A Review of Methods and Data on the Recycling of Plastics from the European Waste Stream of Electric and Electronic Equipment
Abstract
1. Introduction and Context
2. Assessment of the WEEE-Plastic Stream
2.1. Peer-Reviewed Published Results
Equipment Type | Composition (Polymers) |
---|---|
ICT equipment | ABS (80%), PC/ABS (13%), HIPS, POM |
Televisions | PS (63%), PC/ABS (32%) |
Printers/faxes | ABS (80%), PC/ABS (13%), HIPS, POM |
Toys | ABS (70%), HIPS (10%), PA (5%) |
Computers | ABS (50%), PC/ABS (35%), HIPS (15%) |
Monitors | PC/ABS (90%), ABS (5%), HIPS (5%) |
Dishwashers | PS (8%), ABS (7%) |
Small household appliances | PA (19%), ABS/SAN (17%), PC (10%), PBT |
Temperature exchange equipment (cold) | PS (31%), ABS (26%) |
2.2. Independent Studies
3. Organisational and Legal Aspects of WEEE Recycling in Europe
3.1. Perimeter of the Recycling Chain
- The manufacturing and use phases
- The end-of-life phase, where the EEE becomes WEEE
- The waste preparation organisms (their identity can change depending on the country), who are in charge of the gathering and pre-sorting of the waste.
- The recycling companies, which oversee the shredding and sorting of the waste, the regeneration of materials, and the compounding, to create recycled plastics materials (RPM).
- The compounders, who create plastic granules with the previously mentioned RPM. This step consists of mixing the regenerated materials with additional substances in order to give specific properties to a recycled plastic. The compounder and recycling company are often the same entity.
- The producer’s responsibility organisations (PROs):, whose functioning depends on the specific laws on each country, but generally speaking, they work alongside the governments and take responsibility for the collection of waste, and the coordination of all other stakeholders involved in the waste treatment chain, as well as overseeing the treatment of WEEE. Note that PROs are also called compliance schemes.
3.2. The End-of-Life Options for Waste Treatment
- functional recovery: total or partial
- material recovery
- energy recovery
- disposal: incineration without energy recovery, or landfill
3.2.1. Total and Partial Functional Recovery
3.2.2. Material Recovery
3.2.3. Energy Recovery and Elimination
3.3. Legal Aspects
3.3.1. Defining WEEE
- Category 1: Heating and cooling appliances
- Category 2: Screens and equipment with screens
- Category 3: Lighting equipment
- Category 4: Large appliances
- Category 5: Small appliances
- Category 6: Small IT and telecom equipment
- Category 7: Photovoltaic panels
3.3.2. The REACH Directive on Hazardous Substances and Restrictions
- 1.
- Registration
- The polymer is composed of at least 2% w/w of the said substance or any chemically related substance.
- The total quantity of produced substance is higher than one ton per year.
- 2.
- Authorisation
- Carcinogenic substances
- Mutagenic substances
- Reprotoxic substances
- Persistent, bio-accumulative, and toxic substances
- Very persistent and very bio-accumulative substances
- Substances that contain endocrine disruptors, and more generally, any substance that does not meet the previous two criteria, but for which there is scientific evidence of serious effects on human health or on the environment.
- 3.
- Restriction
- A proposition including the identity of the substance and the proposed restrictions for its production, use and putting on the market.
- Information on the hazardous nature of the substance and on the potential risks described based on a risk analysis and presented as a chemical safety report.
- Data on the alternative substances.
- Justifications for the restriction towards the member States.
