Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (54,535)

Search Parameters:
Keywords = separations

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
37 pages, 3086 KiB  
Article
Conformal On-Body Antenna System Integrated with Deep Learning for Non-Invasive Breast Cancer Detection
by Marwa H. Sharaf, Manuel Arrebola, Khalid F. A. Hussein, Asmaa E. Farahat and Álvaro F. Vaquero
Sensors 2025, 25(15), 4670; https://doi.org/10.3390/s25154670 - 28 Jul 2025
Abstract
Breast cancer detection through non-invasive and accurate techniques remains a critical challenge in medical diagnostics. This study introduces a deep learning-based framework that leverages a microwave radar system equipped with an arc-shaped array of six antennas to estimate key tumor parameters, including position, [...] Read more.
Breast cancer detection through non-invasive and accurate techniques remains a critical challenge in medical diagnostics. This study introduces a deep learning-based framework that leverages a microwave radar system equipped with an arc-shaped array of six antennas to estimate key tumor parameters, including position, size, and depth. This research begins with the evolutionary design of an ultra-wideband octagram ring patch antenna optimized for enhanced tumor detection sensitivity in directional near-field coupling scenarios. The antenna is fabricated and experimentally evaluated, with its performance validated through S-parameter measurements, far-field radiation characterization, and efficiency analysis to ensure effective signal propagation and interaction with breast tissue. Specific Absorption Rate (SAR) distributions within breast tissues are comprehensively assessed, and power adjustment strategies are implemented to comply with electromagnetic exposure safety limits. The dataset for the deep learning model comprises simulated self and mutual S-parameters capturing tumor-induced variations over a broad frequency spectrum. A core innovation of this work is the development of the Attention-Based Feature Separation (ABFS) model, which dynamically identifies optimal frequency sub-bands and disentangles discriminative features tailored to each tumor parameter. A multi-branch neural network processes these features to achieve precise tumor localization and size estimation. Compared to conventional attention mechanisms, the proposed ABFS architecture demonstrates superior prediction accuracy and interpretability. The proposed approach achieves high estimation accuracy and computational efficiency in simulation studies, underscoring the promise of integrating deep learning with conformal microwave imaging for safe, effective, and non-invasive breast cancer detection. Full article
13 pages, 686 KiB  
Article
The Performance of Pleurotus eryngii β-Glucans on Protein Digestion and the Release of Free Amino Acids in the Bloodstream of Obese Adults
by Charalampia Amerikanou, Stamatia-Angeliki Kleftaki, Aristea Gioxari, Dimitra Tagkouli, Alexandra Kasoura, Stamatia Simati, Chara Tzavara, Alexander Kokkinos, Nick Kalogeropoulos and Andriana C. Kaliora
Foods 2025, 14(15), 2649; https://doi.org/10.3390/foods14152649 - 28 Jul 2025
Abstract
Pleurotus eryngii is an edible mushroom with previously characterized β-glucans. Its potential to ameliorate postprandial glycemia and regulate appetite at the postprandial state has been previously shown. However, its effect on protein digestion remains unexplored. We aimed to investigate the effect of baked [...] Read more.
Pleurotus eryngii is an edible mushroom with previously characterized β-glucans. Its potential to ameliorate postprandial glycemia and regulate appetite at the postprandial state has been previously shown. However, its effect on protein digestion remains unexplored. We aimed to investigate the effect of baked P. eryngii with a known β-glucan content (4.5 g) on plasma free amino acids of patients with central obesity and metabolic abnormalities at a postprandial state. In this acute, randomized controlled cross-over study, thirteen healthy male volunteers consumed one meal that was prepared with P. eryngii and one control meal; each meal was separated by one month. Blood was collected, and plasma was isolated at different timepoints before and after the consumption. Gas chromatography–mass spectrometry was used to quantify 24 free amino acids in the plasma samples. The area under the curve with respect to increase (AUCi) was computed, and the AUCi for aromatic amino acids was found to be higher after the consumption of the control meal compared to the P. eryngii meal (p = 0.027 for phenylalanine, p = 0.008 for tyrosine, and p = 0.003 for tryptophan). The above novel findings suggest that the β-glucans present in P. eryngii mushrooms are potential modulators of AA release into the bloodstream. Full article
(This article belongs to the Special Issue Food Bioactive Compounds in Chronic Diseases Prevention and Ageing)
16 pages, 1113 KiB  
Case Report
Novel Sonoguided Digital Palpation and Ultrasound-Guided Hydrodissection of the Long Thoracic Nerve for Managing Serratus Anterior Muscle Pain Syndrome: A Case Report with Technical Details
by Nunung Nugroho, King Hei Stanley Lam, Theodore Tandiono, Teinny Suryadi, Anwar Suhaimi, Wahida Ratnawati, Daniel Chiung-Jui Su, Yonghyun Yoon and Keneath Dean Reeves
