Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,455)

Search Parameters:
Keywords = series hybrid

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
9 pages, 417 KiB  
Article
Minimally Invasive Off-Pump Coronary Artery Bypass as Palliative Revascularization in High-Risk Patients
by Magdalena Rufa, Adrian Ursulescu, Samir Ahad, Ragi Nagib, Marc Albert, Rafael Ayala, Nora Göbel, Tunjay Shavahatli, Mihnea Ghinescu, Ulrich Franke and Bartosz Rylski
Clin. Pract. 2025, 15(8), 147; https://doi.org/10.3390/clinpract15080147 - 6 Aug 2025
Abstract
Background: In high-risk and frail patients with multivessel coronary artery disease (MV CAD), guidelines indicated complete revascularization with or without the use of cardiopulmonary bypass (CPB) bears a high morbidity and mortality risk. In cases where catheter interventions were deemed unsuitable and conventional [...] Read more.
Background: In high-risk and frail patients with multivessel coronary artery disease (MV CAD), guidelines indicated complete revascularization with or without the use of cardiopulmonary bypass (CPB) bears a high morbidity and mortality risk. In cases where catheter interventions were deemed unsuitable and conventional coronary artery bypass grafting (CABG) posed an unacceptable perioperative risk, patients were scheduled for minimally invasive direct coronary artery bypass (MIDCAB) grafting or minimally invasive multivessel coronary artery bypass grafting (MICS-CABG). We called this approach “palliative revascularization.” This study assesses the safety and impact of palliative revascularization on clinical outcomes and overall survival. Methods: A consecutive series of 57 patients undergoing MIDCAB or MICS-CABG as a palliative surgery between 2008 and 2018 was included. The decision for palliative surgery was met in heart team after carefully assessing each case. The patients underwent single or double-vessel revascularization using the left internal thoracic artery and rarely radial artery/saphenous vein segments, both endoscopically harvested. Inpatient data could be completed for all 57 patients. The mean follow-up interval was 4.2 ± 3.7 years, with a follow-up rate of 91.2%. Results: Mean patient age was 79.7 ± 7.4 years. Overall, 46 patients (80.7%) were male, 26 (45.6%) had a history of atrial fibrillation and 25 (43.9%) of chronic kidney disease. In total, 13 patients exhibited a moderate EuroSCORE II, while 27 were classified as high risk, with a EuroSCORE II exceeding 5%. Additionally, 40 patients (70.2%) presented with three-vessel disease, 17 (29.8%) suffered an acute myocardial infarction within three weeks prior to surgery and 50.9% presented an impaired ejection fraction. There were 48 MIDCAB and nine MICS CABG with no conversions either to sternotomy or to CPB. Eight cases were planned as hybrid procedures and only 15 patients (26.3%) were completely revascularized. During the first 30 days, four patients (7%) died. A myocardial infarction occurred in only one case, no patient necessitated immediate reoperation. The one-, three- and five-year survival rates were 83%, 67% and 61%, respectively. Conclusions: MIDCAB and MICS CABG can be successfully conducted as less invasive palliative surgery in high-risk multimorbid patients with MV CAD. The early and mid-term results were better than predicted. A higher rate of hybrid procedures could improve long-term outcome in selected cases. Full article
27 pages, 7775 KiB  
Article
Fourier–Bessel Series Expansion and Empirical Wavelet Transform-Based Technique for Discriminating Between PV Array and Line Faults to Enhance Resiliency of Protection in DC Microgrid
by Laxman Solankee, Avinash Rai and Mukesh Kirar
Energies 2025, 18(15), 4171; https://doi.org/10.3390/en18154171 - 6 Aug 2025
Abstract
The growing demand for power and the rising awareness of the need to reduce carbon footprints have led to wider acceptance of photovoltaic (PV)-integrated microgrids. PV-based microgrids have numerous significant advantages over other distributed energy resources; however, creating a dependable protection scheme for [...] Read more.
The growing demand for power and the rising awareness of the need to reduce carbon footprints have led to wider acceptance of photovoltaic (PV)-integrated microgrids. PV-based microgrids have numerous significant advantages over other distributed energy resources; however, creating a dependable protection scheme for the DC microgrid is difficult due to the closely resembling current and voltage profiles of PV array faults and line faults in the DC network. The conventional methods fail to clearly discriminate between them. In this regard, a fault-resilient scheme exploiting the inherent characteristics of Fourier–Bessel Series Expansion and Empirical Wavelet Transform (FBSE-EWT) has been utilized in the present work. In order to enhance the efficacy of the bagging tree-based ensemble classifier, Artificial Gorilla Troop Optimization (AGTO) has been used to tune the hyperparameters. The hybrid protection approach is proposed for accurate fault detection, discrimination between scenarios (source-side fault and line-side fault), and classification of various fault types (pole–pole and pole–ground). The discriminatory attributes derived from voltage and current signals recorded at the DC bus using the hybrid FBSE-EWT have been utilized as an input feature set for the AGTO tuned bagging tree-based ensemble classifier to perform the intended tasks of fault detection and discrimination between source faults (PV array faults) and line faults (DC network). The proposed approach has been found to outperform the decision tree and SVM techniques, demonstrating reliability in terms of discriminating between the PV array faults and the DC line faults and resilience against fluctuations in PV irradiance levels. Full article
(This article belongs to the Section A1: Smart Grids and Microgrids)
Show Figures