3.3.3. RoHS and Other Norms and Standards for WEEE-p Recycling
4. Waste Treatment, from WEEE to Recycled Plastics
4.1. Pre-Treatment
4.2. Separation Techniques
4.2.1. Fluid-Based Techniques
- Flotation separation
- Hydrocyclone separation
- Selective flotation
4.2.2. Dry Techniques
- Air table separation
- Electrostatic separation
4.2.3. Optical Techniques
- Infrared spectroscopy
- Visible light separation
- X-ray detection
- Laser induced breakdown spectroscopy (LIBS)
4.3. Summary
5. The Issue of Contaminants in WEEE-Plastics
5.1. Ageing
5.2. Fillers
5.3. Contamination by Other Plastics
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Forti, V.; Baldé, C.P.; Kuehr, R.; Bel, G. The Global E-Waste Monitor 2020: Quantities, Flows and the Circular Economy Potential; United Nations University (UNU)/United Nations Institute for Training and Research (UNITAR): Geneva, Switzerland, 2020; p. 120. Available online: https://collections.unu.edu/eserv/UNU:7737/GEM_2020_def_july1.pdf (accessed on 28 September 2022).
- Harscoet, E.; Dadou-Willmann, C. Analyse de La Chaîne de Valeur du Recyclage des Plastiques en France; ADEME, Deloitte: Angers, France, 2022. [Google Scholar]
- Garcia-Gutierrez, P.; Amadei, A.M.; Klenert, D.; Nessi, S.; Tonini, D.; Tosches, D.; Ardente, F.; Saveyn, H. Environmental and Economic Assessment of Plastic Waste Recycling; JRC: Canton, MA, USA, 2023. [Google Scholar]
- Favot, M.; Grassetti, L.; Massarutto, A.; Veit, R. Regulation and competition in the extended producer responsibility models: Results in the WEEE sector in Europe. Waste Manag. 2022, 145, 60–71. [Google Scholar] [CrossRef]
- Andersen, T. A comparative study of national variations of the European WEEE directive: Manufacturer’s view. Environ. Sci. Pollut. Res. 2021, 29, 19920–19939. [Google Scholar] [CrossRef]
- European Parliament. ‘2002/96/EC’, Official Journal L 037, 13/02/2003 p. 0024-0039. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX%3A32002L0096 (accessed on 29 November 2022).
- Plastics Europe. Plastics—The Facts 2024; Plastics Europe: Bruxelles, Belgium, 2024; Available online: https://plasticseurope.org/knowledge-hub/plastics-the-fast-facts-2024/ (accessed on 20 May 2025).
- EuPC; PCE. The Usage of Recycled Plastics Materials by Plastics Converters in Europe, 2nd ed.; Polymer Comply Europe: Bruxelles, Belgium, 2019; Available online: http://www.ahpi.gr/wp-content/uploads/2019/01/PCE-Report-2nd-EuPC-Survey-on-the-Use-of-rPM-by-European-Plastics-Converters-v.1_compressed.pdf (accessed on 11 April 2023).
- Ma, C.; Yu, J.; Wang, B.; Song, Z.; Xiang, J.; Hu, S.; Su, S.; Sun, L. Chemical recycling of brominated flame retarded plastics from e-waste for clean fuels production: A review. Renew. Sustain. Energy Rev. 2016, 61, 433–450. [Google Scholar] [CrossRef]
- Ragaert, K.; Delva, L.; Van Geem, K. Mechanical and chemical recycling of solid plastic waste. Waste Manag. 2017, 69, 24–58. [Google Scholar] [CrossRef]
- Harscoet, E.; Chouvenc, S. Chemical and Physico-Chemical Recycling of Plastic Waste, Deloitte. 2022. Available online: https://record-net.org/media/etudes/242/public/rapport/rapport-record21-0919-1a.pdf (accessed on 16 June 2023).