Diagnostics 2025, 15(15), 1891; https://doi.org/10.3390/diagnostics15151891 - 28 Jul 2025
Abstract
Background and Clinical Significance: Serratus Anterior Muscle Pain Syndrome (SAMPS) is an underdiagnosed cause of anterior chest wall pain, often attributed to myofascial trigger points of the serratus anterior muscle (SAM) or dysfunction of the Long Thoracic Nerve (LTN), leading to significant disability [...] Read more.
Background and Clinical Significance: Serratus Anterior Muscle Pain Syndrome (SAMPS) is an underdiagnosed cause of anterior chest wall pain, often attributed to myofascial trigger points of the serratus anterior muscle (SAM) or dysfunction of the Long Thoracic Nerve (LTN), leading to significant disability and affecting ipsilateral upper limb movement and quality of life. Current diagnosis relies on exclusion and physical examination, with limited treatment options beyond conservative approaches. This case report presents a novel approach to chronic SAMPS, successfully diagnosed using Sonoguided Digital Palpation (SDP) and treated with ultrasound-guided hydrodissection of the LTN using 5% dextrose in water (D5W) without local anesthetic (LA), in a patient where conventional treatments had failed. Case Presentation: A 72-year-old male presented with a three-year history of persistent left chest pain radiating to the upper back, exacerbated by activity and mimicking cardiac pain. His medical history included two percutaneous coronary interventions. Physical examination revealed tenderness along the anterior axillary line and a positive hyperirritable spot at the mid axillary line at the 5th rib level. SDP was used to visualize the serratus anterior fascia (SAF) and LTN, and to reproduce the patient’s concordant pain by palpating the LTN. Ultrasound-guided hydrodissection of the LTN was then performed using 20–30cc of D5W without LA to separate the nerve from the surrounding tissues, employing a “fascial unzipping” technique. The patient reported immediate pain relief post-procedure, with the pain reducing from 9/10 to 1/10 on the Numeric Rating Scale (NRS), and sustained relief and functional improvement at the 12-month follow-up. Conclusions: Sonoguided Digital Palpation (SDP) of the LTN can serve as a valuable diagnostic adjunct for visualizing and diagnosing SAMPS. Ultrasound-guided hydrodissection of the LTN with D5W without LA may provide a promising and safe treatment option for patients with chronic SAMPS refractory to conservative management, resulting in rapid and sustained pain relief. Further research, including controlled trials, is warranted to evaluate the long-term efficacy and generalizability of these findings and to compare D5W to other injectates. Full article
31 pages, 6095 KiB  
Article
Assessing the Provision of Ecosystem Services Using Forest Site Classification as a Basis for the Forest Bioeconomy in the Czech Republic
by Kateřina Holušová and Otakar Holuša
Forests 2025, 16(8), 1242; https://doi.org/10.3390/f16081242 - 28 Jul 2025
Abstract
The ecosystem services (ESs) of forests are the benefits that people derive from forest ecosystems. Their precise recognition is important for differentiating and determining the optimal principles of multifunctional forest management. The aim of this study is to identify some important ESs based [...] Read more.
The ecosystem services (ESs) of forests are the benefits that people derive from forest ecosystems. Their precise recognition is important for differentiating and determining the optimal principles of multifunctional forest management. The aim of this study is to identify some important ESs based on a site classification system at the lowest level—i.e., forest stands, at the forest owner level—as a tool for differentiated management. ESs were assessed within the Czech Republic and are expressed in units in accordance with the very sophisticated Forest Site Classification System. (1) Biomass production: The vertical differentiation of ecological conditions given by vegetation tiers, which reflect the influence of altitude, exposure, and climate, provides a basic overview of biomass production; the highest value is in the fourth vegetation tier, i.e., the Fageta abietis community. Forest stands are able to reach a stock of up to 900–1200 m3·ha−1. The lowest production is found in the eighth vegetation tier, i.e., the Piceeta community, with a wood volume of 150–280 m3·ha−1. (2) Soil conservation function: Geological bedrock, soil characteristics, and the geomorphological shape of the terrain determine which habitats serve a soil conservation function according to forest type sets. (3) The hydricity of the site, depending on the soil type, determines the hydric-water protection function of forest stands. Currently, protective forests occupy 53,629 ha in the Czech Republic; however, two subcategories of protective forests—exceptionally unfavorable locations and natural alpine spruce communities below the forest line—potentially account for 87,578 ha and 15,277 ha, respectively. Forests with an increased soil protection function—a subcategory of special-purpose forests—occupy 133,699 ha. The potential area of soil protection forests could be up to 188,997 ha. Water resource protection zones of the first degree—another subcategory of special-purpose forests—occupy 8092 ha, and there is potentially 289,973 ha of forests serving a water protection function (specifically, a water management function) in the Czech Republic. A separate subcategory of water protection with a bank protection function accounts for 80,529 ha. A completely new approach is presented for practical use by forest owners: based on the characteristics of the habitat, they can obtain information about the fulfillment of the habitat’s ecosystem services and, thus, have basic information for the determination of forest categories and the principles of differentiated management. Full article
