Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (225)

Search Parameters:
Keywords = sidelobe levels

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 6401 KiB  
Article
Efficient Sampling Schemes for 3D Imaging of Radar Target Scattering Based on Synchronized Linear Scanning and Rotational Motion
by Changyu Lou, Jingcheng Zhao, Xingli Wu, Yuchen Zhang, Zongkai Yang, Jiahui Li and Jungang Miao
Remote Sens. 2025, 17(15), 2636; https://doi.org/10.3390/rs17152636 - 29 Jul 2025
Abstract
Three-dimensional (3D) radar imaging is essential for target detection and measurement of scattering characteristics. Cylindrical scanning, a prevalent spatial sampling technique, provides benefits in engineering applications and has been extensively utilized for assessing the radar stealth capabilities of large aircraft. Traditional cylindrical scanning [...] Read more.
Three-dimensional (3D) radar imaging is essential for target detection and measurement of scattering characteristics. Cylindrical scanning, a prevalent spatial sampling technique, provides benefits in engineering applications and has been extensively utilized for assessing the radar stealth capabilities of large aircraft. Traditional cylindrical scanning generally utilizes highly sampled full-coverage techniques, leading to an excessive quantity of sampling points and diminished image efficiency, constraining its use for quick detection applications. This work presents an efficient 3D sampling strategy that integrates vertical linear scanning with horizontal rotating motion to overcome these restrictions. A joint angle–space sampling model is developed, and geometric constraints are implemented to enhance the scanning trajectory. The experimental results demonstrate that, compared to conventional techniques, the proposed method achieves a 94% reduction in the scanning duration while maintaining a peak sidelobe level ratio (PSLR) of 12 dB. Furthermore, this study demonstrates that 3D imaging may be accomplished solely by a “V”-shaped trajectory, efficiently determining the minimal possible sampling aperture. This approach offers novel insights and theoretical backing for the advancement of high-efficiency, low-redundancy 3D radar imaging systems. Full article
(This article belongs to the Special Issue Recent Advances in SAR: Signal Processing and Target Recognition)
Show Figures

Figure 1

16 pages, 34384 KiB  
Article
A Low-Profile Dual-Polarized High-Gain Low Cross-Polarization Phased Array for Ku-Band Satellite Communications
by Yuhan Huang, Jie Zhang, Xiuping Li, Zihang Qi, Fan Lu, Hua Jiang, Xin Xue, Hua Zhu and Xiaobin Guo
Sensors 2025, 25(13), 3986; https://doi.org/10.3390/s25133986 - 26 Jun 2025
Viewed by 404
Abstract
A low-profile dual-polarized shared-aperture phased array antenna is proposed for Ku-band satellite communications in this paper. The stacked octagonal patches loaded with Via-rings are proposed as dual-polarized shared-aperture radiation elements, with the characteristics of wide impedance bandwidth, high gain, and weak coupling. Furthermore, [...] Read more.
A low-profile dual-polarized shared-aperture phased array antenna is proposed for Ku-band satellite communications in this paper. The stacked octagonal patches loaded with Via-rings are proposed as dual-polarized shared-aperture radiation elements, with the characteristics of wide impedance bandwidth, high gain, and weak coupling. Furthermore, innovative minimized three-port ring couplers are utilized for the differential-fed antenna array, further suppressing the cross-polarization component. Substrate integrated coaxial line (SICL) and microstrip line (MS) feed networks are employed for the excitation of transmitting band (Tx) horizontal polarization and receiving band (Rx) vertical polarization, respectively. The non-uniform subarray architecture is optimized to minimize the sidelobe levels with the reduced number of transmitter and receiver (T/R) radio frequency phase-shifting modules. As proof-of-concept examples, 16 × 24 and 32 × 24 array antennas are demonstrated and fabricated. The measured impedance bandwidths of the proposed phased array antennas are around 21.1%, while the in-band isolations are above 36.7 dB. Gains up to 29 dBi and 32.4 dBi are performed by two prototypes separately. In addition, the T/R phase-shifting modules are utilized to validate the beam-scanning characteristic, which is of value for dynamic satellite communications. Full article
(This article belongs to the Special Issue Design and Measurement of Millimeter-Wave Antennas)
Show Figures

