Flow-Based Dielectrophoretic Biosensor for Detection of Bacteriophage MS2 as a Foodborne Virus Surrogate
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Biosensor Device Fabrication
2.3. Antibody Immobilization on Detector
2.4. Bacteriophage MS2 Propagation
2.5. Bacteriophage MS2 Qualification by Plaque Assay
2.6. Electrochemical Measurement
2.7. Dielectrophoretic MS2 Detection
2.8. Statistical Analysis
3. Results and Discussion
3.1. Characterization of SWCNT-Antibody-Functionalized Surface and MS2 Detection
3.2. Effect of DEP Concentration on Change in Signal Response
3.3. Detection of Bacteriophage MS2 in the Continuous Flow Mode
3.4. Reproducibility and Stability of the Developed Biosensor
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Neethirajan, S.; Ahmed, S.R.; Chand, R.; Buozis, J.; Nagy, É. Recent Advances in Biosensor Development for Foodborne Virus Detection. Nanotheranostics 2017, 1, 272. [Google Scholar]
- Scallan, E.; Hoekstra, R.M.; Angulo, F.J.; Tauxe, R.V.; Widdowson, M.-A.; Roy, S.L.; Jones, J.L.; Griffin, P.M. Foodborne Illness Acquired in the United States—Major Pathogens. Emerg. Infect. Dis. 2011, 17, 7. [Google Scholar] [CrossRef] [PubMed]
- Dewey-Mattia, D.; Kisselburgh, H.; Manikonda, K.; Silver, R.; Subramhanya, S.; Sundararaman, P.; Whitham, H.; Crowe, S. Surveillance for Foodborne Disease Outbreaks–United States, 2016: Annual Report; Centers for Disease Control and Prevention: Atlanta, GA, USA, 2018. [Google Scholar]
- Hoffmann, S.A.; Maculloch, B.; Batz, M. Economic Burden of Major Foodborne Illnesses Acquired in the United States; Economic Research Service: Washington, DC, USA, 2015. [Google Scholar]
- Patel, M.M.; Hall, A.J.; Vinjé, J.; Parashar, U.D. Noroviruses: A Comprehensive Review. J. Clin. Virol. 2009, 44, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Stannard, C. Development and Use of Microbiological Criteria for Foods. Food Sci. Technol. Today 1997, 11, 137–177. [Google Scholar]
- Program, H.F. HACCP Principles & Application Guidelines; FDA: Silver Spring, MD, USA, 2024. [Google Scholar]
- Rodriguez-Lazaro, D.; Cook, N.; Ruggeri, F.M.; Sellwood, J.; Nasser, A.; Nascimento, M.S.J.; D’Agostino, M.; Santos, R.; Saiz, J.C.; Rzeżutka, A. Virus Hazards from Food, Water and Other Contaminated Environments. FEMS Microbiol. Rev. 2012, 36, 786–814. [Google Scholar] [CrossRef]
- Hong, S.A.; Kwon, J.; Kim, D.; Yang, S. A Rapid, Sensitive and Selective Electrochemical Biosensor with Concanavalin A for the Preemptive Detection of Norovirus. Biosens. Bioelectron. 2015, 64, 338–344. [Google Scholar] [CrossRef]
- Caygill, R.L.; Blair, G.E.; Millner, P.A. A Review on Viral Biosensors to Detect Human Pathogens. Anal. Chim. Acta 2010, 681, 8–15. [Google Scholar] [CrossRef]
- Cheng, X.; Chen, G.; Rodriguez, W.R. Micro- and Nanotechnology for Viral Detection. Anal. Bioanal. Chem. 2009, 393, 487–501. [Google Scholar] [CrossRef]
- Kumar, P. Methods for Rapid Virus Identification and Quantification. Mater. Methods 2013, 3, 207. [Google Scholar]
- Drobysh, M.; Ramanaviciene, A.; Viter, R.; Chen, C.-F.; Samukaite-Bubniene, U.; Ratautaite, V.; Ramanavicius, A. Biosensors for the Determination of SARS-CoV-2 Virus and Diagnosis of COVID-19 Infection. Int. J. Mol. Sci. 2022, 23, 666. [Google Scholar] [CrossRef]
