Urban Air Quality Management: PM2.5 Hourly Forecasting with POA–VMD and LSTM
Abstract
1. Introduction
2. Method and Models
2.1. VMD
2.2. POA
- Nonlinear Trajectory Exploration: Pelicans employ spiral flight patterns with altitude-dependent turning radii to survey three-dimensional spaces.
- Adaptive Swarm Density Control: Visual signal propagation regulates inter-individual distances based on prey distribution density.
- Probabilistic Plunge-diving: Stochastic gradient descent guided by local prey concentration gradients.
2.3. POA–VMD
2.4. LSTM
3. Construction of the Proposed Hybrid Model
4. Data Sources and Evaluation Index
4.1. Data Sources
4.2. Evaluation Indicators of Prediction Model Results
5. Case Analysis
5.1. POA–VMD Decomposition
5.2. PM2.5 Hourly Concentration Prediction
5.2.1. Model Input
5.2.2. Predicted Results
5.3. Model Performance Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
VMD | Variational modal decomposition |
EMD | Empirical Mode Decomposition |
LSTM | Long Short-Term Memory networks |
POA | Pelican Optimization Algorithm |
References
- Zhang, Q.; Wu, S.; Wang, X.; Sun, B.; Liu, H. A PM2.5 concentration prediction model based on multi-task deep learning for intensive air quality monitoring stations. J. Clean. Prod. 2020, 275, 122722. [Google Scholar] [CrossRef]
- Zoran, M.A.; Savastru, R.S.; Savastru, D.M.; Tautan, M.N. Assessing the relationship between surface levels of PM2.5 and PM10 particulate matter impact on COVID-19 in Milan, Italy. Sci. Total Environ. 2020, 738, 139825. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Li, Z. Remote sensing of atmospheric fine particulate matter (PM2.5) mass concentration near the ground from satellite observation. Remote Sens. Environ. 2015, 160, 252–262. [Google Scholar] [CrossRef]
- Liu, K.; Ren, J. Seasonal characteristics of PM2.5 and its chemical species in the northern rural China. Atmos. Pollut. Res. 2020, 11, 11. [Google Scholar] [CrossRef]
- Tetsuya, T.; Shunsuke, M. Health-related and non-health-related effects of PM2.5 on life satisfaction: Evidence from India, China and Japan. Econ. Anal. Policy 2020, 67, 114–123. [Google Scholar]
- Li, G.; Wu, H.; Zhong, Q.; He, J.; Yang, W.; Zhu, J.; Zhao, H.; Zhang, H.; Zhu, Z.; Huang, F. Six air pollutants and cause-specific mortality: A multi-area study in nine counties or districts of Anhui Province, China. Environ. Sci. Pollut. Res. 2022, 29, 468–482. [Google Scholar] [CrossRef]
- Luo, F.; Guo, H.; Yu, H.; Li, Y.; Feng, Y.; Wang, Y. PM2.5 organic extract mediates inflammation through the ERβ pathway to contribute to lung carcinogenesis in vitro and vivo. Chemosphere 2021, 263, 127867. [Google Scholar] [CrossRef] [PubMed]
- Kuldeep, S.R.; Manish, K.G. Modelling health implications of extreme PM2.5 concentrations in Indian sub-continent: Comprehensive review with longitudinal trends and deep learning predictions. Technol. Soc. 2025, 81, 102843. [Google Scholar] [CrossRef]