Figure 1

17 pages, 2744 KiB  
Article
A Hybrid Optimization Algorithm for the Synthesis of Sparse Array Pattern Diagrams
by Youzhi Liu, Linshu Huang, Xu Xie and Huijuan Ye
Appl. Sci. 2025, 15(12), 6490; https://doi.org/10.3390/app15126490 - 9 Jun 2025
Cited by 1 | Viewed by 344
Abstract
To comprehensively address the challenges of aperture design, element spacing optimization, and sidelobe suppression in sparse radar array antennas, this paper proposes a hybrid particle swarm optimization (PSO) algorithm that integrates quantum-behavior mechanisms with genetic mutation. The algorithm enhances global search capability through [...] Read more.
To comprehensively address the challenges of aperture design, element spacing optimization, and sidelobe suppression in sparse radar array antennas, this paper proposes a hybrid particle swarm optimization (PSO) algorithm that integrates quantum-behavior mechanisms with genetic mutation. The algorithm enhances global search capability through the introduction of a quantum potential well model, while incorporating adaptive mutation operations to prevent premature convergence, thereby improving optimization accuracy during later iterations. The simulation results demonstrate that for sparse linear arrays, planar rectangular arrays, and multi-ring concentric circular arrays, the proposed algorithm achieves a sidelobe level (SLL) reduction exceeding 0.24 dB compared to conventional approaches, including the grey wolf optimizer (GWO), the whale optimization algorithm (WOA), and classical PSO. Furthermore, it exhibits superior global iterative search performance and demonstrates broader applicability across various array configurations. Full article
(This article belongs to the Special Issue Advanced Antenna Array Technologies and Applications)
Show Figures

Figure 1

21 pages, 4987 KiB  
Article
Sea Clutter Suppression for Shipborne DRM-Based Passive Radar via Carrier Domain STAP
by Yijia Guo, Jun Geng, Xun Zhang and Haiyu Dong
Remote Sens. 2025, 17(12), 1985; https://doi.org/10.3390/rs17121985 - 8 Jun 2025
Viewed by 444
Abstract
This paper proposes a new carrier domain approach to suppress spreading first-order sea clutter in shipborne passive radar systems using Digital Radio Mondiale (DRM) signals as illuminators. The DRM signal is a broadcast signal that operates in the high-frequency (HF) band and employs [...] Read more.
This paper proposes a new carrier domain approach to suppress spreading first-order sea clutter in shipborne passive radar systems using Digital Radio Mondiale (DRM) signals as illuminators. The DRM signal is a broadcast signal that operates in the high-frequency (HF) band and employs orthogonal frequency-division multiplexing (OFDM) modulation. In shipborne DRM-based passive radar, sea clutter sidelobes elevate the noise level of the clutter-plus-noise covariance matrix, thereby degrading the target signal-to-interference-plus-noise ratio (SINR) in traditional space–time adaptive processing (STAP). Moreover, the limited number of space–time snapshots in traditional STAP algorithms further degrades clutter suppression performance. By exploiting the multi-carrier characteristics of OFDM, this paper proposes a novel algorithm, termed Space Time Adaptive Processing by Carrier (STAP-C), to enhance clutter suppression performance. The proposed method improves the clutter suppression performance from two aspects. The first is removing the transmitted symbol information from the space–time snapshots, which significantly reduces the effect of the sea clutter sidelobes. The other is using the space–time snapshots obtained from all subcarriers, which substantially increases the number of available snapshots and thereby improves the clutter suppression performance. In addition, we combine the proposed algorithm with the dimensionality reduction algorithm to develop the Joint Domain Localized-Space Time Adaptive Processing by Carrier (JDL-STAP-C) algorithm. JDL-STAP-C algorithm transforms space–time data into the angle–Doppler domain for clutter suppression, which reduces the computational complexity. Simulation results show the effectiveness of the proposed algorithm in providing a high improvement factor (IF) and less computational time. Full article
(This article belongs to the Special Issue Array and Signal Processing for Radar)
Show Figures