(This article belongs to the Section Forest Economics, Policy, and Social Science)
34 pages, 2647 KiB  
Article
Universal Prediction of CO2 Adsorption on Zeolites Using Machine Learning: A Comparative Analysis with Langmuir Isotherm Models
by Emrah Kirtil
ChemEngineering 2025, 9(4), 80; https://doi.org/10.3390/chemengineering9040080 - 28 Jul 2025
Abstract
The global atmospheric concentration of carbon dioxide (CO2) has exceeded 420 ppm. Adsorption-based carbon capture technologies, offer energy-efficient, sustainable solutions. Relying on classical adsorption models like Langmuir to predict CO2 uptake presents limitations due to the need for case-specific parameter [...] Read more.
The global atmospheric concentration of carbon dioxide (CO2) has exceeded 420 ppm. Adsorption-based carbon capture technologies, offer energy-efficient, sustainable solutions. Relying on classical adsorption models like Langmuir to predict CO2 uptake presents limitations due to the need for case-specific parameter fitting. To address this, the present study introduces a universal machine learning (ML) framework using multiple algorithms—Generalized Linear Model (GLM), Feed-forward Multilayer Perceptron (DL), Decision Tree (DT), Random Forest (RF), Support Vector Machine (SVM), and Gradient Boosted Trees (GBT)—to reliably predict CO2 adsorption capacities across diverse zeolite structures and conditions. By compiling over 5700 experimentally measured adsorption data points from 71 independent studies, this approach systematically incorporates critical factors including pore size, Si/Al ratio, cation type, temperature, and pressure. Rigorous Cross-Validation confirmed superior performance of the GBT model (R2 = 0.936, RMSE = 0.806 mmol/g), outperforming other ML models and providing comparable performance with classical Langmuir model predictions without separate parameter calibration. Feature importance analysis identified pressure, Si/Al ratio, and cation type as dominant influences on adsorption performance. Overall, this ML-driven methodology demonstrates substantial promise for accelerating material discovery, optimization, and practical deployment of zeolite-based CO2 capture technologies. Full article
22 pages, 5646 KiB  
Article
Preparation and Characterization of D-Carvone-Doped Chitosan–Gelatin Bifunctional (Antioxidant and Antibacterial Properties) Film and Its Application in Xinjiang Ramen
by Cong Zhang, Kai Jiang, Yilin Lin, Rui Cui and Hong Wu
Foods 2025, 14(15), 2645; https://doi.org/10.3390/foods14152645 - 28 Jul 2025
Abstract
In this study, a composite film with dual antioxidant and antibacterial properties was prepared by combining 2% chitosan and 7% gelatin (2:1, w:w), with D-carvone (0–4%) as the primary active component. The effect of D-carvone content on the performance of the composite films [...] Read more.
In this study, a composite film with dual antioxidant and antibacterial properties was prepared by combining 2% chitosan and 7% gelatin (2:1, w:w), with D-carvone (0–4%) as the primary active component. The effect of D-carvone content on the performance of the composite films was systematically investigated. The results showed that adding 1% D-carvone increased the water contact angle by 28%, increased the elongation at break by 35%, and decreased the WVTR by 18%. FTIR and SEM confirmed that ≤2% D-carvone uniformly bonded with the substrate through hydrogen bonds, and the film was dense and non-porous. In addition, the DPPH scavenging rate of the 1–2% D-carvone composite film increased to about 30–40%, and the ABTS+ scavenging rate increased to about 35–40%; the antibacterial effect on Escherichia coli and Staphylococcus aureus increased by more than 70%. However, when the addition amount was too high (exceeding 2%), the composite film became agglomerated, microporous, and phase-separated, affecting the film performance, and due to its own taste, it reduced the sensory quality of the noodles. Comprehensively, the composites showed better performance when the content of D-carvone was 1–2% and also the best effect for freshness preservation in Xinjiang ramen. This study provides a broad application prospect for natural terpene compound-based composite films in the field of high-moisture, multi-fat food preservation, and provides a theoretical basis and practical guidance for the development of efficient and safe food packaging materials. In the future, the composite film can be further optimized, and the effect of flavor can be further explored to meet the needs of different food preservation methods. Full article
(This article belongs to the Section Food Packaging and Preservation)
Show Figures

