applsci-logo

Journal Browser

Journal Browser

Antennas for Next-Generation Electromagnetic Applications

A special issue of Applied Sciences (ISSN 2076-3417). This special issue belongs to the section "Electrical, Electronics and Communications Engineering".

Deadline for manuscript submissions: 20 August 2025 | Viewed by 1791

Special Issue Editors


E-Mail Website
Guest Editor
Department of Information Engineering, Infrastructure and Sustainable Energ, University of Reggio Calabria, Reggio Calabria, Italy
Interests: inverse problems in electromagnetics; phase retrieval; antenna synthesis and diagnostics; field synthesis for therapeutic applications; metamaterials and metasurfaces

E-Mail Website
Co-Guest Editor
UBT-Umbria Bioengineering Technologies, UBT UK Division, London, UK
Interests: radar imaging; UWB communications; microwave breast imaging
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor Assistant
Department of Information Engineering, Infrastructure and Sustainable Energy, University of Reggio Calabria, Reggio Calabria, Italy
Interests: microwave imaging; magnetic resonance imaging; inverse problems in electromagnetics; EM field shaping; machine learning

E-Mail Website
Guest Editor Assistant
Free Space SRL, Pisa, Italy
Interests: dielectric characterization of materials; specific absorption rate (SAR); antenna design

E-Mail Website
Guest Editor Assistant
Department of Biomedical Engineering, McGill University, Montreal, QC, Canada
Interests: metamaterials & metasurfaces; microwave imaging; magnetic resonance imaging; antenna design

Special Issue Information

Dear Colleagues,

This Special Issue focuses on emerging trends in antenna technology, emphasizing its role in enabling next-generation applications. The aim of this Issue is to highlight how innovative antenna designs and methodological frameworks are redefining the field of applied electromagnetics.

We welcome the submission of original research contributions and forward-looking perspectives that address a broad range of topics, including, but not limited to, the following:

  • Biomedical antennas for health monitoring, diagnostic imaging, and therapeutic systems.
  • Reconfigurable and adaptive antenna arrays for enhanced wireless environments and real-time reconfigurability.
  • Near-field communications and sensing solutions that unlock new potential in high-precision localization, security, and wearable technologies.
  • Integrated sensing and communication to unify their capabilities.
  • Advances in antenna miniaturization, additive manufacturing, and ultra-wideband, low-power, and energy-efficient designs for future 5G/6G and vehicular communication systems.

Contributions in the fields of metamaterials, metasurfaces, and computational optimization techniques are particularly encouraged, especially research that leverages artificial intelligence and machine learning to enhance antenna design and performance.

Visionary perspectives and forward-looking critical reviews that provide insights into the future directions of antenna technology and its potential societal impact are also welcome.

By gathering contributions from academia, industry, and research institutions, this Special Issue aims to foster interdisciplinary collaborations and inspire groundbreaking innovations in the field of antennas and applied electromagnetics.

Dr. Giada M. Battaglia
Guest Editor

Dr. Navid Ghavami
Co-Guest Editor

Dr. Sabrina Zumbo
Dr. Eliana Canicattì
Dr. Eleonora Razzicchia
Guest Editor Assistants

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Applied Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • antenna synthesis
  • artificial intelligence-driven antenna design
  • adaptive and smart antenna arrays
  • antenna miniaturization and energy efficiency
  • biomedical antennas and wearables
  • deep learning-based optimization
  • metasurfaces and metamaterials
  • near-field wireless communications
  • integrated sensing and communications
  • 6G antenna systems

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (4 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

17 pages, 9601 KiB  
Article
Flexible Rectenna on an Eco-Friendly Substrate for Application in Next-Generation IoT Devices
by Nikolay Atanasov, Blagovest Atanasov and Gabriela Atanasova
Appl. Sci. 2025, 15(11), 6303; https://doi.org/10.3390/app15116303 - 4 Jun 2025
Viewed by 254
Abstract
Globally, there are now more than 19 billion connected Internet of Things (IoT) devices, which are fostering innovation across various sectors, including industry, healthcare, education, energy, and agriculture. With the rapid expansion of IoT devices, there is an increasing demand for sustainable, self-powered, [...] Read more.
Globally, there are now more than 19 billion connected Internet of Things (IoT) devices, which are fostering innovation across various sectors, including industry, healthcare, education, energy, and agriculture. With the rapid expansion of IoT devices, there is an increasing demand for sustainable, self-powered, eco-friendly solutions for next-generation IoT devices. Harvesting and converting radio frequency (RF) energy through rectennas is being explored as a potential solution for next-generation self-powered wireless devices. This paper presents a methodology for designing, optimizing, and fabricating a flexible rectenna for RF energy harvesting in the 5G lower mid-band and ISM 2.45 GHz band. The antenna element has a tree form based on a fractal structure, which provides a small size for the rectenna. Furthermore, to reduce the rectenna’s environmental impact, we fabricated the rectenna on a substrate from biodegradable materials—natural rubber filled with rice husk ash. The rectifier circuit was also designed and fabricated on the flexible substrate, facilitating the seamless integration of the rectenna in next-generation low-power IoT devices. The numerical analysis of the parameters and characteristics of rectenna elements, based on the finite-difference time-domain method, demonstrates a high degree of agreement with the experimental results. Full article
(This article belongs to the Special Issue Antennas for Next-Generation Electromagnetic Applications)
Show Figures

