Advances in Carbon Nanotubes: Synthesis, Properties, and Cutting-Edge Applications

A special issue of Nanomaterials (ISSN 2079-4991). This special issue belongs to the section "Synthesis, Interfaces and Nanostructures".

Deadline for manuscript submissions: 15 June 2025 | Viewed by 15197

Special Issue Editors


E-Mail Website
Guest Editor
National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki 305-8565, Japan
Interests: synthesis, characterization, and application of nanomaterials (CNTs); CNT-based electronic devices/thermal/electrical materials; nanofabrication; field emission

E-Mail Website
Guest Editor
Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), Master’s and Doctoral Program in Materials Innovation, University of Tsukuba, Tsukuba, Ibaraki, Japan
Interests: electron microscopy; nanomaterials; growth mechanism; mechanical properties; catalysis; in situ electron microscopy

Special Issue Information

Dear Colleagues,

Carbon nanotubes (CNTs), with their unique cylindrical structures and diverse exceptional properties, have attracted extensive attention over the past three decades. Research and applications have advanced significantly across various fields. Recently, with the rapid development of artificial intelligence (AI) techniques, the integration of nanoscience and AI has paved the way for innovative approaches to CNT synthesis, optimizing parameters with unprecedented precision and efficiency. From controlled growth mechanisms to tailored structural design, these advancements not only propel the field forward but also open avenues for the unparalleled customization of CNT properties.

This Special Issue of Nanomaterials will explore several key themes, incorporating both traditional and AI-enhanced modern research methodologies, including but not limited to scalable and sustainable methods for CNT synthesis, investigations into structural properties, and the transformative impact of CNTs across diverse fields such as nanoelectronics, energy storage, composite reinforcement, and biomedical applications. The objective is to capture the interest of both academic and industrial researchers, fostering an enhanced understanding of CNTs while also introducing innovative ideas to shape future applications and technologies. Researchers are encouraged to contribute original research articles or review articles addressing the current state of advancements in the CNT field.

Dr. Guohai Chen
Prof. Dr. Dai-Ming Tang
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Nanomaterials is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • carbon nanotube
  • nanoparticle
  • synthesis
  • chemical vapor deposition
  • spectroscopy
  • energy
  • electrode
  • cutting-edge device
  • AI
  • machine learning

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (7 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

15 pages, 3445 KiB  
Article
Field Emission Properties of Cu-Filled Vertically Aligned Carbon Nanotubes Grown Directly on Thin Cu Foils
by Chinaza E. Nwanno, Arun Thapa, John Watt, Daniel Simkins Bendayan and Wenzhi Li
Nanomaterials 2024, 14(11), 988; https://doi.org/10.3390/nano14110988 - 6 Jun 2024
Cited by 4 | Viewed by 2076
Abstract
Copper-filled vertically aligned carbon nanotubes (Cu@VACNTs) were grown directly on Cu foil substrates of 0.1 mm thicknesses at different temperatures via plasma-enhanced chemical vapor deposition (PECVD). By circumventing the need for additional catalyst layers or intensive substrate treatments, our in-situ technique offers a [...] Read more.
Copper-filled vertically aligned carbon nanotubes (Cu@VACNTs) were grown directly on Cu foil substrates of 0.1 mm thicknesses at different temperatures via plasma-enhanced chemical vapor deposition (PECVD). By circumventing the need for additional catalyst layers or intensive substrate treatments, our in-situ technique offers a simplified and potentially scalable route for fabricating Cu@VACNTs with enhanced electrical and thermal properties on thin Cu foils. Comprehensive analysis using field emission scanning microscopy (FESEM), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDS) mappings, and X-ray diffraction (XRD) revealed uniform Cu filling within the VACNTs across a range of synthesis temperatures (650 °C, 700 °C, and 760 °C). Field emission (FE) measurements of the sample synthesized at 700 °C (S700) showed low turn-on and threshold fields of 2.33 V/μm and 3.29 V/μm, respectively. The findings demonstrate the viability of thin Cu substrates in creating dense and highly conductive Cu-filled VACNT arrays for advanced electronic and nanoelectronics applications. Full article
Show Figures