- Rabenau, H.F.; Stürmer, M.; Buxbaum, S.; Walczok, A.; Preiser, W.; Doerr, H.W. Laboratory Diagnosis of Norovirus: Which Method Is the Best? Intervirology 2003, 46, 232–238. [Google Scholar] [CrossRef] [PubMed]
- Bally, M.; Graule, M.; Parra, F.; Larson, G.; Höök, F. A Virus Biosensor with Single Virus-Particle Sensitivity Based on Fluorescent Vesicle Labels and Equilibrium Fluctuation Analysis. Biointerphases 2013, 8, 4. [Google Scholar] [CrossRef] [PubMed]
- Tang, D.; Tang, J.; Su, B.; Ren, J.; Chen, G. Simultaneous Determination of Five-Type Hepatitis Virus Antigens in 5 Min Using an Integrated Automatic Electrochemical Immunosensor Array. Biosens. Bioelectron. 2010, 25, 1658–1662. [Google Scholar] [CrossRef] [PubMed]
- Attar, A.; Mandli, J.; Ennaji, M.M.; Amine, A. Label-free Electrochemical Impedance Detection of Rotavirus Based on Immobilized Antibodies on Gold Sononanoparticles. Electroanalysis 2016, 28, 1839–1846. [Google Scholar] [CrossRef]
- Li, M.; Li, W.H.; Zhang, J.; Alici, G.; Wen, W. A Review of Microfabrication Techniques and Dielectrophoretic Microdevices for Particle Manipulation and Separation. J. Phys. D Appl. Phys. 2014, 47, 063001. [Google Scholar] [CrossRef]
- Cox, C.; Cao, S.; Lu, Y. Enhanced Detection and Study of Murine Norovirus-1 Using a More Efficient Microglial Cell Line. Virol. J. 2009, 6, 196. [Google Scholar] [CrossRef]
- Straub, T.M.; Zu Bentrup, K.H.; Coghlan, P.O.; Dohnalkova, A.; Mayer, B.K.; Bartholomew, R.A.; Valdez, C.O.; Bruckner-Lea, C.J.; Gerba, C.P.; Abbaszadegan, M.A. In Vitro Cell Culture Infectivity Assay for Human Noroviruses. Emerg. Infect. Dis. 2007, 13, 396. [Google Scholar] [CrossRef]
- Bae, J.; Schwab, K.J. Evaluation of Murine Norovirus, Feline Calicivirus, Poliovirus, and MS2 as Surrogates for Human Norovirus in a Model of Viral Persistence in Surface Water and Groundwater. Appl. Environ. Microbiol. 2008, 74, 477–484. [Google Scholar] [CrossRef]
- Bozkurt, H.; D’souza, D.H.; Davidson, P.M. Thermal Inactivation of Human Norovirus Surrogates in Spinach and Measurement of Its Uncertainty. J. Food Prot. 2014, 77, 276–283. [Google Scholar] [CrossRef]
- Chung, S.H.; Baek, C.; Cong, V.T.; Min, J. The Microfluidic Chip Module for the Detection of Murine Norovirus in Oysters Using Charge Switchable Micro-Bead Beating. Biosens. Bioelectron. 2015, 67, 625–633. [Google Scholar] [CrossRef]
- Yakes, B.J.; Papafragkou, E.; Conrad, S.M.; Neill, J.D.; Ridpath, J.F.; Burkhardt III, W.; Kulka, M.; DeGrasse, S.L. Surface Plasmon Resonance Biosensor for Detection of Feline Calicivirus, a Surrogate for Norovirus. Int. J. Food Microbiol. 2013, 162, 152–158. [Google Scholar] [CrossRef] [PubMed]
- Dawson, D.J.; Paish, A.; Staffell, L.M.; Seymour, I.J.; Appleton, H. Survival of Viruses on Fresh Produce, Using MS2 as a Surrogate for Norovirus. J. Appl. Microbiol. 2005, 98, 203–209. [Google Scholar] [CrossRef] [PubMed]
- O’Connell, K.P.; Bucher, J.R.; Anderson, P.E.; Cao, C.J.; Khan, A.S.; Gostomski, M.V.; Valdes, J.J. Real-Time Fluorogenic Reverse Transcription-PCR Assays for Detection of Bacteriophage MS2. Appl. Environ. Microbiol. 2006, 72, 478–483. [Google Scholar] [CrossRef] [PubMed]