- Zhou, Y.; Chang, F.J.; Chang, L.C.; Kao, I.F.; Wang, Y.S. Explore a deep learning multi-output neural network for regional multi-step-ahead air quality forecasts. J. Clean. Prod. 2018, 209, 134–145. [Google Scholar] [CrossRef]
- Guo, D.; Chen, H.; Long, R.; Zou, S. Who avoids being involved in personal carbon trading? An investigation based on the urban residents in eastern China. Environ. Sci. Pollut. Res. 2021, 28, 43365–43381. [Google Scholar] [CrossRef]
- Cobourn, W.G. An enhanced PM2.5 air quality forecast model based on nonlinear regression and back-trajectory concentrations. Atmos. Environ. 2010, 44, 3015–3023. [Google Scholar] [CrossRef]
- Qiao, J.; He, Z.; Du, S. Prediction of PM2.5 concentration based on weighted bagging and image contrast-sensitive features. Stoch. Environ. Res. Risk Assess. 2020, 34, 561–573. [Google Scholar] [CrossRef]
- Dong, L.; Yang, J.; Shi, W.; Zhang, L. Investigating the performance of satellite-based models in estimating the surface PM2.5 over China. Chemosphere 2020, 256, 127051. [Google Scholar] [CrossRef]
- Feng, X.; Li, Q.; Zhu, Y.; Hou, J.; Jin, L.; Wang, J. Artificial neural networks forecasting of PM 2.5 pollution using air mass trajectory based geographic model and wavelet transformation. Atmos. Environ. 2015, 107, 118–128. [Google Scholar] [CrossRef]
- Zhang, J.; Ding, W. Prediction of Air Pollutants Concentration Based on an Extreme Learning Machine: The Case of Hong Kong. Int. J. Environ. Res. Public Health 2017, 14, 114. [Google Scholar] [CrossRef] [PubMed]
- Zhu, S.; Lian, X.; Wei, L.; Che, J.; Shen, X.; Yang, L.; Qiu, X.; Liu, X.; Gao, W.; Ren, X.; et al. PM2.5 forecasting using SVR with PSOGSA algorithm based on CEEMD, G ELM and GCA considering meteorological factors. Atmos. Environ. 2018, 183, 20–32. [Google Scholar] [CrossRef]
- Li, T.; Hua, M.; Wu, X. A Hybrid CNN-LSTM Model for Forecasting Particulate Matter (PM2.5). IEEE Access 2020, 8, 26933–26940. [Google Scholar] [CrossRef]
- Shi, L.; Zhang, H.; Xu, X.; Han, M.; Zuo, P. A balanced social LSTM for PM 2.5 concentration prediction based on local spatiotemporal correlation. Chemosphere 2021, 291, 133124. [Google Scholar] [CrossRef]
- Zhang, B.; Wang, Z.; Lu, Y.; Li, M.-Z.; Yang, R.; Pan, J.; Kou, Z. Air Pollutant Diffusion Trend Prediction Based on Deep Learning for Targeted Season—North China as an Example. Expert Syst. Appl. 2023, 232, 120718. [Google Scholar] [CrossRef]
- Zhou, Q.; Jiang, H.; Wang, J.; Zhou, J. A hybrid model for PM2.5 forecasting based on ensemble empirical mode decomposition and a general regression neural network. Sci. Total Environ. 2014, 496, 264–274. [Google Scholar] [CrossRef]
- Huang, N.E.; Shen, Z.; Long, S.R.; Wu, M.C.; Shih, H.H.; Zheng, Q.; Yen, N.C.; Tung, C.C.; Liu, H.H. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 1998, 454, 903–995. [Google Scholar] [CrossRef]