Figure 1

20 pages, 2612 KiB  
Article
Urban Air Quality Management: PM2.5 Hourly Forecasting with POA–VMD and LSTM
by Xiaoqing Zhou, Xiaoran Ma and Haifeng Wang
Processes 2025, 13(8), 2482; https://doi.org/10.3390/pr13082482 - 6 Aug 2025
Abstract
The accurate and effective prediction of PM2.5 concentrations is crucial for mitigating air pollution, improving environmental quality, and safeguarding public health. To address the challenge of strong temporal correlations in PM2.5 concentration forecasting, this paper proposes a novel hybrid model that integrates the [...] Read more.
The accurate and effective prediction of PM2.5 concentrations is crucial for mitigating air pollution, improving environmental quality, and safeguarding public health. To address the challenge of strong temporal correlations in PM2.5 concentration forecasting, this paper proposes a novel hybrid model that integrates the Particle Optimization Algorithm (POA) and Variational Mode Decomposition (VMD) with the Long Short-Term Memory (LSTM) network. First, POA is employed to optimize VMD by adaptively determining the optimal parameter combination [k, α], enabling the decomposition of the original PM2.5 time series into subcomponents while reducing data noise. Subsequently, an LSTM model is constructed to predict each subcomponent individually, and the predictions are aggregated to derive hourly PM2.5 concentration forecasts. Empirical analysis using datasets from Beijing, Tianjin, and Tangshan demonstrates the following key findings: (1) LSTM outperforms traditional machine learning models in time series forecasting. (2) The proposed model exhibits superior effectiveness and robustness, achieving optimal performance metrics (e.g., MAE: 0.7183, RMSE: 0.8807, MAPE: 4.01%, R2: 99.78%) in comparative experiments, as exemplified by the Beijing dataset. (3) The integration of POA with serial decomposition techniques effectively handles highly volatile and nonlinear data. This model provides a novel and reliable tool for PM2.5 concentration prediction, offering significant benefits for governmental decision-making and public awareness. Full article
(This article belongs to the Section Environmental and Green Processes)
Show Figures

