair Khan, Ishrat Jabeen, Abdulhamid Althagafi, Muhammad Umar Farooq, Moussab Harb and Bassim Arkook
Pharmaceuticals 2025, 18(6), 805; https://doi.org/10.3390/ph18060805 - 27 May 2025
Viewed by 832
Abstract
Background: Hyaluronicacid (HA)-conjugated nanocarriers leverage CD44 receptor overexpression on tumor cells for targeted delivery of platinum chemotherapeutics. Methods: This study compares non-functionalized (DDS1) versus HA-conjugated single-walled carbon nanotubes (DDS2) for encapsulation stability and CD44 binding of Cisplatin, Carboplatin, and Lobaplatin. Density Functional Theory [...] Read more.
Background: Hyaluronicacid (HA)-conjugated nanocarriers leverage CD44 receptor overexpression on tumor cells for targeted delivery of platinum chemotherapeutics. Methods: This study compares non-functionalized (DDS1) versus HA-conjugated single-walled carbon nanotubes (DDS2) for encapsulation stability and CD44 binding of Cisplatin, Carboplatin, and Lobaplatin. Density Functional Theory calculations employed PBE-GGA with Tkatchenko–Scheffler dispersion and ZORA relativistic treatment, using a finite (8,8) armchair SWCNT (24.6 Å, H-capped) for DDS1 and an EDC/NHS-coupled HA oligomer for DDS2. We computed binding energies, HOMO–LUMO gaps, Molecular Electrostatic Potentials, and energy decompositions. Molecular docking to CD44 (PDB ID: 4PZ3) used Molegro Virtual Docker, validated by re-docking the native HA fragment (RMSD 1.79 Å). Results: DFT binding energies (eV) for DDS2 versus DDS1 were −7.92/−7.48 (Cisplatin), −8.93/−8.30 (Carboplatin), and −9.72/−9.25 (Lobaplatin), indicating enhanced stabilization by HA functionalization. Energy decomposition showed increases of ∼0.4 eV (vdW) and ∼0.2 eV (electrostatic) in DDS2. MEP maps confirmed additional negative-potential regions on DDS2, complementing drug-positive sites. Molecular docking yielded MolDock scores of −171.26 for DDS2 versus −106.68 for DDS1, reflecting stronger CD44 affinity. Docking scores indicate that HA conjugation notably strengthens the predicted affinity of CNT carriers toward the CD44 receptor (ΔScore ≈ −65 kcal mol−1). Conclusions: These results motivate experimental follow-up to confirm whether DDS2 can translate the in silico affinity gains into improved targeted delivery of platinum chemotherapeutics. Full article
(This article belongs to the Section Pharmaceutical Technology)
Show Figures

Figure 1

22 pages, 16641 KiB  
Article
Features of Electronic Transport Properties in All-Carbon Films Based on Bilayer Graphene and Single-Walled Nanotubes
by Michael M. Slepchenkov, Pavel V. Barkov and Olga E. Glukhova
Crystals 2025, 15(5), 445; https://doi.org/10.3390/cryst15050445 - 9 May 2025
Viewed by 596
Abstract
In this paper, we conduct a detailed in silico study of the role of topological features in the electronic transport properties of all-carbon films. To create all-carbon film supercells, we used AA- and AB-stacked bilayer graphene, as well as (5,5), (6,0), (16,0), (12,6), [...] Read more.
In this paper, we conduct a detailed in silico study of the role of topological features in the electronic transport properties of all-carbon films. To create all-carbon film supercells, we used AA- and AB-stacked bilayer graphene, as well as (5,5), (6,0), (16,0), (12,6), and (8,4) single-walled carbon nanotubes (SWCNTs). For the first time, the simultaneous influence of several topological features on the quantum transport of electrons in graphene–nanotube films are considered. Topological features are understood as the topological type of nanotubes (chiral or achiral), the stacking order in bilayer graphene (AA or AB), and the mutual orientation of bilayer graphene and nanotubes. A characteristic feature of the studied all-carbon films is the presence of electrical conductivity anisotropy. Moreover, depending on the topological features of all-carbon films, the values of electrical resistance can differ by tens of times in different directions of electron transport. The patterns of formation of the profile of the electron transmission function of the studied structural configurations of all-carbon film are established. It is found that the mutual orientation of bilayer graphene and nanotubes plays an important role in the electronic transport properties of all-carbon films. The obtained results make a significant contribution to the understanding of the mechanisms controlling the electrical conductivity properties of all-carbon films at the atomic level. Full article
(This article belongs to the Special Issue Graphene-Based Materials and Applications)
Show Figures