Graphical abstract

33 pages, 3709 KiB  
Review
A Review of Methods and Data on the Recycling of Plastics from the European Waste Stream of Electric and Electronic Equipment
by Nicolas Nève, Xavier Mackré-Delannoy, Bruno Fayolle, Matthieu Gervais, Stéphane Pompidou, Carole Charbuillet, Cyrille Sollogoub and Nicolas Perry
Recycling 2025, 10(4), 148; https://doi.org/10.3390/recycling10040148 - 28 Jul 2025
Abstract
Plastics make up a significant proportion of the stream of the European Waste of Electric and Electronic Equipment (WEEE), yet the use of recycled plastic materials is very low in new manufactured products. A description of the WEEE waste stream in Europe is [...] Read more.
Plastics make up a significant proportion of the stream of the European Waste of Electric and Electronic Equipment (WEEE), yet the use of recycled plastic materials is very low in new manufactured products. A description of the WEEE waste stream in Europe is given, with a focus on the plastic materials commonly found in WEEE that include four principal polymers: polypropylene (PP), polycarbonate (PC), acrylonitrile-butadiene-styrene (ABS) and polystyrene (PS). Furthermore, the legislative aspects related to WEEE and plastics recycling in Europe are complex, and numerous norms have been dictated by the European Commission. These norms are crucial to the sector of polymer recycling and production in Europe. Moreover, an overview of the entire treatment chain is presented. More specifically, each step of a typical recycling chain is introduced, with a focus on the sorting of plastics and the separation of polymers. Lastly, the influence of contaminants in the plastic fraction is discussed, both in terms of polymer particles and unwanted additives. By showing the impact of the purity rate on the mechanical properties of recycled plastics, the consequences of inadequate end-of-life treatment for WEEE-plastics is highlighted, hence linking the quality of recycled plastics to the separation step and the re-compounding of recycled granulates. Full article
Show Figures