Graphical abstract

18 pages, 2939 KiB  
Article
Structural, Electrical, and Optical Properties of Single-Walled Carbon Nanotubes Synthesized through Floating Catalyst Chemical Vapor Deposition
by Melorina Dolafi Rezaee, Biplav Dahal, John Watt, Mahir Abrar, Deidra R. Hodges and Wenzhi Li
Nanomaterials 2024, 14(11), 965; https://doi.org/10.3390/nano14110965 - 2 Jun 2024
Cited by 2 | Viewed by 3234
Abstract
Single-walled carbon nanotube (SWCNT) thin films were synthesized by using a floating catalyst chemical vapor deposition (FCCVD) method with a low flow rate (200 sccm) of mixed gases (Ar and H2). SWCNT thin films with different thicknesses can be prepared by [...] Read more.
Single-walled carbon nanotube (SWCNT) thin films were synthesized by using a floating catalyst chemical vapor deposition (FCCVD) method with a low flow rate (200 sccm) of mixed gases (Ar and H2). SWCNT thin films with different thicknesses can be prepared by controlling the collection time of the SWCNTs on membrane filters. Transmission electron microscopy (TEM) showed that the SWCNTs formed bundles and that they had an average diameter of 1.46 nm. The Raman spectra of the SWCNT films suggested that the synthesized SWCNTs were very well crystallized. Although the electrical properties of SWCNTs have been widely studied so far, the Hall effect of SWCNTs has not been fully studied to explore the electrical characteristics of SWCNT thin films. In this research, Hall effect measurements have been performed to investigate the important electrical characteristics of SWCNTs, such as their carrier mobility, carrier density, Hall coefficient, conductivity, and sheet resistance. The samples with transmittance between 95 and 43% showed a high carrier density of 1021–1023 cm−3. The SWCNTs were also treated using Brønsted acids (HCl, HNO3, H2SO4) to enhance their electrical properties. After the acid treatments, the samples maintained their p-type nature. The carrier mobility and conductivity increased, and the sheet resistance decreased for all treated samples. The highest mobility of 1.5 cm2/Vs was obtained with the sulfuric acid treatment at 80 °C, while the highest conductivity (30,720 S/m) and lowest sheet resistance (43 ohm/square) were achieved with the nitric acid treatment at room temperature. Different functional groups were identified in our synthesized SWCNTs before and after the acid treatments using Fourier-Transform Infrared Spectroscopy (FTIR). Full article
Show Figures

Figure 1

9 pages, 3703 KiB  
Article
Chromatographic Assessment of Organic Compounds Using Carbon Nanotubes: The Relationship between Affinity and Dispersibility
by Taiyo Shimizu, Ryoichi Kishi, Atsushi Hirano, Ken Kokubo and Kenji Hata
Nanomaterials 2024, 14(10), 824; https://doi.org/10.3390/nano14100824 - 8 May 2024
Viewed by 1548
Abstract
The affinity between carbon nanotubes (CNTs) and organic compounds is of substantial importance since it strongly relates to the dispersibility of CNTs in those compounds. Several affinity evaluation methods have been developed so far, and the concept of the Hansen solubility parameter is [...] Read more.
The affinity between carbon nanotubes (CNTs) and organic compounds is of substantial importance since it strongly relates to the dispersibility of CNTs in those compounds. Several affinity evaluation methods have been developed so far, and the concept of the Hansen solubility parameter is a representative method widely used in the field of nanocarbon materials. Here, we demonstrate that CNT-loaded silica columns can effectively assess the affinity of organic compounds for CNT surface by exploiting the chromatographic retention time as a criterion. Obtained trends of the affinity of organic compounds for CNT were compared to those based on Hansen solubility parameter distance values. Most organic compounds showed similar trends, but one exceptional compound was observed. Simple CNT dispersion tests were conducted with these organic compounds to demonstrate the advantage of the chromatographic assessment. Further, we conducted comparison experiments using a pyrene-functionalized column and other CNT-loaded columns to elucidate the characteristics of each CNT column. The chromatographic approaches using CNT columns would be beneficial for realizing CNT suspensions with improved CNT dispersibility. Full article
Show Figures