Figure 1

31 pages, 34013 KiB  
Article
Vision-Based 6D Pose Analytics Solution for High-Precision Industrial Robot Pick-and-Place Applications
by Balamurugan Balasubramanian and Kamil Cetin
Sensors 2025, 25(15), 4824; https://doi.org/10.3390/s25154824 - 6 Aug 2025
Abstract
High-precision 6D pose estimation for pick-and-place operations remains a critical problem for industrial robot arms in manufacturing. This study introduces an analytics-based solution for 6D pose estimation designed for a real-world industrial application: it enables the Staubli TX2-60L (manufactured by Stäubli International AG, [...] Read more.
High-precision 6D pose estimation for pick-and-place operations remains a critical problem for industrial robot arms in manufacturing. This study introduces an analytics-based solution for 6D pose estimation designed for a real-world industrial application: it enables the Staubli TX2-60L (manufactured by Stäubli International AG, Horgen, Switzerland) robot arm to pick up metal plates from various locations and place them into a precisely defined slot on a brake pad production line. The system uses a fixed eye-to-hand Intel RealSense D435 RGB-D camera (manufactured by Intel Corporation, Santa Clara, California, USA) to capture color and depth data. A robust software infrastructure developed in LabVIEW (ver.2019) integrated with the NI Vision (ver.2019) library processes the images through a series of steps, including particle filtering, equalization, and pattern matching, to determine the X-Y positions and Z-axis rotation of the object. The Z-position of the object is calculated from the camera’s intensity data, while the remaining X-Y rotation angles are determined using the angle-of-inclination analytics method. It is experimentally verified that the proposed analytical solution outperforms the hybrid-based method (YOLO-v8 combined with PnP/RANSAC algorithms). Experimental results across four distinct picking scenarios demonstrate the proposed solution’s superior accuracy, with position errors under 2 mm, orientation errors below 1°, and a perfect success rate in pick-and-place tasks. Full article
(This article belongs to the Section Sensors and Robotics)
Show Figures

Figure 1

29 pages, 3268 KiB  
Article
Wavelet Multiresolution Analysis-Based Takagi–Sugeno–Kang Model, with a Projection Step and Surrogate Feature Selection for Spectral Wave Height Prediction
by Panagiotis Korkidis and Anastasios Dounis
Mathematics 2025, 13(15), 2517; https://doi.org/10.3390/math13152517 - 5 Aug 2025
Abstract
The accurate prediction of significant wave height presents a complex yet vital challenge in the fields of ocean engineering. This capability is essential for disaster prevention, fostering sustainable development and deepening our understanding of various scientific phenomena. We explore the development of a [...] Read more.
The accurate prediction of significant wave height presents a complex yet vital challenge in the fields of ocean engineering. This capability is essential for disaster prevention, fostering sustainable development and deepening our understanding of various scientific phenomena. We explore the development of a comprehensive predictive methodology for wave height prediction by integrating novel Takagi–Sugeno–Kang fuzzy models within a multiresolution analysis framework. The multiresolution analysis emerges via wavelets, since they are prominent models characterised by their inherent multiresolution nature. The maximal overlap discrete wavelet transform is utilised to generate the detail and resolution components of the time series, resulting from this multiresolution analysis. The novelty of the proposed model lies on its hybrid training approach, which combines least squares with AdaBound, a gradient-based algorithm derived from the deep learning literature. Significant wave height prediction is studied as a time series problem, hence, the appropriate inputs to the model are selected by developing a surrogate-based wrapped algorithm. The developed wrapper-based algorithm, employs Bayesian optimisation to deliver a fast and accurate method for feature selection. In addition, we introduce a projection step, to further refine the approximation capabilities of the resulting predictive system. The proposed methodology is applied to a real-world time series pertaining to spectral wave height and obtained from the Poseidon operational oceanography system at the Institute of Oceanography, part of the Hellenic Center for Marine Research. Numerical studies showcase a high degree of approximation performance. The predictive scheme with the projection step yields a coefficient of determination of 0.9991, indicating a high level of accuracy. Furthermore, it outperforms the second-best comparative model by approximately 49% in terms of root mean squared error. Comparative evaluations against powerful artificial intelligence models, using regression metrics and hypothesis test, underscore the effectiveness of the proposed methodology. Full article
(This article belongs to the Special Issue Applications of Mathematics in Neural Networks and Machine Learning)
23 pages, 7962 KiB  
Article
Predictive Analysis of Hydrological Variables in the Cahaba Watershed: Enhancing Forecasting Accuracy for Water Resource Management Using Time-Series and Machine Learning Models
by Sai Kumar Dasari, Pooja Preetha and Hari Manikanta Ghantasala
Earth 2025, 6(3), 89; https://doi.org/10.3390/earth6030089 (registering DOI) - 4 Aug 2025
Abstract
This study presents a hybrid approach to hydrological forecasting by integrating the physically based Soil and Water Assessment Tool (SWAT) model with Prophet time-series modeling and machine learning–based multi-output regression. Applied to the Cahaba watershed, the objective is to predict key environmental variables [...] Read more.
This study presents a hybrid approach to hydrological forecasting by integrating the physically based Soil and Water Assessment Tool (SWAT) model with Prophet time-series modeling and machine learning–based multi-output regression. Applied to the Cahaba watershed, the objective is to predict key environmental variables (precipitation, evapotranspiration (ET), potential evapotranspiration (PET), and snowmelt) and their influence on hydrological responses (surface runoff, groundwater flow, soil water, sediment yield, and water yield) under present (2010–2022) and future (2030–2042) climate scenarios. Using SWAT outputs for calibration, the integrated SWAT-Prophet-ML model predicted ET and PET with RMSE values between 10 and 20 mm. Performance was lower for high-variability events such as precipitation (RMSE = 30–50 mm). Under current climate conditions, R2 values of 0.75 (water yield) and 0.70 (surface runoff) were achieved. Groundwater and sediment yields were underpredicted, particularly during peak years. The model’s limitations relate to its dependence on historical trends and its limited representation of physical processes, which constrain its performance under future climate scenarios. Suggested improvements include scenario-based training and integration of physical constraints. The approach offers a scalable, data-driven method for enhancing monthly water balance prediction and supports applications in watershed planning. Full article
Show Figures

