Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

Search Results (270)

Search Parameters:
Keywords = single frequency reconstruction

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 1584 KiB  
Article
What Determines Carbon Emissions of Multimodal Travel? Insights from Interpretable Machine Learning on Mobility Trajectory Data
by Guo Wang, Shu Wang, Wenxiang Li and Hongtai Yang
Sustainability 2025, 17(15), 6983; https://doi.org/10.3390/su17156983 (registering DOI) - 31 Jul 2025
Abstract
Understanding the carbon emissions of multimodal travel—comprising walking, metro, bus, cycling, and ride-hailing—is essential for promoting sustainable urban mobility. However, most existing studies focus on single-mode travel, while underlying spatiotemporal and behavioral determinants remain insufficiently explored due to the lack of fine-grained data [...] Read more.
Understanding the carbon emissions of multimodal travel—comprising walking, metro, bus, cycling, and ride-hailing—is essential for promoting sustainable urban mobility. However, most existing studies focus on single-mode travel, while underlying spatiotemporal and behavioral determinants remain insufficiently explored due to the lack of fine-grained data and interpretable analytical frameworks. This study proposes a novel integration of high-frequency, real-world mobility trajectory data with interpretable machine learning to systematically identify the key drivers of carbon emissions at the individual trip level. Firstly, multimodal travel chains are reconstructed using continuous GPS trajectory data collected in Beijing. Secondly, a model based on Calculate Emissions from Road Transport (COPERT) is developed to quantify trip-level CO2 emissions. Thirdly, four interpretable machine learning models based on gradient boosting—XGBoost, GBDT, LightGBM, and CatBoost—are trained using transportation and built environment features to model the relationship between CO2 emissions and a set of explanatory variables; finally, Shapley Additive exPlanations (SHAP) and partial dependence plots (PDPs) are used to interpret the model outputs, revealing key determinants and their non-linear interaction effects. The results show that transportation-related features account for 75.1% of the explained variance in emissions, with bus usage being the most influential single factor (contributing 22.6%). Built environment features explain the remaining 24.9%. The PDP analysis reveals that substantial emission reductions occur only when the shares of bus, metro, and cycling surpass threshold levels of approximately 40%, 40%, and 30%, respectively. Additionally, travel carbon emissions are minimized when trip origins and destinations are located within a 10 to 11 km radius of the central business district (CBD). This study advances the field by establishing a scalable, interpretable, and behaviorally grounded framework to assess carbon emissions from multimodal travel, providing actionable insights for low-carbon transport planning and policy design. Full article
(This article belongs to the Special Issue Sustainable Transportation Systems and Travel Behaviors)
Show Figures

Figure 1

24 pages, 5256 KiB  
Article
In-Wheel Motor Fault Diagnosis Method Based on Two-Stream 2DCNNs with DCBA Module
by Junwei Zhu, Xupeng Ouyang, Zongkang Jiang, Yanlong Xu, Hongtao Xue, Huiyu Yue and Huayuan Feng
Sensors 2025, 25(15), 4617; https://doi.org/10.3390/s25154617 - 25 Jul 2025
Viewed by 187
Abstract
To address the challenge of fault diagnosis for in-wheel motors in four-wheel independent driving systems under variable driving conditions and harsh environments, this paper proposes a novel method based on two-stream 2DCNNs (two-dimensional convolutional neural networks) with a DCBA (depthwise convolution block attention) [...] Read more.
To address the challenge of fault diagnosis for in-wheel motors in four-wheel independent driving systems under variable driving conditions and harsh environments, this paper proposes a novel method based on two-stream 2DCNNs (two-dimensional convolutional neural networks) with a DCBA (depthwise convolution block attention) module. The main contributions are twofold: (1) A DCBA module is introduced to extract multi-scale features—including prominent, local, and average information—from grayscale images reconstructed from vibration signals across different domains; and (2) a two-stream network architecture is designed to learn complementary feature representations from time-domain and time–frequency-domain signals, which are fused through fully connected layers to improve diagnostic accuracy. Experimental results demonstrate that the proposed method achieves high recognition accuracy under various working speeds, loads, and road surfaces. Comparative studies with SENet, ECANet, CBAM, and single-stream 2DCNN models confirm its superior performance and robustness. The integration of DCBA with dual-domain feature learning effectively enhances fault feature extraction under complex operating conditions. Full article
(This article belongs to the Special Issue Intelligent Maintenance and Fault Diagnosis of Mobility Equipment)
Show Figures