Figure 1

39 pages, 6536 KiB  
Review
Exploring Activated Carbons for Sustainable Biogas Upgrading: A Comprehensive Review
by Deneb Peredo-Mancilla, Alfredo Bermúdez, Cécile Hort and David Bessières
Energies 2025, 18(15), 4010; https://doi.org/10.3390/en18154010 - 28 Jul 2025
Abstract
Global energy supply remains, to this day, mainly dominated by fossil fuels, aggravating climate change. To increase and diversify the share of renewable energy sources, there is an urgent need to expand the use of biofuels that could help in decarbonizing the energy [...] Read more.
Global energy supply remains, to this day, mainly dominated by fossil fuels, aggravating climate change. To increase and diversify the share of renewable energy sources, there is an urgent need to expand the use of biofuels that could help in decarbonizing the energy mix. Biomethane, obtained by upgrading biogas, simultaneously allows the local production of clean energy, waste valorization, and greenhouse gas emissions mitigation. Among various upgrading technologies, the use of activated carbons in adsorption-based separation systems has attracted significant attention due to their versatility, cost-effectiveness, and sustainability potential. The present review offers a comprehensive analysis of the factors that influence the efficiency of activated carbons on carbon dioxide adsorption and separation for biogas upgrading. The influence of activation methods, activation conditions, and precursors on the biogas adsorption performance of activated carbons is revised. Additionally, the role of adsorbent textural and chemical properties on gas adsorption behavior is highlighted. By synthesizing current knowledge and perspectives, this work provides guidance for future research that could help in developing more efficient, cost-effective, and sustainable adsorbents for biogas upgrading. Full article
(This article belongs to the Section B: Energy and Environment)
15 pages, 22006 KiB  
Article
Sodium Oxide-Fluxed Aluminothermic Reduction of Manganese Ore with Synergistic Effects of C and Si Reductants: SEM Study and Phase Stability Calculations
by Theresa Coetsee and Frederik De Bruin
Reactions 2025, 6(3), 40; https://doi.org/10.3390/reactions6030040 - 28 Jul 2025
Abstract
Aluminothermic reduction is an alternative processing route for the circular economy because Al is produced electrochemically in the Hall–Héroult process with minimal CO2 emissions if the electricity input is sourced from non-fossil fuel energy sources. This circular processing option attracts increased research [...] Read more.
Aluminothermic reduction is an alternative processing route for the circular economy because Al is produced electrochemically in the Hall–Héroult process with minimal CO2 emissions if the electricity input is sourced from non-fossil fuel energy sources. This circular processing option attracts increased research attention in the aluminothermic production of manganese and silicon alloys. The Al2O3 product must be recycled through hydrometallurgical processing, with leaching as the first step. Recent work has shown that the NaAlO2 compound is easily leached in water. In this work, a suitable slag formulation is applied in the aluminothermic reduction of manganese ore to form a Na2O-based slag of high Al2O3 solubility to effect good alloy–slag separation. The synergistic effect of carbon and silicon reductants with aluminium is illustrated and compared to the test result with only carbon reductant. The addition of small amounts of carbon reductant to MnO2-containing ore ensures rapid pre-reduction to MnO, facilitating aluminothermic reduction. At 1350 °C, a loosely sintered mass formed when carbon was added alone. The alloy and slag chemical analyses are compared to the thermochemistry predicted phase chemistry. The alloy consists of 66% Mn, 22–28% Fe, 2–9% Si, 0.4–1.4% Al, and 2.2–3.5% C. The higher %Si alloy is formed by adding Si metal. Although the product slag has a higher Al2O3 content (52–55% Al2O3) compared to the target slag (39% Al2O3), the fluidity of the slags appears sufficient for good alloy separation. Full article
25 pages, 2377 KiB  
Article
Assessment of Storm Surge Disaster Response Capacity in Chinese Coastal Cities Using Urban-Scale Survey Data
by Li Zhu and Shibai Cui
Water 2025, 17(15), 2245; https://doi.org/10.3390/w17152245 - 28 Jul 2025
Abstract
Currently, most studies evaluating storm surges are conducted at the provincial level, and there is a lack of detailed research focusing on cities. This paper focuses on the urban scale, using some fine-scale data of coastal areas obtained through remote sensing images. This [...] Read more.
Currently, most studies evaluating storm surges are conducted at the provincial level, and there is a lack of detailed research focusing on cities. This paper focuses on the urban scale, using some fine-scale data of coastal areas obtained through remote sensing images. This research is based on the Hazard–Exposure–Vulnerability (H-E-V) framework and PPRR (Prevention, Preparedness, Response, and Recovery) crisis management theory. It focuses on 52 Chinese coastal cities as the research subject. The evaluation system for the disaster response capabilities of Chinese coastal cities was constructed based on three aspects: the stability of the disaster-incubating environment (S), the risk of disaster-causing factors (R), and the vulnerability of disaster-bearing bodies (V). The significance of this study is that the storm surge capability of China’s coastal cities can be analyzed based on the results of the evaluation, and the evaluation model can be used to identify its deficiencies. In this paper, these storm surge disaster response capabilities of coastal cities were scored using the entropy weighted TOPSIS method and the weight rank sum ratio (WRSR), and the results were also analyzed. The results indicate that Wenzhou has the best comprehensive disaster response capability, while Yancheng has the worst. Moreover, Tianjin, Ningde, and Shenzhen performed well in the three aspects of vulnerability of disaster-bearing bodies, risk of disaster-causing factors, and stability of disaster-incubating environment separately. On the contrary, Dandong (tied with Qinzhou), Jiaxing, and Chaozhou performed poorly in the above three areas. Full article
(This article belongs to the Special Issue Advanced Research on Marine Geology and Sedimentology)
Show Figures