Graphical abstract

26 pages, 18981 KiB  
Article
Fabrication and Analysis of Carboxylic Acid-Functionalized SWCNT/PDMS-Based Electrodes for ECG Monitoring via IoT
by Bani Gandhi and Raghava Srinivasa Nallanthighal
Micro 2025, 5(2), 16; https://doi.org/10.3390/micro5020016 - 4 Apr 2025
Viewed by 489
Abstract
This paper presents the design and fabrication of flexible and gel-less electrodes using carboxylic acid-functionalized single-walled carbon nanotubes (SWCNT-COOHs) and polydimethylsiloxane (PDMS) at thirteen different concentrations. The dispersion was attained by magnetic stirring and sonication using isopropyl alcohol (IPA). Physical characterizations like Scanning [...] Read more.
This paper presents the design and fabrication of flexible and gel-less electrodes using carboxylic acid-functionalized single-walled carbon nanotubes (SWCNT-COOHs) and polydimethylsiloxane (PDMS) at thirteen different concentrations. The dispersion was attained by magnetic stirring and sonication using isopropyl alcohol (IPA). Physical characterizations like Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), and Fourier Transform Infrared Spectroscopy (FTIR) were performed. The electrodes were fabricated using molds. The percolation threshold was achieved at 4 wt%. The ECG results were compared with conventional ECG electrodes and 3.5 wt% displayed the best results. Also, after using the electrodes for 5 days, the ECG signals did not degrade and no skin allergies were observed. The fabricated electrodes are suitable for long-term and continuous ECG monitoring, facilitated with the help of an Internet of Things (IoT) tracking system. The data can then be transmitted to the medical expert and loaded onto the cloud server for analysis. Full article
Show Figures

Figure 1

19 pages, 6433 KiB  
Article
Targeted Delivery of Chlorin-e6-Loaded Carbon Nanotube-Based Nanobiocomposite to Cancer Stem Cells for Enhanced Photodynamic Therapy
by Prabhavathi Sundaram, Sathish Sundar Dhilip Kumar and Heidi Abrahamse
Pharmaceutics 2025, 17(4), 469; https://doi.org/10.3390/pharmaceutics17040469 - 3 Apr 2025
Viewed by 654
Abstract
Background: Globally, colorectal cancer (CRC) is the third-most diagnosed cancer among males and the second-most diagnosed cancer among females. In cancer, stem cells are a subset of neoplastic cells capable of tumorigenesis and exhibit properties like normal stem cells. Moreover, they are resistant [...] Read more.
Background: Globally, colorectal cancer (CRC) is the third-most diagnosed cancer among males and the second-most diagnosed cancer among females. In cancer, stem cells are a subset of neoplastic cells capable of tumorigenesis and exhibit properties like normal stem cells. Moreover, they are resistant to conventional cancer treatments and can repopulate the tumor following treatment. Cancer cells are stimulated to undergo apoptosis by photodynamic therapy (PDT), which involves a light source, a photosensitizer, and reactive oxygen species. Methods: In this study, colon cancer stem cells were isolated from colon cancer cells and characterized using flow cytometry and immunofluorescence techniques. To treat colon cancer stem cells (CCSCs), single-walled carbon nanotubes (SWCNTs) were coupled with hyaluronic acid (HA) and loaded with chlorin-e6 (Ce6). Nanobiocomposite toxicity was assessed using CCSCs with two fluences of 5 J/cm2 and 10 J/cm2. The cellular changes were observed at 24 and 48 h using microscopy, Results: LDH cytotoxicity assay, and cell death induction by annexin propidium iodide assay. An intracellular analysis of reactive oxygen species (ROS) detected oxidative stress within CCSCs. Conclusions: Overall, the results showed that the newly synthesized nanobiocomposite enhanced the ability of PDT to act as a photosensitizer carrier and induced cell death in CCSCs. Full article
(This article belongs to the Special Issue Functional Nanomaterials for Drug Delivery in Photodynamic Therapy)
Show Figures