Figure 1

21 pages, 4388 KiB  
Article
An Omni-Dimensional Dynamic Convolutional Network for Single-Image Super-Resolution Tasks
by Xi Chen, Ziang Wu, Weiping Zhang, Tingting Bi and Chunwei Tian
Mathematics 2025, 13(15), 2388; https://doi.org/10.3390/math13152388 - 25 Jul 2025
Viewed by 244
Abstract
The goal of single-image super-resolution (SISR) tasks is to generate high-definition images from low-quality inputs, with practical uses spanning healthcare diagnostics, aerial imaging, and surveillance systems. Although cnns have considerably improved image reconstruction quality, existing methods still face limitations, including inadequate restoration of [...] Read more.
The goal of single-image super-resolution (SISR) tasks is to generate high-definition images from low-quality inputs, with practical uses spanning healthcare diagnostics, aerial imaging, and surveillance systems. Although cnns have considerably improved image reconstruction quality, existing methods still face limitations, including inadequate restoration of high-frequency details, high computational complexity, and insufficient adaptability to complex scenes. To address these challenges, we propose an Omni-dimensional Dynamic Convolutional Network (ODConvNet) tailored for SISR tasks. Specifically, ODConvNet comprises four key components: a Feature Extraction Block (FEB) that captures low-level spatial features; an Omni-dimensional Dynamic Convolution Block (DCB), which utilizes a multidimensional attention mechanism to dynamically reweight convolution kernels across spatial, channel, and kernel dimensions, thereby enhancing feature expressiveness and context modeling; a Deep Feature Extraction Block (DFEB) that stacks multiple convolutional layers with residual connections to progressively extract and fuse high-level features; and a Reconstruction Block (RB) that employs subpixel convolution to upscale features and refine the final HR output. This mechanism significantly enhances feature extraction and effectively captures rich contextual information. Additionally, we employ an improved residual network structure combined with a refined Charbonnier loss function to alleviate gradient vanishing and exploding to enhance the robustness of model training. Extensive experiments conducted on widely used benchmark datasets, including DIV2K, Set5, Set14, B100, and Urban100, demonstrate that, compared with existing deep learning-based SR methods, our ODConvNet method improves Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index (SSIM), and the visual quality of SR images is also improved. Ablation studies further validate the effectiveness and contribution of each component in our network. The proposed ODConvNet offers an effective, flexible, and efficient solution for the SISR task and provides promising directions for future research. Full article
Show Figures

Figure 1

27 pages, 8957 KiB  
Article
DFAN: Single Image Super-Resolution Using Stationary Wavelet-Based Dual Frequency Adaptation Network
by Gyu-Il Kim and Jaesung Lee
Symmetry 2025, 17(8), 1175; https://doi.org/10.3390/sym17081175 - 23 Jul 2025
Viewed by 277
Abstract
Single image super-resolution is the inverse problem of reconstructing a high-resolution image from its low-resolution counterpart. Although recent Transformer-based architectures leverage global context integration to improve reconstruction quality, they often overlook frequency-specific characteristics, resulting in the loss of high-frequency information. To address this [...] Read more.
Single image super-resolution is the inverse problem of reconstructing a high-resolution image from its low-resolution counterpart. Although recent Transformer-based architectures leverage global context integration to improve reconstruction quality, they often overlook frequency-specific characteristics, resulting in the loss of high-frequency information. To address this limitation, we propose the Dual Frequency Adaptive Network (DFAN). DFAN first decomposes the input into low- and high-frequency components via Stationary Wavelet Transform. In the low-frequency branch, Swin Transformer layers restore global structures and color consistency. In contrast, the high-frequency branch features a dedicated module that combines Directional Convolution with Residual Dense Blocks, precisely reinforcing edges and textures. A frequency fusion module then adaptively merges these complementary features using depthwise and pointwise convolutions, achieving a balanced reconstruction. During training, we introduce a frequency-aware multi-term loss alongside the standard pixel-wise loss to explicitly encourage high-frequency preservation. Extensive experiments on the Set5, Set14, BSD100, Urban100, and Manga109 benchmarks show that DFAN achieves up to +0.64 dBpeak signal-to-noise ratio, +0.01 structural similarity index measure, and −0.01learned perceptual image patch similarity over the strongest frequency-domain baselines, while also delivering visibly sharper textures and cleaner edges. By unifying spatial and frequency-domain advantages, DFAN effectively mitigates high-frequency degradation and enhances SISR performance. Full article
(This article belongs to the Section Computer)
Show Figures