Figure 1

13 pages, 5156 KiB  
Article
Enhancing the Thermal Conductivity of CNT/AlN/Silicone Rubber Composites by Using CNTs Directly Grown on AlN to Achieve a Reduced Filler Filling Ratio
by Naoyuki Matsumoto, Don N. Futaba, Takeo Yamada and Ken Kokubo
Nanomaterials 2024, 14(6), 528; https://doi.org/10.3390/nano14060528 - 15 Mar 2024
Cited by 5 | Viewed by 2803
Abstract
Achieving the thermal conductivity required for efficient heat management in semiconductors and other devices requires the integration of thermally conductive ceramic fillers at concentrations of 60 vol% or higher. However, an increased filler content often negatively affects the mechanical properties of the composite [...] Read more.
Achieving the thermal conductivity required for efficient heat management in semiconductors and other devices requires the integration of thermally conductive ceramic fillers at concentrations of 60 vol% or higher. However, an increased filler content often negatively affects the mechanical properties of the composite matrix, limiting its practical applicability. To address this issue, in this paper, we present a new strategy to reduce the required ceramic filler content: the use of a thermally conductive ceramic composite filler with carbon nanotubes (CNTs) grown on aluminum nitride (AlN). We combined catalyst coating technology with vacuum filtration to ensure that the catalyst was uniformly applied to micrometer-sized AlN particles, followed by the efficient and uniform synthesis of CNTs using a water-assisted process in a vertical furnace. By carefully controlling the number of vacuum filtration cycles and the growth time of the CNTs, we achieved precise control over the number and length of the CNT layers, thereby adjusting the properties of the composite to the intended specifications. When AlN/CNT hybrid fillers are incorporated into silicone rubber, while maintaining the mechanical properties of rubber, the thermal diffusivity achieved at reduced filler levels exceeds that of composites using AlN-only or simultaneous AlN and CNTs formulations. This demonstrates the critical influence of CNTs on AlN surfaces. Our study represents a significant advancement in the design of thermally conductive materials, with potential implications for a wide range of applications. Full article
Show Figures

Figure 1

Review

Jump to: Research

55 pages, 12018 KiB  
Review
Antimicrobial Nanotubes: From Synthesis and Promising Antimicrobial Upshots to Unanticipated Toxicities, Strategies to Limit Them, and Regulatory Issues
by Silvana Alfei and Gian Carlo Schito
Nanomaterials 2025, 15(8), 633; https://doi.org/10.3390/nano15080633 - 21 Apr 2025
Viewed by 184
Abstract
Nanotubes (NTs) are nanosized tube-like structured materials made from various substances such as carbon, boron, or silicon. Carbon nanomaterials (CNMs), including carbon nanotubes (CNTs), graphene/graphene oxide (G/GO), and fullerenes, have good interatomic interactions and possess special characteristics, exploitable in several applications because of [...] Read more.
Nanotubes (NTs) are nanosized tube-like structured materials made from various substances such as carbon, boron, or silicon. Carbon nanomaterials (CNMs), including carbon nanotubes (CNTs), graphene/graphene oxide (G/GO), and fullerenes, have good interatomic interactions and possess special characteristics, exploitable in several applications because of the presence of sp2 and sp3 bonds. Among NTs, CNTs are the most studied compounds due to their nonpareil electrical, mechanical, optical, and biomedical properties. Moreover, single-walled carbon nanotubes (SWNTs) have, in particular, demonstrated high ability as drug delivery systems and in transporting a wide range of chemicals across membranes and into living cells. Therefore, SWNTs, more than other NT structures, have generated interest in medicinal applications, such as target delivery, improved imaging, tissue regeneration, medication, and gene delivery, which provide nanosized devices with higher efficacy and fewer side effects. SWNTs and multi-walled CNTs (MWCNTs) have recently gained a great deal of attention for their antibacterial effects. Unfortunately, numerous recent studies have revealed unanticipated toxicities caused by CNTs. However, contradictory opinions exist regarding these findings. Moreover, the problem of controlling CNT-based products has become particularly evident, especially in relation to their large-scale production and the nanosized forms of the carbon that constitute them. Important directive rules have been approved over the years, but further research and regulatory measures should be introduced for a safer production and utilization of CNTs. Against this background, and after an overview of CNMs and CNTs, the antimicrobial properties of pristine and modified SWNTs and MWCNTs as well as the most relevant in vitro and in vivo studies on their possible toxicity, have been reported. Strategies and preventive behaviour to limit CNT risks have been provided. Finally, a debate on regulatory issues has also been included. Full article
Show Figures