Figure 1

14 pages, 752 KiB  
Article
Versatile High-Performance Liquid Chromatography and Ultraviolet Detection-Based Method for the Determination of Thioproline in Pharmaceutical and Cosmetic Products
by Marta Gaweł, Martyna Płodzik, Rafał Głowacki and Justyna Piechocka
Molecules 2025, 30(15), 3152; https://doi.org/10.3390/molecules30153152 - 28 Jul 2025
Abstract
The article presents the first method based on high-performance liquid chromatography and ultraviolet detection (HPLC-UV) for the determination of timonacic (thioproline, 1,3-thiazolidine-4-carboxylic acid, tPro) in pharmaceutical tablets and face care products (creams, sera, foundations, suncreams). Sample preparation primarily involves solid-liquid extraction (SLE) of [...] Read more.
The article presents the first method based on high-performance liquid chromatography and ultraviolet detection (HPLC-UV) for the determination of timonacic (thioproline, 1,3-thiazolidine-4-carboxylic acid, tPro) in pharmaceutical tablets and face care products (creams, sera, foundations, suncreams). Sample preparation primarily involves solid-liquid extraction (SLE) of tPro with 0.2 mol/L phosphate buffer pH 6, derivatization with 0.25 mol/L 2-chloro-1-methylquinolinium tetrafluoroborate (CMQT), followed by polytetrafluoroethylene (PTFE) membrane filtration. The chromatographic separation of the stable UV-absorbing 2-S-quinolinium derivative is achieved within 14 min at 25 °C on a Zorbax SB-C18 (150 × 4.6 mm, 5 µm) column using gradient elution. The eluent consists of 0.1 mol/L trichloroacetic acid (TCA), pH 1.7, in a mixture with acetonitrile (ACN) delivered at a flow rate of 1 mL/min. The analyte is quantified by monitoring at 348 nm. The assay linearity was observed within 0.5–125 μmol/L. The limit of quantification (LOQ) was found to be 0.5 μmol/L. The accuracy ranged from 93.22% to 104.31% and 97.38% to 103.48%, while precision varied from 0.30% to 11.23% and 1.13% to 9.64% for intra- and inter-assay measurements, respectively. The method was successfully applied to commercially available on the Polish market pharmaceutical and cosmetic products. Full article
(This article belongs to the Special Issue Recent Advances in Chromatography for Pharmaceutical Analysis)
Show Figures