Figure 1

25 pages, 1220 KiB  
Article
Convex Formulations for Antenna Array Pattern Optimization Through Linear, Quadratic, and Second-Order Cone Programming
by Álvaro F. Vaquero and Juan Córcoles
Mathematics 2025, 13(11), 1796; https://doi.org/10.3390/math13111796 - 28 May 2025
Viewed by 521
Abstract
This work presents a comprehensive study on formulations for the radiation pattern design of antenna arrays through convex optimization techniques, with a focus on linear, quadratic, and second-order cone programming. The proposed approaches heavily rely on the construction of Hermitian forms to systematically [...] Read more.
This work presents a comprehensive study on formulations for the radiation pattern design of antenna arrays through convex optimization techniques, with a focus on linear, quadratic, and second-order cone programming. The proposed approaches heavily rely on the construction of Hermitian forms to systematically build convex optimization problems for synthesizing desired beam patterns while including practical constraints such as sidelobe levels (SLLs), maximum directivity, and null placement. By formulating the radiation pattern synthesis problem through a convex formulation, global optimality and computational efficiency are ensured. The paper introduces the mathematical foundations of the proposed methodologies, detailing the structure and benefits of each convex optimization model. Numerical examples demonstrate the effectiveness of the proposed methodologies in achieving high-performance radiation patterns for circular and planar arrays. The results highlight trade-offs between formulation complexity and pattern performance across different optimization models, providing valuable insights for antenna array pattern synthesis. Overall, this work underscores the potential of convex optimization in antenna array pattern synthesis methodologies. Full article
(This article belongs to the Section E: Applied Mathematics)
Show Figures

Figure 1

15 pages, 4992 KiB  
Article
Low-Frequency Square Kilometer Array Pattern Optimization via Convex Programming
by Giada Maria Battaglia, Giuseppe Caruso, Pietro Bolli, Maria Grazia Labate, Roberta Palmeri and Andrea Francesco Morabito
Appl. Sci. 2025, 15(11), 5929; https://doi.org/10.3390/app15115929 - 24 May 2025
Viewed by 440
Abstract
A well-known and powerful convex optimization strategy is exploited to enhance the electromagnetic performance of the Square Kilometer Array Low-Frequency radio telescope. The proposed method minimizes the peak sidelobe level while ensuring full control of the receiving pattern across the entire angular domain. [...] Read more.
A well-known and powerful convex optimization strategy is exploited to enhance the electromagnetic performance of the Square Kilometer Array Low-Frequency radio telescope. The proposed method minimizes the peak sidelobe level while ensuring full control of the receiving pattern across the entire angular domain. The approach is validated through full-wave simulations that incorporate realistic embedded element patterns, demonstrating significant improvements in sidelobe suppression despite the geometric constraints of the array structure. The achieved results underscore the method’s potential for high-performance beam synthesis in large-scale radio astronomy arrays. Full article
(This article belongs to the Special Issue Antennas for Next-Generation Electromagnetic Applications)
Show Figures