Graphical abstract

28 pages, 8641 KiB  
Review
Advances, Challenges, and Applications of Graphene and Carbon Nanotube-Reinforced Engineering Ceramics
by Alaa Almansoori, Katalin Balázsi and Csaba Balázsi
Nanomaterials 2024, 14(23), 1881; https://doi.org/10.3390/nano14231881 - 22 Nov 2024
Cited by 2 | Viewed by 1482
Abstract
Engineering ceramics and their composites are widely used owing to their excellent properties, including high wear, corrosion and heat resistance, low friction coefficient, and low thermal conductivity; thus, the current paper presents a comprehensive review of the most common types of engineering ceramics, [...] Read more.
Engineering ceramics and their composites are widely used owing to their excellent properties, including high wear, corrosion and heat resistance, low friction coefficient, and low thermal conductivity; thus, the current paper presents a comprehensive review of the most common types of engineering ceramics, demonstrating their key properties, advantages, potential applications, and challenges. This paper also provides prevailing methods for tackling the engineering ceramic challenges and maximizing their applicability. This review paper focuses on alumina (Al2O3), silicon carbide (SiC), zirconia (ZrO2), aluminum nitride (AlN), and silicon nitride (Si3N4), and explores their usability in automotive, aerospace, and tribological applications. Additionally, the incorporation of reinforcing nanomaterials, i.e., graphene and carbon nanotubes or their combination with second-phase reinforcing nanomaterials in these types of ceramics to improve their physico-mechanical properties is also discussed. By strategically adding these reinforcing materials, the brittleness of ceramics can be mitigated, leading to materials that are more suitable for demanding applications in various high-performance industries. Full article
Show Figures

Graphical abstract

22 pages, 5858 KiB  
Review
Machine Learning as a “Catalyst” for Advancements in Carbon Nanotube Research
by Guohai Chen and Dai-Ming Tang
Nanomaterials 2024, 14(21), 1688; https://doi.org/10.3390/nano14211688 - 22 Oct 2024
Cited by 4 | Viewed by 2288
Abstract
The synthesis, characterization, and application of carbon nanotubes (CNTs) have long posed significant challenges due to the inherent multiple complexity nature involved in their production, processing, and analysis. Recent advancements in machine learning (ML) have provided researchers with novel and powerful tools to [...] Read more.
The synthesis, characterization, and application of carbon nanotubes (CNTs) have long posed significant challenges due to the inherent multiple complexity nature involved in their production, processing, and analysis. Recent advancements in machine learning (ML) have provided researchers with novel and powerful tools to address these challenges. This review explores the role of ML in the field of CNT research, focusing on how ML has enhanced CNT research by (1) revolutionizing CNT synthesis through the optimization of complex multivariable systems, enabling autonomous synthesis systems, and reducing reliance on conventional trial-and-error approaches; (2) improving the accuracy and efficiency of CNT characterizations; and (3) accelerating the development of CNT applications across several fields such as electronics, composites, and biomedical fields. This review concludes by offering perspectives on the future potential of integrating ML further into CNT research, highlighting its role in driving the field forward. Full article
Show Figures

Figure 1

Back to TopTop