Figure 1

26 pages, 4116 KiB  
Article
Robust Optimal Operation of Smart Microgrid Considering Source–Load Uncertainty
by Zejian Qiu, Zhuowen Zhu, Lili Yu, Zhanyuan Han, Weitao Shao, Kuan Zhang and Yinfeng Ma
Processes 2025, 13(8), 2458; https://doi.org/10.3390/pr13082458 - 4 Aug 2025
Viewed by 47
Abstract
The uncertainties arising from high renewable energy penetration on both the generation and demand sides pose significant challenges to distribution network security. Smart microgrids are considered an effective way to solve this problem. Existing studies exhibit limitations in prediction accuracy, Alternating Current (AC) [...] Read more.
The uncertainties arising from high renewable energy penetration on both the generation and demand sides pose significant challenges to distribution network security. Smart microgrids are considered an effective way to solve this problem. Existing studies exhibit limitations in prediction accuracy, Alternating Current (AC) power flow modeling, and integration with optimization frameworks. This paper proposes a closed-loop technical framework combining high-confidence interval prediction, second-order cone convex relaxation, and robust optimization to facilitate renewable energy integration in distribution networks via smart microgrid technology. First, a hybrid prediction model integrating Variational Mode Decomposition (VMD), Long Short-Term Memory (LSTM), and Quantile Regression (QR) is designed to extract multi-frequency characteristics of time-series data, generating adaptive prediction intervals that accommodate individualized decision-making preferences. Second, a second-order cone relaxation method transforms the AC power flow optimization problem into a mixed-integer second-order cone programming (MISOCP) model. Finally, a robust optimization method considering source–load uncertainties is developed. Case studies demonstrate that the proposed approach reduces prediction errors by 21.15%, decreases node voltage fluctuations by 16.71%, and reduces voltage deviation at maximum offset nodes by 17.36%. This framework significantly mitigates voltage violation risks in distribution networks with large-scale grid-connected photovoltaic systems. Full article
(This article belongs to the Special Issue Applications of Smart Microgrids in Renewable Energy Development)
Show Figures