Figure 1

17 pages, 1664 KiB  
Article
Joint Optimization of Carrier Frequency and PRF for Frequency Agile Radar Based on Compressed Sensing
by Zhaoxiang Yang, Hao Zheng, Yongliang Zhang, Junkun Yan and Yang Jiang
Remote Sens. 2025, 17(10), 1796; https://doi.org/10.3390/rs17101796 - 21 May 2025
Viewed by 427
Abstract
Frequency agile radar (FAR) exhibits robust anti-jamming capabilities and a superior low probability of intercept performance due to its randomized carrier frequency (CF) and pulse repetition frequency (PRF) hopping sequences. The advent of compressed sensing (CS) theory has effectively addressed the coherent processing [...] Read more.
Frequency agile radar (FAR) exhibits robust anti-jamming capabilities and a superior low probability of intercept performance due to its randomized carrier frequency (CF) and pulse repetition frequency (PRF) hopping sequences. The advent of compressed sensing (CS) theory has effectively addressed the coherent processing challenges of frequency agile signals. Nonetheless, the reconstructed results often suffer from elevated sidelobe levels, which lead to significant sparse recovery errors. The performance of sparse reconstruction is greatly influenced by the correlation between the dictionary matrix columns. Specifically, weaker correlation usually means better target detection performance and lower false alarm probability. Consequently, this paper adopts the maximum coherence coefficient (MCC) between the dictionary matrix columns as the cost function. In addition, in order to reduce the correlation of the dictionary matrix and improve the target detection performance, a genetic algorithm (GA) is employed to jointly optimize the CF hopping coefficients and PRFs of the FAR. The echo of optimized signals is subsequently reconstructed using the alternating direction method of multipliers (ADMM) algorithm. Simulation results demonstrate the effectiveness of the proposal. Full article
Show Figures

Graphical abstract

20 pages, 8652 KiB  
Article
A Detection and Cover Integrated Waveform Design Method with Good Correlation Characteristics and Doppler Tolerance
by Haoting Guo, Fulai Wang, Nanjun Li, Zezhou Wu, Chen Pang, Lei Zhang and Yongzhen Li
Remote Sens. 2025, 17(10), 1775; https://doi.org/10.3390/rs17101775 - 20 May 2025
Viewed by 343
Abstract
With the increasing complexity of the electromagnetic environment, radar waveform design needs to break through the limitation of traditional single-function architectures, prompting the emergence of integrated radar waveforms. Currently, the mainstream integrated signals are achieved through conventional waveform synthesis or time/frequency division multiplexing. [...] Read more.
With the increasing complexity of the electromagnetic environment, radar waveform design needs to break through the limitation of traditional single-function architectures, prompting the emergence of integrated radar waveforms. Currently, the mainstream integrated signals are achieved through conventional waveform synthesis or time/frequency division multiplexing. However, the former suffers from limited design flexibility and is confined to single scenario applications, while the latter has interference between different sub-channels, which will limit the performance of multi-function radar. Aiming at the above problems, this paper proposes a waveform optimization method for a detection and cover integrated signal with high Doppler tolerance. By constructing a joint optimization model, the sidelobe characteristics of the signal’s autoambiguity function and the output response of the non-cooperative matched filter were incorporated into the unified objective function framework. The gradient descent algorithm is used to solve the model, and the optimized waveform with low sidelobe characteristics and multiple false target interference abilities is obtained. When the optimized waveform generates multiple false targets to cover our radar position, its peak sidelobe level (PSL) drops below −23 dB, and most of the sidelobe levels in the range-Doppler interval of interest drop below −40 dB. Finally, the proposed integrated waveform undergoes hardware-in-the-loop experiments, experimentally validating its performance and the effectiveness of the proposed method. Full article
Show Figures