Figure 1

24 pages, 5200 KiB  
Article
DRFAN: A Lightweight Hybrid Attention Network for High-Fidelity Image Super-Resolution in Visual Inspection Applications
by Ze-Long Li, Bai Jiang, Liang Xu, Zhe Lu, Zi-Teng Wang, Bin Liu, Si-Ye Jia, Hong-Dan Liu and Bing Li
Algorithms 2025, 18(8), 454; https://doi.org/10.3390/a18080454 - 22 Jul 2025
Viewed by 291
Abstract
Single-image super-resolution (SISR) plays a critical role in enhancing visual quality for real-world applications, including industrial inspection and embedded vision systems. While deep learning-based approaches have made significant progress in SR, existing lightweight SR models often fail to accurately reconstruct high-frequency textures, especially [...] Read more.
Single-image super-resolution (SISR) plays a critical role in enhancing visual quality for real-world applications, including industrial inspection and embedded vision systems. While deep learning-based approaches have made significant progress in SR, existing lightweight SR models often fail to accurately reconstruct high-frequency textures, especially under complex degradation scenarios, resulting in blurry edges and structural artifacts. To address this challenge, we propose a Dense Residual Fused Attention Network (DRFAN), a novel lightweight hybrid architecture designed to enhance high-frequency texture recovery in challenging degradation conditions. Moreover, by coupling convolutional layers and attention mechanisms through gated interaction modules, the DRFAN enhances local details and global dependencies with linear computational complexity, enabling the efficient utilization of multi-level spatial information while effectively alleviating the loss of high-frequency texture details. To evaluate its effectiveness, we conducted ×4 super-resolution experiments on five public benchmarks. The DRFAN achieves the best performance among all compared lightweight models. Visual comparisons show that the DRFAN restores more accurate geometric structures, with up to +1.2 dB/+0.0281 SSIM gain over SwinIR-S on Urban100 samples. Additionally, on a domain-specific rice grain dataset, the DRFAN outperforms SwinIR-S by +0.19 dB in PSNR and +0.0015 in SSIM, restoring clearer textures and grain boundaries essential for industrial quality inspection. The proposed method provides a compelling balance between model complexity and image reconstruction fidelity, making it well-suited for deployment in resource-constrained visual systems and industrial applications. Full article
Show Figures