Figure 1

17 pages, 2003 KiB  
Article
Effect of Caffeinated Chewing Gum on Maximal Strength, Muscular Power, and Muscle Recruitment During Bench Press and Back Squat Exercises
by Li Ding, Jue Liu, Yixuan Ma, Tze-Huan Lei, Mathew Barnes, Li Guo, Bin Chen, Yinhang Cao and Olivier Girard
Nutrients 2025, 17(15), 2455; https://doi.org/10.3390/nu17152455 - 28 Jul 2025
Abstract
Background/Objectives: This study aims to investigate the effects of caffeinated chewing gum on maximal strength, muscular power, and neural drive to the prime movers during bench press and back squat in resistance-trained men. Methods: Sixteen resistance-trained males participated in a double-blind, [...] Read more.
Background/Objectives: This study aims to investigate the effects of caffeinated chewing gum on maximal strength, muscular power, and neural drive to the prime movers during bench press and back squat in resistance-trained men. Methods: Sixteen resistance-trained males participated in a double-blind, randomized trial, chewing either caffeinated gum (4 mg/kg) or placebo gum on two separate occasions, seven days apart. After chewing for 5 min, participants performed a maximal strength test followed by muscular power assessments at 25%, 50%, 75%, and 90% of their one-repetition maximum (1RM), completing with 3, 2, 1, and 1 repetition (s), respectively, for bench press and back squat. Surface electromyography data were recorded for each repetition. Results: Caffeinated gum did not significantly improve one-repetition maximum (1RM) for bench press (p > 0.05), but increased mean frequency (MF) and median frequency (MDF) in anterior deltoid, pectoralis major, and biceps brachii (all p < 0.05) compared to placebo. For back squat, 1RM increased with caffeinated gum, along with higher MF and MDF in vastus medialis (all p < 0.05). Caffeinated gum also improved mean and peak velocities, and mean and peak power outputs at 25–75% 1RM during the bench press (all p < 0.05), along with elevated MDF in pectoralis major and biceps brachii (all p < 0.05). Similar improvements were seen in mean and peak velocities during the back squat at 25–90% 1RM (all p < 0.05), along with higher MF and MDF in vastus medialis and increased normalized root mean square activity in gluteus maximus (all p < 0.05). Conclusions: Caffeinated chewing gum (4 mg/kg) enhanced muscular power (25–75% 1RM) in the bench press and improved maximal strength and muscular power (25–90% 1RM) in the back squat by increasing muscle recruitment in resistance-trained men. Full article
(This article belongs to the Special Issue Energy Drink Effectiveness on Human Health and Exercise Performance)
Show Figures

Figure 1

13 pages, 1723 KiB  
Article
Molecular Fractionation Induced by Viscosity-Driven Segregative Phase Separation Behavior of Gum Arabic/Hydroxypropyl Methylcellulose
by Lingyu Han, Cunzhi Zhang, Nuo Dong, Jixin Yang, Qiuyue Zheng, Xiaobo Zhang, Ronggang Liu, Jijuan Cao and Bing Hu
Foods 2025, 14(15), 2642; https://doi.org/10.3390/foods14152642 - 28 Jul 2025
Abstract
Segregative phase separation technology demonstrates substantial potential for precise molecular fractionation in food and biomaterial applications. The investigation elucidates the causal relationship between viscosity variations and phase separation dynamics, which govern molecular fractionation in GA/HPMC composite systems. By conducting a comparative analysis of [...] Read more.
Segregative phase separation technology demonstrates substantial potential for precise molecular fractionation in food and biomaterial applications. The investigation elucidates the causal relationship between viscosity variations and phase separation dynamics, which govern molecular fractionation in GA/HPMC composite systems. By conducting a comparative analysis of two GA subtypes (CGA and SGA) and three HPMC grades with controlled viscosity gradients, we utilized gel permeation chromatography-multi-angle laser light scattering (GPC-MALLS) coupled with rheological characterization to elucidate the critical relationship between continuous phase viscosity and fractionation efficiency. Notably, increasing HPMC viscosity significantly intensified phase separation, resulting in selective enrichment of arabinogalactan-protein complexes: from 6.3% to 8.5% in CGA/HPMC systems and from 27.3% to 36.5% in SGA/HPMC systems. Further mechanistic investigation revealed that elevated HPMC viscosity enhances thermodynamic incompatibility while slowing interfacial mass transfer, synergistically driving component redistribution. These findings establish a quantitative viscosity–fractionation relationship, offering theoretical insights for optimizing GA/HPMC systems in emulsion stabilization, microencapsulation, and functional biopolymer purification via viscosity-mediated phase engineering. Full article
(This article belongs to the Section Food Physics and (Bio)Chemistry)
Show Figures