Figure 1

24 pages, 8993 KiB  
Article
A Lightweight Spatiotemporal Graph Framework Leveraging Clustered Monitoring Networks and Copula-Based Pollutant Dependency for PM2.5 Forecasting
by Mohammad Taghi Abbasi, Ali Asghar Alesheikh and Fatemeh Rezaie
Land 2025, 14(8), 1589; https://doi.org/10.3390/land14081589 - 4 Aug 2025
Viewed by 96
Abstract
Air pollution threatens human health and ecosystems, making timely forecasting essential. The spatiotemporal dynamics of pollutants, shaped by various factors, challenge traditional methods. Therefore, spatiotemporal graph-based deep learning has gained attention for its ability to capture spatial and temporal dependencies within monitoring networks. [...] Read more.
Air pollution threatens human health and ecosystems, making timely forecasting essential. The spatiotemporal dynamics of pollutants, shaped by various factors, challenge traditional methods. Therefore, spatiotemporal graph-based deep learning has gained attention for its ability to capture spatial and temporal dependencies within monitoring networks. However, many existing models, despite their high predictive accuracy, face computational complexity and scalability challenges. This study introduces clustered and lightweight spatio-temporal graph convolutional network with gated recurrent unit (ClusLite-STGCN-GRU), a hybrid model that integrates spatial clustering based on pollutant time series for graph construction, Copula-based dependency analysis for selecting relevant pollutants to predict PM2.5, and graph convolution combined with gated recurrent units to extract spatiotemporal features. Unlike conventional approaches that require learning or dynamically updating adjacency matrices, ClusLite-STGCN-GRU employs a fixed, simple cluster-based structure. Experimental results on Tehran air quality data demonstrate that the proposed model not only achieves competitive predictive performance compared to more complex models, but also significantly reduces computational cost—by up to 66% in training time, 83% in memory usage, and 84% in number of floating-point operations—making it suitable for real-time applications and offering a practical balance between accuracy, interpretability, and efficiency. Full article
(This article belongs to the Section Land Innovations – Data and Machine Learning)
Show Figures

Figure 1

19 pages, 1400 KiB  
Article
A Comparative Study of Statistical and Machine Learning Methods for Solar Irradiance Forecasting Using the Folsom PLC Dataset
by Oscar Trull, Juan Carlos García-Díaz and Angel Peiró-Signes
Energies 2025, 18(15), 4122; https://doi.org/10.3390/en18154122 - 3 Aug 2025
Viewed by 254
Abstract
The increasing penetration of photovoltaic solar energy has intensified the need for accurate production forecasting to ensure efficient grid operation. This study presents a critical comparison of traditional statistical methods and machine learning approaches for forecasting solar irradiance using the benchmark Folsom PLC [...] Read more.
The increasing penetration of photovoltaic solar energy has intensified the need for accurate production forecasting to ensure efficient grid operation. This study presents a critical comparison of traditional statistical methods and machine learning approaches for forecasting solar irradiance using the benchmark Folsom PLC dataset. Two primary research questions are addressed: whether machine learning models outperform traditional techniques, and whether time series modelling improves prediction accuracy. The analysis includes an evaluation of a range of models, including statistical regressions (OLS, LASSO, ridge), regression trees, neural networks, LSTM, and random forests, which are applied to physical modelling and time series approaches. The results reveal that although machine learning methods can outperform statistical models, particularly with the inclusion of exogenous weather features, they are not universally superior across all forecasting horizons. Furthermore, pure time series approach models yield lower performance. However, a hybrid approach in which physical models are integrated with machine learning demonstrates significantly improved accuracy. These findings highlight the value of hybrid models for photovoltaic forecasting and suggest strategic directions for operational implementation. Full article
(This article belongs to the Section A: Sustainable Energy)
Show Figures

Figure 1

34 pages, 10887 KiB  
Article
Heteroaryl-Capped Hydroxamic Acid Derivatives with Varied Linkers: Synthesis and Anticancer Evaluation with Various Apoptosis Analyses in Breast Cancer Cells, Including Docking, Simulation, DFT, and ADMET Studies
by Ekta Shirbhate, Biplob Koch, Vaibhav Singh, Akanksha Dubey, Haya Khader Ahmad Yasin and Harish Rajak
Pharmaceuticals 2025, 18(8), 1148; https://doi.org/10.3390/ph18081148 - 1 Aug 2025
Viewed by 131
Abstract
Background/Objectives: Cancer suffers from unresolved therapeutic challenges owing to the lack of targeted therapies and heightened recurrence risk. This study aimed to investigate the new series of hydroxamate by structurally modifying the pharmacophore of vorinostat. Methods: The present work involves the synthesis of [...] Read more.
Background/Objectives: Cancer suffers from unresolved therapeutic challenges owing to the lack of targeted therapies and heightened recurrence risk. This study aimed to investigate the new series of hydroxamate by structurally modifying the pharmacophore of vorinostat. Methods: The present work involves the synthesis of 15 differently substituted 2H-1,2,3-triazole-based hydroxamide analogs by employing triazole ring as a cap with varied linker fragments. The compounds were evaluated for their anticancer effect, especially their anti-breast cancer response. Molecular docking and molecular dynamics simulations were conducted to examine binding interactions. Results: Results indicated that among all synthesized hybrids, the molecule VI(i) inhibits the growth of MCF-7 and A-549 cells (GI50 < 10 μg/mL) in an antiproliferative assay. Compound VI(i) was also tested for cytotoxic activity by employing an MTT assay against A549, MCF-7, and MDA-MB-231 cell lines, and the findings indicate its potent anticancer response, especially against MCF-7 cells with IC50 of 60 µg/mL. However, it experiences minimal toxicity towards the normal cell line (HEK-293). Mechanistic studies revealed a dual-pathway activation: first, apoptosis (17.18% of early and 10.22% of late apoptotic cells by annexin V/PI analysis); second, cell cycle arrest at the S and G2/M phases. It also promotes ROS generation in a concentration-dependent manner. The HDAC–inhibitory assay, extended in silico molecular docking, and MD simulation experiments further validated its significant binding affinity towards HDAC 1 and 6 isoforms. DFT and ADMET screening further support the biological proclivity of the title compounds. The notable biological contribution of VI(i) highlights it as a potential candidate, especially against breast cancer cells. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Figure 1