Figure 1

29 pages, 5705 KiB  
Article
An Anti-Interrupted-Sampling Repeater Jamming Method Based on Simulated Annealing–2-Optimization Parallel Optimization of Waveforms and Fractional Domain Extraction
by Ziming Yin, Pengcheng Guo, Yunyu Wei, Sizhe Gao, Jingjing Wang, Anxiang Xue and Kuo Wang
Sensors 2025, 25(10), 3000; https://doi.org/10.3390/s25103000 - 9 May 2025
Viewed by 397
Abstract
Faced with increasingly complex electronic jamming environments, intra-pulse agility has become a primary method of anti-interrupted-sampling repeater jamming (ISRJ) for radar systems. However, existing intra-pulse agile signals suffer from high autocorrelation sidelobe levels and limited jamming suppression capabilities. These issues restrict the performance [...] Read more.
Faced with increasingly complex electronic jamming environments, intra-pulse agility has become a primary method of anti-interrupted-sampling repeater jamming (ISRJ) for radar systems. However, existing intra-pulse agile signals suffer from high autocorrelation sidelobe levels and limited jamming suppression capabilities. These issues restrict the performance of intra-pulse agile signals in complex electromagnetic environments.This paper proposes an anti-interrupted-sampling repeater jamming method based on Simulated Annealing–2-optimization (SA-2opt) parallel optimization of waveforms and fractional domain extraction. Firstly, the proposed method employs the SA-2opt parallel optimization algorithm to optimize the joint frequency and chirp rate encoding waveform. Then, the received signal is subjected to the fractional Fourier transform (FrFT) and inverse transform to extract the target signal. Finally, jamming detection is conducted based on the multi-dimensional features of the pulse-compressed signal. After this detection, a time-domain filter is constructed to achieve jamming suppression. The optimized waveform exhibits the following advantages: the sub-pulses are orthogonal to each other, and autocorrelation sidelobe levels are as low as -20.7dB. The method proposed in this paper can achieve anti-ISRJ in the case of a high jamming-to-signal ratio (JSR). Simulation experiments validate both the effectiveness of the optimized waveform in achieving low autocorrelation sidelobes and the anti-ISRJ performance of the proposed method. Full article
(This article belongs to the Section Intelligent Sensors)
Show Figures

Figure 1

17 pages, 8385 KiB  
Article
Noise Radar Waveform Design Using Evolutionary Algorithms and Negentropy Constraint
by Afonso L. Sénica, Paulo A. C. Marques and Mário A. T. Figueiredo
Remote Sens. 2025, 17(8), 1327; https://doi.org/10.3390/rs17081327 - 8 Apr 2025
Viewed by 590
Abstract
In recent years, several advantages of noise radars have positioned this technology as a promising alternative to conventional radar technology. Immunity to jamming, low mutual interference, and low probability of interception are good examples of these advantages. However, the nature of random sequences [...] Read more.
In recent years, several advantages of noise radars have positioned this technology as a promising alternative to conventional radar technology. Immunity to jamming, low mutual interference, and low probability of interception are good examples of these advantages. However, the nature of random sequences introduces several issues, such as fluctuations in the range sidelobes of the autocorrelation function causing high sidelobe levels, hence not exploitable by radar systems. This study introduces the use of multi-objective evolutionary (MOE) algorithms to design noise radar waveforms with good autocorrelation properties as well as a low peak-to-average power ratio (PAPR). A set of Pareto-optimal waveforms are produced and, most importantly, entropy is introduced as a constraint in order to maintain the transmitted signal close to a full non-deterministic waveform. Moreover, a relation between PAPR and negentropy (negative entropy) is established theoretically and validated with other authors’ simulations. Full article
Show Figures