- Dragomiretskiy, K.; Zosso, D. Variational Mode Decomposition. IEEE Trans. Signal Process. 2014, 62, 531–544. [Google Scholar] [CrossRef]
- Liang, W.; Li, Y.; Liu, X.; Dai, Q.; Feng, Y. AI-based Bayesian structural time series modeling for assessing PM2.5 air quality improvements during the Beijing 2022 Winter Olympics. Atmos. Environ. 2025, 358, 121328. [Google Scholar] [CrossRef]
- Yu, Q.; Yuan, H.W.; Liu, Z.L.; Xu, G.M. Spatial weighting EMD-LSTM based approach for short-term PM2.5 prediction research. Atmos. Pollut. Res. 2024, 15, 102256. [Google Scholar] [CrossRef]
- Huang, G.; Li, X.; Zhang, B.; Ren, J. PM2.5 Concentration Forecasting at Surface Monitoring Sites Using GRU Neural Network Based on Empirical Mode Decomposition. Sci. Total Environ. 2021, 768, 144516. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.; Cheng, J.; Yang, Y. Partly ensemble empirical mode decomposition: An improved noise-assisted method for eliminating mode mixing. Signal Process. 2014, 96, 362–374. [Google Scholar] [CrossRef]
- Zhang, Z.; Zeng, Y.; Yan, K. A hybrid deep learning technology for PM2.5 air quality forecasting. Environ. Sci. Pollut. Res. 2021, 28, 39409–39422. [Google Scholar] [CrossRef]
- Zhang, Y.; Pan, G.; Chen, B.; Han, J.; Zhao, Y.; Zhang, C. Short-term wind speed prediction model based on GA-ANN improved by VMD. Renew. Energy 2020, 156, 1373–1388. [Google Scholar] [CrossRef]
- Guo, H.; Guo, Y.; Zhang, W.; He, X.; Qu, Z. Research on a Novel Hybrid Decomposition–Ensemble Learning Paradigm Based on VMD and IWOA for PM2.5 Forecasting. Int. J. Environ. Res. Public Health 2021, 18, 1024. [Google Scholar] [CrossRef]
- Yu, M.; Niu, D.; Gao, T.; Wang, K.; Sun, L.; Li, M.; Xu, X. A novel framework for ultra-short-term interval wind power prediction based on RF-WOA-VMD and Bi-GRU optimized by the attention mechanism. Energy 2023, 269, 126738. [Google Scholar] [CrossRef]
- Zhang, G.; Liu, H.; Li, P.; Li, M.; He, Q.; Chao, H.; Zhang, J.; Hou, J. Load Prediction Based on Hybrid Model of VMD-m-RMR-BPNN-LSSVM. Complexity 2020, 2020, 6940786. [Google Scholar]
- Wang, D.; Liu, Y.; Luo, H.; Yue, C.; Cheng, S. Day-Ahead PM2.5 Concentration Forecasting Using WT-VMD Based Decomposition Method and Back Propagation Neural Network Improved by Differential Evolution. Int. J. Environ. Res. Public Health 2017, 14, 764. [Google Scholar] [CrossRef]
- Kim, Y.; Park, S.B.; Lee, S.; Park, Y.K. Comparison of PM2.5 prediction performance of the three deep learning models: A case study of Seoul, Daejeon, and Busan. J. Ind. Eng. Chem. 2023, 120, 159–169. [Google Scholar] [CrossRef]
- Zeng, T.; Xu, L.; Liu, Y.; Liu, R.; Luo, Y.; Xi, Y. A hybrid optimization prediction model for PM2.5 based on VMD and deep learning. Atmos. Pollut. Res. 2024, 15, 7. [Google Scholar] [CrossRef]
- Tran, H.D.; Huang, H.Y.; Yu, J.Y.; Wang, S.H. Forecasting hourly PM2.5 concentration with an optimized LSTM model. Atmos. Environ. 2023, 315, 15. [Google Scholar] [CrossRef]
City | Date | Sample | Size |