27 pages, 4163 KiB  
Article
Rainfall Forecasting Using a BiLSTM Model Optimized by an Improved Whale Migration Algorithm and Variational Mode Decomposition
by Yueqiao Yang, Shichuang Li, Ting Zhou, Liang Zhao, Xiao Shi and Boni Du
Mathematics 2025, 13(15), 2483; https://doi.org/10.3390/math13152483 - 1 Aug 2025
Viewed by 263
Abstract
The highly stochastic nature of rainfall presents significant challenges for the accurate prediction of its time series. To enhance the prediction performance of non-stationary rainfall time series, this study proposes a hybrid deep learning forecasting framework—VMD-IWMA-BiLSTM—that integrates Variational Mode Decomposition (VMD), Improved Whale [...] Read more.
The highly stochastic nature of rainfall presents significant challenges for the accurate prediction of its time series. To enhance the prediction performance of non-stationary rainfall time series, this study proposes a hybrid deep learning forecasting framework—VMD-IWMA-BiLSTM—that integrates Variational Mode Decomposition (VMD), Improved Whale Migration Algorithm (IWMA), and Bidirectional Long Short-Term Memory network (BiLSTM). Firstly, VMD is employed to decompose the original rainfall series into multiple modes, extracting Intrinsic Mode Functions (IMFs) with more stable frequency characteristics. Secondly, IWMA is utilized to globally optimize multiple hyperparameters of the BiLSTM model, enhancing its ability to capture complex nonlinear relationships and long-term dependencies. Finally, experimental validation is conducted using daily rainfall data from 2020 to 2024 at the Xinzheng National Meteorological Observatory. The results demonstrate that the proposed framework outperforms traditional models such as LSTM, ARIMA, SVM, and LSSVM in terms of prediction accuracy. This research provides new insights and effective technical pathways for improving rainfall time series prediction accuracy and addressing the challenges posed by high randomness. Full article
Show Figures

Figure 1

21 pages, 12700 KiB  
Article
Optimization of Developed TiO2 NWs-Fe2O3 Modified PES Membranes for Efficient NBB Dye Removal
by Mouna Mansor Hussein, Qusay F. Alsalhy, Mohamed Gar Alalm and M. M. El-Halwany
ChemEngineering 2025, 9(4), 82; https://doi.org/10.3390/chemengineering9040082 - 1 Aug 2025
Viewed by 180
Abstract
Current work investigates the fabrication and performance of nanocomposite membranes, modified with varying concentrations of hybrid nanostructures comprising titanium nanowires coated with iron nanoparticles (TiO2 NWs-Fe2O3), for the removal of Naphthol Blue Black (NBB) dye from industrial wastewater. [...] Read more.
Current work investigates the fabrication and performance of nanocomposite membranes, modified with varying concentrations of hybrid nanostructures comprising titanium nanowires coated with iron nanoparticles (TiO2 NWs-Fe2O3), for the removal of Naphthol Blue Black (NBB) dye from industrial wastewater. A series of analytical tools were employed to confirm the successful modification including scanning electron microscopy and EDX analysis, porosity and hydrophilicity measurements, Fourier-transform infrared spectroscopy, and X-Ray Diffraction. The incorporation of TiO2 NWs-Fe2O3 has enhanced membrane performance significantly by increasing the PWF and improving dye retention rates of nanocomposite membranes. At 0.7 g of nanostructure content, the modified membrane (M8) achieved a PWF of 93 L/m2·h and NBB dye rejection of over 98%. The flux recovery ratio (FRR) analysis disclosed improved antifouling properties, with the M8 membrane demonstrating a 73.4% FRR. This study confirms the potential of TiO2 NWs-Fe2O3-modified membranes in enhancing water treatment processes, offering a promising solution for industrial wastewater treatment. These outstanding results highlight the potential of the novel PES-TiO2 NWs-Fe2O3 membranes for dye removal and present adequate guidance for the modification of membrane physical properties in the field of wastewater treatment. Full article
(This article belongs to the Special Issue New Advances in Chemical Engineering)
Show Figures