Figure 1

23 pages, 12254 KiB  
Article
Adaptively Iterative FFT-Based Phase-Only Synthesis for Multiple Elliptical Beam Patterns with Low Sidelobes
by Yuxuan Ding, Yunhua Zhang and Xiaowen Zhao
Electronics 2025, 14(7), 1310; https://doi.org/10.3390/electronics14071310 - 26 Mar 2025
Viewed by 471
Abstract
In this paper, an adaptive iterative Fourier technique (AIFT) algorithm is developed for the synthesis of multiple circular/elliptical beams with low sidelobe levels (SLLs) through phase-only optimization. The key innovation of the AIFT algorithm is the introduction of an elliptical beam model, which [...] Read more.
In this paper, an adaptive iterative Fourier technique (AIFT) algorithm is developed for the synthesis of multiple circular/elliptical beams with low sidelobe levels (SLLs) through phase-only optimization. The key innovation of the AIFT algorithm is the introduction of an elliptical beam model, which facilitates the adaptive determination of main beam regions and offers additional flexibility in controlling pencil beam shapes. Unlike conventional IFT-based algorithms, the AIFT algorithm eliminates the need for prior knowledge of main beam regions and avoids repetitive adjustments of sidelobe correction thresholds. This not only simplifies the configuration process but also prevents the generation of defective radiation patterns. Extensive synthesis experiments with different beam numbers, distributions, and ellipticities demonstrate that the elliptical beam model consistently outperforms its circular counterpart in multibeam scenarios, achieving lower SLL and higher directivity. These advantages are particularly pronounced in asymmetrical beam distributions, highlighting the elliptical beam’s superior potential for reducing SLLs of multi-spot-beam patterns and offering new insights for advancing the performance of point-to-multi-point communication systems. Full article
Show Figures

Figure 1

13 pages, 6463 KiB  
Article
Design of an Aperiodic Optical Phased Array Based on the Multi-Strategy Enhanced Particle Swarm Optimization Algorithm
by Zhuangzhuang Zang, Junjie Wu and Qingzhong Huang
Photonics 2025, 12(3), 210; https://doi.org/10.3390/photonics12030210 - 27 Feb 2025
Cited by 2 | Viewed by 677
Abstract
We have proposed a multi-strategy enhanced particle swarm optimization (PSO) algorithm to optimize the antenna spacing distribution of an optical phased array (OPA). The global search capability is improved by incorporating circle chaotic mapping initialization and an updated strategy based on adaptive inertia [...] Read more.
We have proposed a multi-strategy enhanced particle swarm optimization (PSO) algorithm to optimize the antenna spacing distribution of an optical phased array (OPA). The global search capability is improved by incorporating circle chaotic mapping initialization and an updated strategy based on adaptive inertia weights and dynamic learning factors. We used the peak side-lobe level (PSLL) at different steering angles as the fitness function, which effectively suppresses the rapid degradation of PSLL during scanning. Based on this approach, 32- and 64-channel aperiodic OPAs were designed with a scanning range of ±60°, with improvements of the PSLL of 1.94 and 2.05 dB at 60°, respectively. In addition, the analytical and numerical simulation results are in good agreement. We also analyzed the influence of spacing deviations on PSLL and found that the obtained OPAs exhibit sufficient robustness. Full article
(This article belongs to the Section Lasers, Light Sources and Sensors)
Show Figures

Figure 1

26 pages, 9151 KiB  
Article
Beam-Switching Antennas Using a Butler Matrix with a Five-Element Configuration
by Wei-Heng Peng and Yen-Sheng Chen
Electronics 2025, 14(5), 959; https://doi.org/10.3390/electronics14050959 - 27 Feb 2025
Viewed by 913
Abstract
Beam-switching technology is critical for fifth-generation (5G) Frequency Range 1 (FR1) base stations, yet existing odd-number Butler matrix designs often struggle to achieve compact size, low complexity, and efficient performance. Although a few studies have investigated 5 × 5 Butler matrices, their reliance [...] Read more.
Beam-switching technology is critical for fifth-generation (5G) Frequency Range 1 (FR1) base stations, yet existing odd-number Butler matrix designs often struggle to achieve compact size, low complexity, and efficient performance. Although a few studies have investigated 5 × 5 Butler matrices, their reliance on waveguide structures or multilayer implementations leads to larger footprints and greater fabrication complexity. This work introduces a novel 5 × 5 Butler matrix integrated with a five-element dipole antenna array for 3.3–3.7 GHz applications, offering notable improvements in beam-switching efficiency and overall system design. The proposed matrix generates five distinct beams at −144°, −72°, 0°, 72°, and 144° by employing precise phase progression, while eliminating crossovers and power dividers to simplify the layout. With a compact footprint of 2.67 × 0.80 × 0.02 cubic wavelength—94.4% smaller than waveguide-based designs—the matrix achieves a bandwidth of 3.32–3.62 GHz and consistently covers the target beams. The integrated system attains measured gains up to 11.4 dBi and half-power beamwidths ranging from 7.96° to 23.66°, with sidelobe levels comparable to those of state-of-the-art configurations. By employing a low-loss substrate, the gain can be further enhanced by as much as 6.81 dB, highlighting the potential for additional performance gains. These innovations establish the proposed design as a compact, low-complexity, and high-performance solution for 5G base station applications. Full article
Show Figures