Figure 1

15 pages, 2953 KiB  
Article
Dual-Tuned Magnetic Metasurface for Field Enhancement in 1H and 23Na 1.5 T MRI
by Sabrina Rotundo, Valeria Lazzoni, Alessandro Dellabate, Danilo Brizi and Agostino Monorchio
Appl. Sci. 2025, 15(11), 5958; https://doi.org/10.3390/app15115958 - 26 May 2025
Viewed by 243
Abstract
In this paper, we present a novel passive dual-tuned magnetic metasurface, which can enhance the field distribution produced by a closely placed radio-frequency coil for both 1H and 23Na 1.5 T MRI imaging. In particular, the proposed solution comprises a 5 [...] Read more.
In this paper, we present a novel passive dual-tuned magnetic metasurface, which can enhance the field distribution produced by a closely placed radio-frequency coil for both 1H and 23Na 1.5 T MRI imaging. In particular, the proposed solution comprises a 5 × 5 capacitively loaded array, in which each unit-cell is composed of two concentric spiral coils. Specifically, the unit-cell internal spiral coil operates at the proton Larmor frequency (64 MHz), whereas the external is at the sodium one (17 MHz). Therefore, the paper aims to demonstrate the possibility of enhancing the magnetic field distribution in transmission and reception for 1.5 T MRI scanners by using the same metasurface configuration for imaging both nuclei, thus drastically simplifying the required instrumentation. We first describe the theoretical model used to design and synthetize the dual-tuned magnetic metasurface. Next, full-wave simulations are carried out to validate the approach. Finally, we report the experimental results acquired by testing the fabricated prototype at the workbench, observing a good agreement with the theoretical design and the numerical simulations. In particular, the metasurface increases the transmission efficiency Tx in presence of a biological phantom by a factor 3.5 at 17 MHz and by a factor 5 at 64 MHz, respectively. The proposed solution can pave the way for MRI multi-nuclei diagnostic technique with better images quality, simultaneously reducing the scanning time, the invasiveness on the patient and the overall costs. Full article
(This article belongs to the Special Issue Antennas for Next-Generation Electromagnetic Applications)
Show Figures

Figure 1

15 pages, 4992 KiB  
Article
Low-Frequency Square Kilometer Array Pattern Optimization via Convex Programming
by Giada Maria Battaglia, Giuseppe Caruso, Pietro Bolli, Maria Grazia Labate, Roberta Palmeri and Andrea Francesco Morabito
Appl. Sci. 2025, 15(11), 5929; https://doi.org/10.3390/app15115929 - 24 May 2025
Viewed by 283
Abstract
A well-known and powerful convex optimization strategy is exploited to enhance the electromagnetic performance of the Square Kilometer Array Low-Frequency radio telescope. The proposed method minimizes the peak sidelobe level while ensuring full control of the receiving pattern across the entire angular domain. [...] Read more.
A well-known and powerful convex optimization strategy is exploited to enhance the electromagnetic performance of the Square Kilometer Array Low-Frequency radio telescope. The proposed method minimizes the peak sidelobe level while ensuring full control of the receiving pattern across the entire angular domain. The approach is validated through full-wave simulations that incorporate realistic embedded element patterns, demonstrating significant improvements in sidelobe suppression despite the geometric constraints of the array structure. The achieved results underscore the method’s potential for high-performance beam synthesis in large-scale radio astronomy arrays. Full article
(This article belongs to the Special Issue Antennas for Next-Generation Electromagnetic Applications)
Show Figures

Figure 1

16 pages, 8389 KiB  
Article
Safety Assessment of Microwave Breast Imaging: Heating Analysis on Digital Breast Phantoms
by Alessandra Ronca, Luca Zilberti, Oriano Bottauscio, Gianluigi Tiberi and Alessandro Arduino
Appl. Sci. 2025, 15(8), 4262; https://doi.org/10.3390/app15084262 - 12 Apr 2025
Viewed by 531
Abstract
The impact of breast cancer on public health is serious, and due to risk/benefit assessment, screening programs are usually restricted to women older than 49 years. Microwave imaging devices offer advantages such as non-ionizing radiation, low cost, and the ability to distinguish between [...] Read more.
The impact of breast cancer on public health is serious, and due to risk/benefit assessment, screening programs are usually restricted to women older than 49 years. Microwave imaging devices offer advantages such as non-ionizing radiation, low cost, and the ability to distinguish between cancerous and healthy tissues due to their electrical properties. Ensuring the safety of this technology is vital for its potential clinical application. To estimate the temperature increase in breast tissues from a microwave imaging scanner, cases of healthy, benign, and malignant breast tissues were analyzed using three digital models and adding two healthy breast models with varying densities. Virtual experiments were conducted using the Sim4Life software (version 7.2) with a system consisting of a horn antenna in transmission and a Vivaldi antenna in reception. Temperature increases were estimated based on the Specific Absorption Rate distributions computed for different configurations and frequencies. The highest temperature increase obtained in this analysis is lower than 60 μK in fibroglandular tissue or skin, depending on the frequency and breast density. The presence of a receiving antenna acting as a scatterer modifies the temperature increase, which is almost negligible. Microwave examination can be performed without harmful thermal effects due to electromagnetic field exposure. Full article
(This article belongs to the Special Issue Antennas for Next-Generation Electromagnetic Applications)
Show Figures

Graphical abstract

Back to TopTop