Figure 1

13 pages, 1507 KiB  
Article
DNA Transfer Between Items Within an Evidence Package
by Yong Sheng Lee and Christopher Kiu-Choong Syn
Genes 2025, 16(8), 894; https://doi.org/10.3390/genes16080894 - 28 Jul 2025
Abstract
Background/Objectives: Advancements in DNA profiling have made it possible to retrieve intact DNA profiles from increasingly minute biological samples. This increased sensitivity in DNA detection has highlighted crucial considerations to be made when handling and packing items from the crime scene to [...] Read more.
Background/Objectives: Advancements in DNA profiling have made it possible to retrieve intact DNA profiles from increasingly minute biological samples. This increased sensitivity in DNA detection has highlighted crucial considerations to be made when handling and packing items from the crime scene to minimize potential contamination from either direct or indirect transfer of DNA. To investigate potential DNA transfer between items stored within the same evidence package, we conducted a simulation study with items commonly encountered during forensic casework. Methods: Participants were grouped in pairs, each of them handling the same type of item to simulate the activity conducted at the crime scene. The items were then collected from each pair of participants and stored in the same evidence package for 4 to 5 days. To evaluate the basal DNA transfer between items within the same package, the packed items were not subjected to friction, force, or long-distance movement in this study. Results: We have observed the occurrence of DNA transfer on 39% of the studied items inside the package, which changed the source attribution of the DNA profiles for 10% of the recovered samples. Our results showed that the types of items were associated with the number of transferred alleles and the amount of DNA recovered, while no association was found between the number of transferred alleles and the amount of DNA on the studied items. Conclusions: Taken together, the results from this study reiterate the importance of packing each item from the crime scene separately, especially when packing items together may impact the interpretation of source attribution. Full article
(This article belongs to the Special Issue Advanced Research in Forensic Genetics)
Show Figures

Figure 1

16 pages, 2707 KiB  
Article
Ultrasound-Activated BiOI/Ti3C2 Heterojunctions in 3D-Printed Piezocatalytic Antibacterial Scaffolds for Infected Bone Defects
by Juntao Xie, Zihao Zhang, Zhiheng Yu, Bingxin Sun, Yingxin Yang, Guoyong Wang and Cijun Shuai
Materials 2025, 18(15), 3533; https://doi.org/10.3390/ma18153533 - 28 Jul 2025
Abstract
Piezocatalytic therapy (PCT) is a promising strategy for combating implant-associated infections due to its high tissue penetration depth and non-invasive nature. However, its catalytic efficiency remains limited by inefficient electron–hole separation. In this work, an ultrasound-responsive heterojunction (BiOI/Ti3C2) was [...] Read more.
Piezocatalytic therapy (PCT) is a promising strategy for combating implant-associated infections due to its high tissue penetration depth and non-invasive nature. However, its catalytic efficiency remains limited by inefficient electron–hole separation. In this work, an ultrasound-responsive heterojunction (BiOI/Ti3C2) was fabricated through in situ growth of bismuth iodide oxide on titanium carbide nanosheets. Subsequently, we integrated BiOI/Ti3C2 into poly(e-caprolactone) (PCL) scaffolds using selective laser sintering. The synergistic effect between BiOI and Ti3C2 significantly facilitated the redistribution of piezo-induced charges under ultrasound irradiation, effectively suppressing electron–hole recombination. Furthermore, abundant oxygen vacancies in BiOI/Ti3C2 provide more active sites for piezocatalytic reactions. Therefore, it enables ultrahigh reactive oxygen species (ROS) yields under ultrasound irradiation, achieving eradication rates of 98.87% for Escherichia coli (E. coli) and 98.51% for Staphylococcus aureus (S. aureus) within 10 minutes while maintaining cytocompatibility for potential tissue integration. This study provides a novel strategy for the utilization of ultrasound-responsive heterojunctions in efficient PCT therapy and bone regeneration. Full article
(This article belongs to the Section Biomaterials)
Show Figures

Figure 1

Back to TopTop