---|---|---|---|
Beijing | 1 February 2023–30 April 2023 | Sample set | 2136 |
Training set | 2000 | ||
Testing set | 136 | ||
Tianjin | 1 February 2023–30 April 2023 | Sample set | 2136 |
Training set | 2000 | ||
Testing set | 136 | ||
Tangshan | 1 February 2023–30 April 2023 | Sample set | 2136 |
Training set | 2000 | ||
Testing set | 136 |
Datasets | Models | MAE (μg/m3) | RMSE (μg/m3) | MAPE (%) | R2 |
---|---|---|---|---|---|
Beijing | BP | 2.5836 | 2.7029 | 0.0947 | 0.9607 |
ELM | 1.7768 | 2.3874 | 0.0928 | 0.9621 | |
LSTM | 1.4848 | 2.3949 | 0.1072 | 0.9784 | |
VMD–LSTM | 1.0645 | 1.5352 | 0.0785 | 0.9856 | |
POA–VMD-LSTM | 0.7183 | 0.8807 | 0.0401 | 0.9978 | |
Tianjin | BP | 3.0714 | 2.5747 | 0.1479 | 0.9694 |
ELM | 2.6130 | 2.1102 | 0.1214 | 0.9678 | |
LSTM | 1.5037 | 1.5456 | 0.1185 | 0.9727 | |
VMD–LSTM | 0.9844 | 1.2242 | 0.0783 | 0.9937 | |
POA–VMD-LSTM | 0.4394 | 0.7164 | 0.0247 | 0.9986 | |
Tangshan | BP | 2.0699 | 1.4463 | 0.1035 | 0.9703 |
ELM | 1.6025 | 0.8535 | 0.0915 | 0.9783 | |
LSTM | 1.0131 | 0.7347 | 0.0909 | 0.9806 | |
VMD–LSTM | 0.9045 | 0.7118 | 0.0412 | 0.9929 | |
POA–VMD-LSTM | 0.8380 | 0.2989 | 0.0390 | 0.9940 |
Datasets | Contrast Models | PMAE | PRMSE | PMAPE | PR2 |
---|---|---|---|---|---|
Beijing | VMD–LSTM vs. LSTM | 28.31% | 35.90% | 26.72% | 0.73% |
POA–VMD–LSTM vs. BP | 72.20% | 67.42% | 57.66% | 3.86% | |
POA–VMD–LSTM vs. ELM | 59.58% | 63.11% | 56.78% | 3.72% | |
POA–VMD–LSTM vs. LSTM | 51.63% | 63.23% | 62.57% | 1.98% | |
POA–VMD–LSTM vs. VMD-LSTM | 32.53% | 42.63% | 48.93% | 1.24% | |
Tianjin | VMD–LSTM vs. LSTM | 34.53% | 20.80% | 33.95% | 2.16% |
POA–VMD–LSTM vs. BP | 85.69% | 72.18% | 83.32% | 3.01% | |
POA–VMD–LSTM vs. ELM | 83.18% | 66.05% | 79.69% | 3.18% | |
POA–VMD–LSTM vs. LSTM | 70.78% | 53.65% | 79.19% | 2.66% | |
POA–VMD–LSTM vs. VMD–LSTM | 55.36% | 41.48% | 68.49% | 0.49% | |
Tangshan | VMD–LSTM vs. LSTM | 10.72% | 3.12% | 54.68% | 1.26% |
POA–VMD–LSTM vs. BP | 59.51% | 79.33% | 62.34% | 2.44% | |
POA–VMD–LSTM vs. ELM | 47.70% | 64.98% | 57.43% | 1.61% | |
POA–VMD–LSTM vs. LSTM | 17.28% | 59.32% | 57.13% | 1.37% | |
POA–VMD–LSTM vs. VMD–LSTM | 7.35% | 58.01% | 5.39% | 0.11% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, X.; Ma, X.; Wang, H. Urban Air Quality Management: PM2.5 Hourly Forecasting with POA–VMD and LSTM. Processes 2025, 13, 2482. https://doi.org/10.3390/pr13082482
Zhou X, Ma X, Wang H. Urban Air Quality Management: PM2.5 Hourly Forecasting with POA–VMD and LSTM. Processes. 2025; 13(8):2482. https://doi.org/10.3390/pr13082482
Chicago/Turabian StyleZhou, Xiaoqing, Xiaoran Ma, and Haifeng Wang. 2025. "Urban Air Quality Management: PM2.5 Hourly Forecasting with POA–VMD and LSTM" Processes 13, no. 8: 2482. https://doi.org/10.3390/pr13082482
APA StyleZhou, X., Ma, X., & Wang, H. (2025). Urban Air Quality Management: PM2.5 Hourly Forecasting with POA–VMD and LSTM. Processes, 13(8), 2482. https://doi.org/10.3390/pr13082482