Figure 1

14 pages, 16969 KiB  
Article
FTT: A Frequency-Aware Texture Matching Transformer for Digital Bathymetry Model Super-Resolution
by Peikun Xiao, Jianping Wu and Yingjie Wang
J. Mar. Sci. Eng. 2025, 13(7), 1365; https://doi.org/10.3390/jmse13071365 - 17 Jul 2025
Viewed by 171
Abstract
Deep learning has shown significant advantages over traditional spatial interpolation methods in single image super-resolution (SISR). Recently, many studies have applied super-resolution (SR) methods to generate high-resolution (HR) digital bathymetry models (DBMs), but substantial differences between DBM and natural images have been ignored, [...] Read more.
Deep learning has shown significant advantages over traditional spatial interpolation methods in single image super-resolution (SISR). Recently, many studies have applied super-resolution (SR) methods to generate high-resolution (HR) digital bathymetry models (DBMs), but substantial differences between DBM and natural images have been ignored, which leads to serious distortions and inaccuracies. Given the critical role of HR DBM in marine resource exploitation, economic development, and scientific innovation, we propose a frequency-aware texture matching transformer (FTT) for DBM SR, incorporating global terrain feature extraction (GTFE), high-frequency feature extraction (HFFE), and a terrain matching block (TMB). GTFE has the capability to perceive spatial heterogeneity and spatial locations, allowing it to accurately capture large-scale terrain features. HFFE can explicitly extract high-frequency priors beneficial for DBM SR and implicitly refine the representation of high-frequency information in the global terrain feature. TMB improves fidelity of generated HR DBM by generating position offsets to restore warped textures in deep features. Experimental results have demonstrated that the proposed FTT has superior performance in terms of elevation, slope, aspect, and fidelity of generated HR DBM. Notably, the root mean square error (RMSE) of elevation in steep terrain has been reduced by 4.89 m, which is a significant improvement in the accuracy and precision of the reconstruction. This research holds significant implications for improving the accuracy of DBM SR methods and the usefulness of HR bathymetry products for future marine research. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

17 pages, 1601 KiB  
Article
Short-Term Wind Power Prediction Based on Improved SAO-Optimized LSTM
by Zuoquan Liu, Xinyu Liu and Haocheng Zhang
Processes 2025, 13(7), 2192; https://doi.org/10.3390/pr13072192 - 9 Jul 2025
Viewed by 252
Abstract
To enhance the accuracy of short-term wind power forecasting, this study proposes a hybrid model combining Northern Goshawk Optimization (NGO)-optimized Variational Mode Decomposition (VMD) and an Improved Snow Ablation Optimizer (ISAO)-optimized Long Short-Term Memory (LSTM) network. Initially, NGO is applied to determine the [...] Read more.
To enhance the accuracy of short-term wind power forecasting, this study proposes a hybrid model combining Northern Goshawk Optimization (NGO)-optimized Variational Mode Decomposition (VMD) and an Improved Snow Ablation Optimizer (ISAO)-optimized Long Short-Term Memory (LSTM) network. Initially, NGO is applied to determine the optimal parameters for VMD, decomposing the original wind power series into multiple frequency-based subsequences. Subsequently, ISAO is employed to fine-tune the hyperparameters of the LSTM, resulting in an ISAO-LSTM prediction model. The final forecast is obtained by reconstructing the subsequences through superposition. Experiments conducted on real data from a wind farm in Ningxia, China demonstrate that the proposed approach significantly outperforms traditional single and combined models, yielding predictions that closely align with actual measurements. This validates the method’s effectiveness for short-term wind power prediction and offers valuable data support for optimizing microgrid scheduling and capacity planning in wind-integrated energy systems. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

25 pages, 10317 KiB  
Article
Sparse Reconstruction-Based Target Localization with Distributed Waveform-Diverse Array Radars
by Runlong Ma, Lan Lan, Guisheng Liao, Jingwei Xu, Fa Wei and Ximin Li
Remote Sens. 2025, 17(13), 2278; https://doi.org/10.3390/rs17132278 - 3 Jul 2025
Viewed by 262
Abstract
This paper addresses the problem of target localization in a distributed waveform diverse array radar system, exploiting the technique of sparse reconstruction. At the configuration stage, the distributed radar system consists of two individual Frequency Diverse Array Multiple-Input Multiple-Output (FDA-MIMO) radars and one [...] Read more.
This paper addresses the problem of target localization in a distributed waveform diverse array radar system, exploiting the technique of sparse reconstruction. At the configuration stage, the distributed radar system consists of two individual Frequency Diverse Array Multiple-Input Multiple-Output (FDA-MIMO) radars and one single Element-Pulse Coding MIMO (EPC-MIMO) radar. To obtain the angle and incremental range (i.e., the range offset between the sampling point and actual position within the range bin) of the targets in each local radar, two sparse reconstruction-based algorithms, including the grid-based Iterative Adaptive Approach (IAA) and gridless Atomic Norm Minimization (ANM) algorithms, are implemented. Furthermore, multiple sets of local statistics are fused at the fusion center, where a Weighted Least Squares (WLS) method is performed to localize targets. At the analysis stage, the estimation performance of the proposed methods, encompassing both IAA and ANM algorithms, is evaluated in contrast to the Cramér–Rao Bound (CRB). Numerical results and parametric studies are provided to demonstrate the effectiveness of the proposed sparse reconstruction methods for target localization in the distributed waveform diverse array system. Full article
(This article belongs to the Special Issue Advanced Techniques of Spaceborne Surveillance Radar)
Show Figures