- Lee, I. Rapid and Sensitive Detection of Foodborne Pathogens Using Bio-Nanocomposites Functionalized Electrochemical Immunosensor with Dielectrophoretic Attraction. Ph.D. Thesis, University of Hawaii, Honolulu, HI, USA, 2017. [Google Scholar]
- Gomes-Filho, S.L.R.; Dias, A.; Silva, M.M.S.; Silva, B.V.M.; Dutra, R.F. A Carbon Nanotube-Based Electrochemical Immunosensor for Cardiac Troponin T. Microchem. J. 2013, 109, 10–15. [Google Scholar] [CrossRef]
- Lee, I.; So, H.; Kim, J.; Auh, J.-H.; Wall, M.M.; Li, Y.; Ho, K.; Jun, S. Selective Detection of Escherichia Coli K12 and Staphylococcus Aureus in Mixed Bacterial Communities Using a Single-Walled Carbon Nanotube (SWCNT)-Functionalized Electrochemical Immunosensor with Dielectrophoretic Concentration. Nanomaterials 2023, 13, 985. [Google Scholar] [CrossRef]
- Venturelli, E.; Fabbro, C.; Chaloin, O.; Ménard-Moyon, C.; Smulski, C.R.; Da Ros, T.; Kostarelos, K.; Prato, M.; Bianco, A. Antibody Covalent Immobilization on Carbon Nanotubes and Assessment of Antigen Binding. Small 2011, 7, 2179–2187. [Google Scholar] [CrossRef]
- Fujigaya, T.; Nakashima, N. Non-Covalent Polymer Wrapping of Carbon Nanotubes and the Role of Wrapped Polymers as Functional Dispersants. Sci. Technol. Adv. Mater. 2015, 16, 024802. [Google Scholar] [CrossRef]
- Rabbani, G.; Ahmad, E.; Khan, M.E.; Khan, A.U.; Zamzami, M.A.; Ahmad, A.; Ali, S.K.; Bashiri, A.H.; Zakri, W. Synthesis of Carbon Nanotubes-Chitosan Nanocomposite and Immunosensor Fabrication for Myoglobin Detection: An Acute Myocardial Infarction Biomarker. Int. J. Biol. Macromol. 2024, 265, 130616. [Google Scholar] [CrossRef]
- Zeng, B.; Wei, S.; Xiao, F.; Zhao, F. Voltammetric Behavior and Determination of Rutin at a Single-Walled Carbon Nanotubes Modified Gold Electrode. Sens. Actuators B Chem. 2006, 115, 240–246. [Google Scholar] [CrossRef]
- Yun, Y.; Bange, A.; Heineman, W.R.; Halsall, H.B.; Shanov, V.N.; Dong, Z.; Pixley, S.; Behbehani, M.; Jazieh, A.; Tu, Y. A Nanotube Array Immunosensor for Direct Electrochemical Detection of Antigen–Antibody Binding. Sens. Actuators B Chem. 2007, 123, 177–182. [Google Scholar] [CrossRef]
- Weber, J.E.; Pillai, S.; Ram, M.K.; Kumar, A.; Singh, S.R. Electrochemical Impedance-Based DNA Sensor Using a Modified Single Walled Carbon Nanotube Electrode. Mater. Sci. Eng. C 2011, 31, 821–825. [Google Scholar] [CrossRef]
- Hamada, R.; Takayama, H.; Shonishi, Y.; Mao, L.; Nakano, M.; Suehiro, J. A Rapid Bacteria Detection Technique Utilizing Impedance Measurement Combined with Positive and Negative Dielectrophoresis. Sens. Actuators B Chem. 2013, 181, 439–445. [Google Scholar] [CrossRef]
- Ermolina, I.; Milner, J.; Morgan, H. Dielectrophoretic Investigation of Plant Virus Particles: Cow Pea Mosaic Virus and Tobacco Mosaic Virus. Electrophoresis 2006, 27, 3939–3948. [Google Scholar] [CrossRef] [PubMed]
- Grom, F.; Kentsch, J.; Müller, T.; Schnelle, T.; Stelzle, M. Accumulation and Trapping of Hepatitis A Virus Particles by Electrohydrodynamic Flow and Dielectrophoresis. Electrophoresis 2006, 27, 1386–1393. [Google Scholar] [CrossRef]