Figure 1

24 pages, 1668 KiB  
Article
Robust Sidelobe Control for Adaptive Beamformers Against Array Imperfections via Subspace Approximation-Based Optimization
by Yang Zou, Zhoupeng Ding, Hongtao Li, Shengyao Chen, Sirui Tian and Jin He
Remote Sens. 2025, 17(4), 697; https://doi.org/10.3390/rs17040697 - 18 Feb 2025
Viewed by 581
Abstract
Conventional adaptive beamformers usually suffer from serious performance degradation when the receive array is imperfect and unknown sporadic interferences appear. To enhance robustness against array imperfections and simultaneously suppress sporadic interferences, this paper studies robust adaptive beamforming (RAB) with accurate sidelobe level (SLL) [...] Read more.
Conventional adaptive beamformers usually suffer from serious performance degradation when the receive array is imperfect and unknown sporadic interferences appear. To enhance robustness against array imperfections and simultaneously suppress sporadic interferences, this paper studies robust adaptive beamforming (RAB) with accurate sidelobe level (SLL) control, where the imperfect array steering vector (SV) is expressed as a spherical uncertainty set. Under the maximum signal-to-interference-plus-noise ratio (SINR) criterion and robust SLL constraints, we formulate the resultant RAB into a second-order cone programming problem, which is computationally prohibitive due to numerous robust quadratic SLL constraints. To tackle this issue, we provide a subspace approximation-based method to approximate the whole sidelobe space, thus replacing all robust SLL constraints with a single subspace constraint. Moreover, we leverage the Gauss–Legendre quadrature-based scheme to generate the sidelobe space in a computationally efficient manner. Additionally, we give an explicit approach for determining the norm upper bound of SV uncertainty sets under various imperfection scenarios, addressing the challenge of obtaining this upper bound in practice.Simulation results showed that the proposed subspace approximation-based RAB beamformer had a better SINR performance than typical counterparts and was much more computationally efficient. Full article
Show Figures

Figure 1

16 pages, 4027 KiB  
Article
Thinned Linear Optical Phased Array Design Through a Pareto-Optimal Synthesis Strategy
by Xueqing Yang, Nicola Anselmi and Paolo Rocca
Sensors 2025, 25(4), 1096; https://doi.org/10.3390/s25041096 - 12 Feb 2025
Viewed by 617
Abstract
The design of a thinned linear optical phased array (OPA) comprising a collection of waveguide grating antennas (WGAs) is addressed in this work. Given a fully populated linear OPA with antennas located in a uniform grid, the problem of selecting which elements have [...] Read more.
The design of a thinned linear optical phased array (OPA) comprising a collection of waveguide grating antennas (WGAs) is addressed in this work. Given a fully populated linear OPA with antennas located in a uniform grid, the problem of selecting which elements have to be removed or retained is formulated as an optimization one. To this end, the definition of the optimal thinning architecture is produced through a multi-objective optimization strategy with the goal of minimizing the number of required antenna elements while maintaining a low sidelobe level and narrow beam width. A set of representative results is presented, also considering realistic WGA modeling to assess the capabilities and the potentialities of the proposed approach. Full article
(This article belongs to the Section Optical Sensors)
Show Figures

Figure 1

Back to TopTop