Figure 1

24 pages, 1307 KiB  
Article
A Self-Supervised Specific Emitter Identification Method Based on Contrastive Asymmetric Masked Learning
by Dong Wang, Yonghui Huang, Tianshu Cui and Yan Zhu
Sensors 2025, 25(13), 4023; https://doi.org/10.3390/s25134023 - 27 Jun 2025
Viewed by 294
Abstract
Specific emitter identification (SEI) is a core technology for wireless device security that plays a crucial role in protecting wireless communication systems from various security threats. However, current deep learning-based SEI methods heavily rely on large amounts of labeled data for supervised training, [...] Read more.
Specific emitter identification (SEI) is a core technology for wireless device security that plays a crucial role in protecting wireless communication systems from various security threats. However, current deep learning-based SEI methods heavily rely on large amounts of labeled data for supervised training, facing challenges in non-cooperative communication scenarios. To address these issues, this paper proposes a novel contrastive asymmetric masked learning-based SEI (CAML-SEI) method, effectively solving the problem of SEI under scarce labeled samples. The proposed method constructs an asymmetric auto-encoder architecture, comprising an encoder network based on channel squeeze-and-excitation residual blocks to capture radio frequency fingerprint (RFF) features embedded in signals, while employing a lightweight single-layer convolutional decoder for masked signal reconstruction. This design promotes the learning of fine-grained local feature representations. To further enhance feature discriminability, a learnable non-linear mapping is introduced to compress high-dimensional encoded features into a compact low-dimensional space, accompanied by a contrastive loss function that simultaneously achieves feature aggregation of positive samples and feature separation of negative samples. Finally, the network is jointly optimized by combining signal reconstruction and feature contrast tasks. Experiments conducted on real-world ADS-B and Wi-Fi datasets demonstrate that the proposed method effectively learns generalized RFF features, and the results show superior performance compared with other SEI methods. Full article
(This article belongs to the Section Communications)
Show Figures

Figure 1

16 pages, 1722 KiB  
Article
Integrated Wavelet-Grey-Neural Network Model for Heritage Structure Settlement Prediction
by Yonghong He, Pengwei Jin, Xin Wang, Shaoluo Shen and Jun Ma
Buildings 2025, 15(13), 2240; https://doi.org/10.3390/buildings15132240 - 26 Jun 2025
Viewed by 262
Abstract
To address the issue of insufficient prediction accuracy in traditional GM(1,1) models caused by significant nonlinear fluctuations in time-series data for ancient building structural health monitoring, this study proposes a wavelet decomposition-based GM(1,1)-BP neural network coupled prediction model. By constructing a multi-scale fusion [...] Read more.
To address the issue of insufficient prediction accuracy in traditional GM(1,1) models caused by significant nonlinear fluctuations in time-series data for ancient building structural health monitoring, this study proposes a wavelet decomposition-based GM(1,1)-BP neural network coupled prediction model. By constructing a multi-scale fusion framework, we systematically resolve the collaborative optimization between trend prediction and detail modeling. The methodology comprises four main phases: First, wavelet transform is employed to decompose original monitoring sequences into time-frequency components, obtaining low-frequency trends characterizing long-term deformation patterns and high-frequency details reflecting dynamic fluctuations. Second, GM(1,1) models are established for the trend extrapolation of low-frequency components, capitalizing on their advantages in limited-data modeling. Subsequently, BP neural networks are designed for the nonlinear mapping of high-frequency components, leveraging adaptive learning mechanisms to capture detail features induced by environmental disturbances and complex factors. Finally, a wavelet reconstruction fusion algorithm is developed to achieve the collaborative optimization of dual-channel prediction results. The model innovatively introduces a detail information correction mechanism that simultaneously overcomes the limitations of single grey models in modeling nonlinear fluctuations and enhances neural networks’ capability in capturing long-term trend features. Experimental validation demonstrates that the fused model reduces the Root Mean Square Error (RMSE) by 76.5% and 82.6% compared to traditional GM(1,1) and BP models, respectively, with the accuracy grade improving from level IV to level I. This achievement provides a multi-scale analytical approach for the quantitative interpretation of settlement deformation patterns in ancient architecture. The established “decomposition-prediction-fusion” technical framework holds significant application value for the preventive conservation of historical buildings. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