Figure 1

26 pages, 1790 KiB  
Article
A Hybrid Deep Learning Model for Aromatic and Medicinal Plant Species Classification Using a Curated Leaf Image Dataset
by Shareena E. M., D. Abraham Chandy, Shemi P. M. and Alwin Poulose
AgriEngineering 2025, 7(8), 243; https://doi.org/10.3390/agriengineering7080243 - 1 Aug 2025
Viewed by 214
Abstract
In the era of smart agriculture, accurate identification of plant species is critical for effective crop management, biodiversity monitoring, and the sustainable use of medicinal resources. However, existing deep learning approaches often underperform when applied to fine-grained plant classification tasks due to the [...] Read more.
In the era of smart agriculture, accurate identification of plant species is critical for effective crop management, biodiversity monitoring, and the sustainable use of medicinal resources. However, existing deep learning approaches often underperform when applied to fine-grained plant classification tasks due to the lack of domain-specific, high-quality datasets and the limited representational capacity of traditional architectures. This study addresses these challenges by introducing a novel, well-curated leaf image dataset consisting of 39 classes of medicinal and aromatic plants collected from the Aromatic and Medicinal Plant Research Station in Odakkali, Kerala, India. To overcome performance bottlenecks observed with a baseline Convolutional Neural Network (CNN) that achieved only 44.94% accuracy, we progressively enhanced model performance through a series of architectural innovations. These included the use of a pre-trained VGG16 network, data augmentation techniques, and fine-tuning of deeper convolutional layers, followed by the integration of Squeeze-and-Excitation (SE) attention blocks. Ultimately, we propose a hybrid deep learning architecture that combines VGG16 with Batch Normalization, Gated Recurrent Units (GRUs), Transformer modules, and Dilated Convolutions. This final model achieved a peak validation accuracy of 95.24%, significantly outperforming several baseline models, such as custom CNN (44.94%), VGG-19 (59.49%), VGG-16 before augmentation (71.52%), Xception (85.44%), Inception v3 (87.97%), VGG-16 after data augumentation (89.24%), VGG-16 after fine-tuning (90.51%), MobileNetV2 (93.67), and VGG16 with SE block (94.94%). These results demonstrate superior capability in capturing both local textures and global morphological features. The proposed solution not only advances the state of the art in plant classification but also contributes a valuable dataset to the research community. Its real-world applicability spans field-based plant identification, biodiversity conservation, and precision agriculture, offering a scalable tool for automated plant recognition in complex ecological and agricultural environments. Full article
(This article belongs to the Special Issue Implementation of Artificial Intelligence in Agriculture)
Show Figures