- Müller, T.; Fiedler, S.; Schnelle, T.; Ludwig, K.; Jung, H.; Fuhr, G. High Frequency Electric Fields for Trapping of Viruses. Biotechnol. Tech. 1996, 10, 221–226. [Google Scholar] [CrossRef]
- Madiyar, F.R.; Syed, L.U.; Culbertson, C.T.; Li, J. Manipulation of Bacteriophages with Dielectrophoresis on Carbon Nanofiber Nanoelectrode Arrays. Electrophoresis 2013, 34, 1123–1130. [Google Scholar] [CrossRef]
- Lee, I.; Seok, Y.; Jung, H.; Yang, B.; Lee, J.; Kim, J.; Pyo, H.; Song, C.-S.; Choi, W.; Kim, M.-G.; et al. Integrated Bioaerosol Sampling/Monitoring Platform: Field-Deployable and Rapid Detection of Airborne Viruses. ACS Sens. 2020, 5, 3915–3922. [Google Scholar] [CrossRef]
- Thomas, J.H.; Kim, S.K.; Hesketh, P.J.; Halsall, H.B.; Heineman, W.R. Bead-Based Electrochemical Immunoassay for Bacteriophage MS2. Anal. Chem. 2004, 76, 2700–2707. [Google Scholar] [CrossRef]
- Kuramitz, H.; Dziewatkoski, M.; Barnett, B.; Halsall, H.B.; Heineman, W.R. Application of an Automated Fluidic System Using Electrochemical Bead-Based Immunoassay to Detect the Bacteriophage MS2 and Ovalbumin. Anal. Chim. Acta 2006, 561, 69–77. [Google Scholar] [CrossRef]
- García-Aljaro, C.; Cella, L.N.; Shirale, D.J.; Park, M.; Muñoz, F.J.; Yates, M.V.; Mulchandani, A. Carbon Nanotubes-Based Chemiresistive Biosensors for Detection of Microorganisms. Biosens. Bioelectron. 2010, 26, 1437–1441. [Google Scholar] [CrossRef]
- Reta, N.; Michelmore, A.; Saint, C.; Prieto-Simón, B.; Voelcker, N.H. Porous Silicon Membrane-Modified Electrodes for Label-Free Voltammetric Detection of MS2 Bacteriophage. Biosens. Bioelectron. 2016, 80, 47–53. [Google Scholar] [CrossRef]
Sensor Type | Detection Limit | Assay Time | Reference |
---|---|---|---|
A paramagnetic bead-based electrochemical immunoassay using an interdigitated array electrode in the PDMS fluidic channel | 90 ng/mL (1.5 × 1010 particles/mL) | - | [42] |
An electrochemical bead-based immunoassay in a fluidic system | 1.6 × 1011 particle/mL | - | [43] |
A carbon nanotube-based chemireistive biosensor | 103 PFU/mL | 5 min | [44] |
A porous silicon (pSi) membrane-based electrochemical biosensor | 6 PFU/mL | - | [45] |
A flow-based dielectrophoretic biosensor | 102 PFU/mL | 15 min | This study |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, I.; So, H.; Ho, K.K.H.Y.; Li, Y.; Jun, S. Flow-Based Dielectrophoretic Biosensor for Detection of Bacteriophage MS2 as a Foodborne Virus Surrogate. Biosensors 2025, 15, 353. https://doi.org/10.3390/bios15060353
Lee I, So H, Ho KKHY, Li Y, Jun S. Flow-Based Dielectrophoretic Biosensor for Detection of Bacteriophage MS2 as a Foodborne Virus Surrogate. Biosensors. 2025; 15(6):353. https://doi.org/10.3390/bios15060353
Chicago/Turabian StyleLee, Inae, Heejin So, Kacie K. H. Y. Ho, Yong Li, and Soojin Jun. 2025. "Flow-Based Dielectrophoretic Biosensor for Detection of Bacteriophage MS2 as a Foodborne Virus Surrogate" Biosensors 15, no. 6: 353. https://doi.org/10.3390/bios15060353
APA StyleLee, I., So, H., Ho, K. K. H. Y., Li, Y., & Jun, S. (2025). Flow-Based Dielectrophoretic Biosensor for Detection of Bacteriophage MS2 as a Foodborne Virus Surrogate. Biosensors, 15(6), 353. https://doi.org/10.3390/bios15060353