18 pages, 3287 KiB  
Article
Effective Denoising of Multi-Source Partial Discharge Signals via an Improved Power Spectrum Segmentation Method Based on Normalized Spectral Kurtosis
by Baojia Chen, Kaiwen Li and Yipeng Guo
Sensors 2025, 25(12), 3798; https://doi.org/10.3390/s25123798 - 18 Jun 2025
Viewed by 326
Abstract
In the field of partial discharge (PD) analysis, traditional methods typically employ single-source PD signal-processing techniques. However, these approaches exhibit significant limitations when applied to transformers with relatively complex structures. To overcome these limitations and achieve precise characterization of composite PD signatures, this [...] Read more.
In the field of partial discharge (PD) analysis, traditional methods typically employ single-source PD signal-processing techniques. However, these approaches exhibit significant limitations when applied to transformers with relatively complex structures. To overcome these limitations and achieve precise characterization of composite PD signatures, this study proposes an improved power spectrum segmentation method (IPSK) based on spectral kurtosis. Firstly, normalized power spectral kurtosis is used to select the appropriate parameters. Then, through the improved power spectrum segmentation method, the segmentation frequency band with the least noise is obtained. Finally, the instantaneous signal components with physical significance are obtained by reconstructing each frequency band through inverse fast Fourier transform. By analyzing the simulated signals and measured data of partial discharge, the proposed method is compared with EWT, AEFD, VMD, and CEEMDAN. The results show that IPSK has a good suppression effect on noise interference. Full article
(This article belongs to the Section Electronic Sensors)
Show Figures