Figure 1

32 pages, 7263 KiB  
Article
Time Series Prediction and Modeling of Visibility Range with Artificial Neural Network and Hybrid Adaptive Neuro-Fuzzy Inference System
by Okikiade Adewale Layioye, Pius Adewale Owolawi and Joseph Sunday Ojo
Atmosphere 2025, 16(8), 928; https://doi.org/10.3390/atmos16080928 (registering DOI) - 31 Jul 2025
Viewed by 191
Abstract
The time series prediction of visibility in terms of various meteorological variables, such as relative humidity, temperature, atmospheric pressure, and wind speed, is presented in this paper using Single-Variable Regression Analysis (SVRA), Artificial Neural Network (ANN), and Hybrid Adaptive Neuro-fuzzy Inference System (ANFIS) [...] Read more.
The time series prediction of visibility in terms of various meteorological variables, such as relative humidity, temperature, atmospheric pressure, and wind speed, is presented in this paper using Single-Variable Regression Analysis (SVRA), Artificial Neural Network (ANN), and Hybrid Adaptive Neuro-fuzzy Inference System (ANFIS) techniques for several sub-tropical locations. The initial method used for the prediction of visibility in this study was the SVRA, and the results were enhanced using the ANN and ANFIS techniques. Throughout the study, neural networks with various algorithms and functions were trained with different atmospheric parameters to establish a relationship function between inputs and visibility for all locations. The trained neural models were tested and validated by comparing actual and predicted data to enhance visibility prediction accuracy. Results were compared to assess the efficiency of the proposed systems, measuring the root mean square error (RMSE), coefficient of determination (R2), and mean bias error (MBE) to validate the models. The standard statistical technique, particularly SVRA, revealed that the strongest functional relationship was between visibility and RH, followed by WS, T, and P, in that order. However, to improve accuracy, this study utilized back propagation and hybrid learning algorithms for visibility prediction. Error analysis from the ANN technique showed increased prediction accuracy when all the atmospheric variables were considered together. After testing various neural network models, it was found that the ANFIS model provided the most accurate predicted results, with improvements of 31.59%, 32.70%, 30.53%, 28.95%, 31.82%, and 22.34% over the ANN for Durban, Cape Town, Mthatha, Bloemfontein, Johannesburg, and Mahikeng, respectively. The neuro-fuzzy model demonstrated better accuracy and efficiency by yielding the finest results with the lowest RMSE and highest R2 for all cities involved compared to the ANN model and standard statistical techniques. However, the statistical performance analysis between measured and estimated visibility indicated that the ANN produced satisfactory results. The results will find applications in Optical Wireless Communication (OWC), flight operations, and climate change analysis. Full article
(This article belongs to the Special Issue Atmospheric Modeling with Artificial Intelligence Technologies)
Show Figures

Figure 1

59 pages, 2417 KiB  
Review
A Critical Review on the Battery System Reliability of Drone Systems
by Tianren Zhao, Yanhui Zhang, Minghao Wang, Wei Feng, Shengxian Cao and Gong Wang
Drones 2025, 9(8), 539; https://doi.org/10.3390/drones9080539 - 31 Jul 2025
Viewed by 417
Abstract
The reliability of unmanned aerial vehicle (UAV) energy storage battery systems is critical for ensuring their safe operation and efficient mission execution, and has the potential to significantly advance applications in logistics, monitoring, and emergency response. This paper reviews theoretical and technical advancements [...] Read more.
The reliability of unmanned aerial vehicle (UAV) energy storage battery systems is critical for ensuring their safe operation and efficient mission execution, and has the potential to significantly advance applications in logistics, monitoring, and emergency response. This paper reviews theoretical and technical advancements in UAV battery reliability, covering definitions and metrics, modeling approaches, state estimation, fault diagnosis, and battery management system (BMS) technologies. Based on international standards, reliability encompasses performance stability, environmental adaptability, and safety redundancy, encompassing metrics such as the capacity retention rate, mean time between failures (MTBF), and thermal runaway warning time. Modeling methods for reliability include mathematical, data-driven, and hybrid models, which are evaluated for accuracy and efficiency under dynamic conditions. State estimation focuses on five key battery parameters and compares neural network, regression, and optimization algorithms in complex flight scenarios. Fault diagnosis involves feature extraction, time-series modeling, and probabilistic inference, with multimodal fusion strategies being proposed for faults like overcharge and thermal runaway. BMS technologies include state monitoring, protection, and optimization, and balancing strategies and the potential of intelligent algorithms are being explored. Challenges in this field include non-unified standards, limited model generalization, and complexity in diagnosing concurrent faults. Future research should prioritize multi-physics-coupled modeling, AI-driven predictive techniques, and cybersecurity to enhance the reliability and intelligence of battery systems in order to support the sustainable development of unmanned systems. Full article
Show Figures

Figure 1

Back to TopTop