Graphical abstract

22 pages, 4728 KiB  
Article
Acute Toxicity of Carbon Nanotubes, Carbon Nanodots, and Cell-Penetrating Peptides to Freshwater Cyanobacteria
by Anna K. Antrim, Ilana N. Tseytlin, Emily G. Cooley, P. U. Ashvin Iresh Fernando, Natalie D. Barker, Erik M. Alberts, Johanna Jernberg, Gilbert K. Kosgei and Ping Gong
Toxins 2025, 17(4), 172; https://doi.org/10.3390/toxins17040172 - 1 Apr 2025
Viewed by 884
Abstract
Synthetic non-metallic nanoparticles (NMNPs) such as carbon nanotubes (CNTs), carbon nanodots (CNDs), and cell-penetrating peptides (CPPs) have been explored to treat harmful algal blooms. However, their strain-specific algicidal activities have been rarely investigated. Here we determined their acute toxicity to nine freshwater cyanobacterial [...] Read more.
Synthetic non-metallic nanoparticles (NMNPs) such as carbon nanotubes (CNTs), carbon nanodots (CNDs), and cell-penetrating peptides (CPPs) have been explored to treat harmful algal blooms. However, their strain-specific algicidal activities have been rarely investigated. Here we determined their acute toxicity to nine freshwater cyanobacterial strains belonging to seven genera, including Microcystis aeruginosa UTEX 2386, M. aeruginosa UTEX 2385, M. aeruginosa LE3, Anabaena cylindrica PCC 7122, Aphanizomenon sp. NZ, Planktothrix agardhii SB 1810, Synechocystis sp. PCC 6803, Lyngbya sp. CCAP 1446/10, and Microcoleus autumnale CAWBG635 ATX. We prepared in-house three batches of CNDs using glucose (CND-G) or chloroform and methanol (CND-C/M) as the substrate and one batch of single-walled CNTs (SWCNTs). We also ordered a commercially synthesized CPP called γ-Zein-CADY. The axenic laboratory culture of each cyanobacterial strain was exposed to an NMNP at two dosage levels (high and low, with high = 2 × low) for 48 h, followed by measurement of five endpoints. The endpoints were optical density (OD) at 680 nm (OD680) for chlorophyll-a estimation, OD at 750 nm (OD750) for cell density, instantaneous pigment fluorescence emission (FE) after being excited with 450 nm blue light (FE450) for chlorophyll-a or 620 nm red light (FE620) for phycocyanin, and quantum yield (QY) for photosynthesis efficiency of photosystem II. The results indicate that the acute toxicity was strain-, NMNP type-, dosage-, and endpoint-dependent. The two benthic strains Microcoleus autumnale and Lyngbya sp. were more resistant to NMNP treatment than the other seven free-floating strains. SWCNTs and fraction A14 of CND-G were more toxic than CND-G and CND-C/M. The CPP was the least toxic. The high dose generally caused more severe impairment than the low dose. OD750 and OD680 were more sensitive than FE450 and FE620. QY was the least sensitive endpoint. The strain dependence of toxicity suggested the potential application of these NMNPs as a target-specific tool for mitigating harmful cyanobacterial blooms. Full article
(This article belongs to the Special Issue Toxic Cyanobacterial Bloom Detection and Removal: What's New?)
Show Figures

Figure 1

14 pages, 23722 KiB  
Article
Optoplasmonics of Single-Walled Carbon Nanotube Thin Films
by Chandra Mani Adhikari
Photonics 2025, 12(4), 298; https://doi.org/10.3390/photonics12040298 - 25 Mar 2025
Viewed by 606
Abstract
An ultrathin film capable of exhibiting material properties across and around two different dimensions by bridging two-dimensionality frameworks, called a trans-dimensional (TD) material, can be an exceptional tool to tune various electronic and optoplasmonic properties of a system that are unattainable from either [...] Read more.
An ultrathin film capable of exhibiting material properties across and around two different dimensions by bridging two-dimensionality frameworks, called a trans-dimensional (TD) material, can be an exceptional tool to tune various electronic and optoplasmonic properties of a system that are unattainable from either dimension. Taking an example of the planar periodic arrangement of single-walled carbon nanotube (SWCNT) TD films, we semi-analytically calculated their dynamical conductivities and dielectric responses as a function of the incident photon frequency and the SWCNT’s radius using the many-particles Green’s function formalism within the Matsubara frequency technique. The periodic array of SWCNTs has an anisotropic dielectric response, which is almost a constant and the same as that of the host dielectric medium in the perpendicular direction of the alignment of the SWCNT array due to the depolarization effect that SWCNTs have. However, the dielectric response functions depend on the incident photon energy in addition to the film’s thickness, the SWCNT’s sparseness, inhomogeneity, and the SWCNT’s diameter. The energy difference between the resonant absorption peak and the plasmonic peak varies with the thickness of the film. Varying the length of the CNTs, we also observed that the exciton–plasmon coupling strength increases with the increase in length of the SWCNTs. The metallic SWCNT-containing films have comparatively pronounced plasmon resonance peaks at low photon energy than semiconducting SWCNT-containing films. Both metallic and semiconducting SWCNT-consisting films have negative refraction for a wide range of energy, making them good candidates for metamaterials. Full article
(This article belongs to the Special Issue Photonics Metamaterials: Processing and Applications)
Show Figures

Figure 1

Back to TopTop