Figure 1

15 pages, 2025 KiB  
Article
Comparison of ADMIRE, SAFIRE, and Filtered Back Projection in Standard and Low-Dose Non-Enhanced Head CT
by Georg Gohla, Anja Örgel, Uwe Klose, Andreas Brendlin, Malte Niklas Bongers, Benjamin Bender, Deborah Staber, Ulrike Ernemann, Till-Karsten Hauser and Christer Ruff
Diagnostics 2025, 15(12), 1541; https://doi.org/10.3390/diagnostics15121541 - 17 Jun 2025
Viewed by 416
Abstract
Background/Objectives: Iterative reconstruction (IR) techniques were developed to address the shortcomings of filtered back projection (FBP), yet research comparing different types of IR is still missing. This work investigates how reducing radiation dose influences both image quality and noise profiles when using [...] Read more.
Background/Objectives: Iterative reconstruction (IR) techniques were developed to address the shortcomings of filtered back projection (FBP), yet research comparing different types of IR is still missing. This work investigates how reducing radiation dose influences both image quality and noise profiles when using two iterative reconstruction techniques—Sinogram-Affirmed Iterative Reconstruction (SAFIRE) and Advanced Modeled Iterative Reconstruction (ADMIRE)—in comparison to filtered back projection (FBP) in non-enhanced head CT (NECT). Methods: In this retrospective single-center study, 21 consecutive patients underwent standard NECT on a 128-slice CT scanner. Raw data simulated dose reductions to 90% and 70% of the original dose via ReconCT software. For each dose level, images were reconstructed with FBP, SAFIRE 3, and ADMIRE 3. Image noise power spectra quantified objective image noise. Two blinded neuroradiologists scored overall image quality, image noise, image contrast, detail, and artifacts on a 10-point Likert scale in a consensus reading. Quantitative Hounsfield unit (HU) measurements were obtained in white and gray matter regions. Statistical analyses included the Wilcoxon signed-rank test, mixed-effects modeling, ANOVA, and post hoc pairwise comparisons with Bonferroni correction. Results: Both iterative reconstructions significantly reduced image noise compared to FBP across all dose levels (p < 0.001). ADMIRE exhibited superior image noise suppression at low (<0.51 1/mm) and high (>1.31 1/mm) spatial frequencies, whereas SAFIRE performed better in the mid-frequency range (0.51–1.31 1/mm). Subjective scores for overall quality, image noise, image contrast, and detail were higher for ADMIRE and SAFIRE versus FBP at the original dose and simulated doses of 90% and 70% (all p < 0.001). ADMIRE outperformed SAFIRE in artifact reduction (p < 0.001), while SAFIRE achieved slightly higher image contrast scores (p < 0.001). Objective HU values remained stable across reconstruction methods, although SAFIRE yielded marginally higher gray and white matter (WM) attenuations (p < 0.01). Conclusions: Both IR techniques—ADMIRE and SAFIRE—achieved substantial noise reduction and improved image quality relative to FBP in non-enhanced head CT at standard and reduced dose levels on the specific CT system and reconstruction strength tested. ADMIRE showed enhanced suppression of low- and high-frequency image noise and fewer artifacts, while SAFIRE preserved image contrast and reduced mid-frequency noise. These findings support the potential of iterative reconstruction to optimize radiation dose in NECT protocols in line with the ALARA principle, although broader validation in multi-vendor, multi-center settings is warranted. Full article
Show Figures

Figure 1

17 pages, 869 KiB  
Article
Impact of Mother Wavelet Choice on Fast Wavelet Transform Performances for Integrated ST Segment Monitoring
by Béatrice Guénégo, Caroline Lelandais-Perrault, Emilie Avignon-Meseldzija, Gérard Sou and Philippe Bénabès
J. Low Power Electron. Appl. 2025, 15(2), 31; https://doi.org/10.3390/jlpea15020031 - 12 May 2025
Viewed by 607
Abstract
The ST segment of an ECG signal is a feature that changes in the event of cardiac ischemia, a condition that is an early warning sign of myocardial infarction. Being able to monitor this feature in real time would be highly beneficial for [...] Read more.
The ST segment of an ECG signal is a feature that changes in the event of cardiac ischemia, a condition that is an early warning sign of myocardial infarction. Being able to monitor this feature in real time would be highly beneficial for preventing recurrent heart attacks. However, to be worn daily, such a monitoring device must be extremely miniaturized, down to the scale of a single integrated circuit. Currently, it is possible to integrate a heart rate detector, but, to our knowledge, no existing work presents a chip capable of detecting ST segment deviation. This is mainly because accurate ST segment measurement requires low-distortion signal processing, as specified in the International Electrotechnical Commission (IEC) standard. At the same time, the system is required to filter out baseline wander, whose frequency components may partially overlap with those of the ST segment. In this study, we relied on wavelet-based analysis and reconstruction to compare several wavelet types. We optimized their hyperparameters to minimize implementation complexity while satisfying the low-distortion constraints. We also propose an ASIC-oriented architecture and evaluate its post-layout performance in terms of area and power consumption. The post-layout results indicate that the Daubechies wavelet db3 offers the best trade-off among the evaluated configurations. It exhibits an area utilization of 1.18 mm2 and a post-layout power consumption of 4.89 μW, while preserving the ST segment in compliance with the IEC standard, thanks in particular to its effective baseline wandering filtering of 6.9 dB. These results demonstrate the feasibility of embedding automatic ST segment extraction on-chip. Full article
(This article belongs to the Topic Advanced Integrated Circuit Design and Application)
Show Figures

Figure 1

13 pages, 3204 KiB  
Article
Reconstruction of Electrochemical Impedance Spectroscopy from Time-Domain Pulses of a 3.7 kWh Lithium-Ion Battery Module
by Manuel Kasper, Manuel Moertelmaier, Hartmut Popp, Ferry Kienberger and Nawfal Al-Zubaidi R-Smith
Electrochem 2025, 6(2), 17; https://doi.org/10.3390/electrochem6020017 - 1 May 2025
Viewed by 1276
Abstract
We demonstrate the reconstruction of battery electrochemical impedance spectroscopy (EIS) curves from time-domain pulse testing and the distribution of relaxation times (DRT) analysis. In the proposed approach, the DRT directly utilizes measured current data instead of simulated current patterns, thereby enhancing robustness against [...] Read more.
We demonstrate the reconstruction of battery electrochemical impedance spectroscopy (EIS) curves from time-domain pulse testing and the distribution of relaxation times (DRT) analysis. In the proposed approach, the DRT directly utilizes measured current data instead of simulated current patterns, thereby enhancing robustness against current variations and data anomalies. The method is demonstrated with a simulation, a single cylindrical battery cell experiment, and an experimental EIS of a completely assembled module of 448 cells. For the 3.7 kWh battery module, we applied a transient current pulse and analyzed the dynamic voltage responses. The EIS curves were reconstructed with DRT and compared to experiments across different states of charge (SoC). The experimental EIS data were corrected by a multistep calibration workflow in a frequency range from 50 mHz to 1 kHz, achieving error corrections of up to 80% at 1 kHz. The reconstructed impedances from the pulse test data are in good agreement with the EIS experiments in a broad frequency range, delivering relevant electrochemical information including the ohmic resistance and dynamic time constants of a battery module and its corresponding submodules. With the proposed workflow, rapid pulse tests can be used for extracting electrochemical information faster than standard EIS, with a 67% reduction in measurement time. This time-domain pulsing approach provides an alternative to EIS characterization, making it particularly valuable for battery monitoring, the classification of battery packs upon their return to the manufacturer, second-life applications, and recycling. Full article
Show Figures

Figure 1

25 pages, 5598 KiB  
Article
Quad-Frequency Wide-Lane, Narrow-Lane and Hatch–Melbourne–Wübbena Combinations: The Beidou Case
by Daniele Borio, Melania Susi and Kinga Wȩzka
Electronics 2025, 14(9), 1805; https://doi.org/10.3390/electronics14091805 - 28 Apr 2025
Viewed by 417
Abstract
The pseudoranges of a Global Navigation Satellite System (GNSS) meta-signal can be reconstructed from the observations of its side-band components. More specifically, the Hatch–Melbourne–Wübbena (HMW) code-carrier combination is used to solve the ambiguity associated to the wide-lane carrier phase combination of the side-band [...] Read more.
The pseudoranges of a Global Navigation Satellite System (GNSS) meta-signal can be reconstructed from the observations of its side-band components. More specifically, the Hatch–Melbourne–Wübbena (HMW) code-carrier combination is used to solve the ambiguity associated to the wide-lane carrier phase combination of the side-band components, obtaining a high-accuracy pseudorange. The HMW and the wide-lane combinations thus play a key role in constructing meta-signal measurements. The theory of GNSS meta-signals was recently extended to the case with a number of components equal to a power of two. This theory can be used to generalize HMW and wide-lane combinations to the quad-frequency case. This is carried out through a Hadamard matrix of order four, which defines a narrow-lane and three wide-lane combinations. This paper characterizes meta-signal-inspired quad-frequency HMW and wide-lane measurements combinations using Beidou Navigation Satellite System (BDS) observations. Two professional Septentrio PolarRx5S multi-frequency, multi-constellation receivers were set up in a zero-baseline configuration and used to collect observables from all the BDS open frequencies. These measurements are used to characterize different quad-frequency HMW and wide-lane carrier combinations. Some of the combinations analyzed have large equivalent wavelengths and have the potential to enable single-epoch ambiguity resolution in scenarios where short convergence times are required. Full article
(This article belongs to the Special Issue Precision Positioning and Navigation Communication Systems)
Show Figures

Graphical abstract

Back to TopTop