- van der Hulst, M.K.; Ottenbros, A.B.; van der Drift, B.; Ferjan, Š.; van Harmelen, T.; Schwarz, A.E.; Worrell, E.; van Zelm, R.; Huijbregts, M.A.J.; Hauck, M. Greenhouse gas benefits from direct chemical recycling of mixed plastic waste. Resour. Conserv. Recycl. 2022, 186, 106582. [Google Scholar] [CrossRef]
- Arain, A.L.; Neitzel, R.L.; Nambunmee, K.; Hischier, R.; Jindaphong, S.; Austin-Breneman, J.; Jolliet, O. Material flow, economic and environmental life cycle performances of informal electronic waste recycling in a Thai community. Resour. Conserv. Recycl. 2022, 180, 106129. [Google Scholar] [CrossRef]
- Shardul, A. Plastics Flows and Their Impacts on the Environment; OECD: Paris, France, 2022; Available online: https://read.oecd-ilibrary.org/environment/global-plastics-outlook_71a51317-en (accessed on 4 April 2023).
- Turner, A. Black plastics: Linear and circular economies, hazardous additives and marine pollution. Environ. Int. 2018, 117, 308–318. [Google Scholar] [CrossRef] [PubMed]
- Tun, T.Z.; Kunisue, T.; Tanabe, S.; Prudente, M.; Subramanian, A.; Sudaryanto, A.; Viet, P.H.; Nakata, H. Microplastics in dumping site soils from six Asian countries as a source of plastic additives. Sci. Total Environ. 2022, 806, 150912. [Google Scholar] [CrossRef] [PubMed]
- Fangeat, E.; Deprouw, A.; Jover, M.; Borie, M.; Tonsart, O. Ademe-Rapport Annuel du Registre des Déchets D’équipements Électriques et Électroniques; ADEME: Angers, France, 2020. [Google Scholar]
- Ecologic. Rapport D’activités 2019. Available online: https://www.ecologic-france.com/images/medias/document/16866/rapport-annuel-ecologicjuin20vf-imprimable.pdf (accessed on 16 November 2021).
- Evangelopoulos, P.; Kantarelis, E.; Yang, W. Waste Electric and Electronic Equipment. In Sustainable Resource Recovery and Zero Waste Approaches; Elsevier: Amsterdam, The Netherlands, 2019; pp. 239–266. ISBN 978-0-444-64200-4. [Google Scholar]
- Habib, H.; Wagner, M.; Baldé, C.P.; Martínez, L.H.; Huisman, J.; Dewulf, J. What gets measured gets managed-does it? Uncovering the waste electrical and electronic equipment flows in the European Union. Resour. Conserv. Recycl. 2022, 181, 106222. [Google Scholar] [CrossRef]
- Horta, R.; Grimaud, G.; Martinez-Leal, J.; Perry, N.; Laratte, B.; Pompidou, S.; Alix, T.; Charbuillet, C. Influence of scope definition in recycling rate calculation for European e-waste extended producer responsibility. Waste Manag. 2019, 84, 256–268. [Google Scholar] [CrossRef]
- Horta Arduin, R. From Waste Management to Supplier of Secondary Raw Materials: Development of Indicators to Support WEEE Chain Management-Focus on the French System. Ph.D. Thesis, ENSAM, Paris, France, 2020. Available online: https://pastel.archives-ouvertes.fr/tel-02924750/document (accessed on 12 October 2022).
- Haarman, A.; Magalini, F.; Courtois, J. Study on the Impacts of Brominated Flame Retardants on the Recycling of WEEE Plastics in Europe; Sofies: Geneva, Switzerland, 2020; p. 44. [Google Scholar]
- Martinho, G.; Pires, A.; Saraiva, L.; Ribeiro, R. Composition of plastics from waste electrical and electronic equipment (WEEE) by direct sampling. Waste Manag. 2012, 32, 1213–1217. [Google Scholar] [CrossRef]
- Stenvall, E.; Tostar, S.; Boldizar, A.; Foreman, M.R.S.; Möller, K. An analysis of the composition and metal contamination of plastics from waste electrical and electronic equipment (WEEE). Waste Manag. 2013, 33, 915–922. [Google Scholar] [CrossRef]
- Tan, W.; Duan, Q.; Yao, L.; Li, J. A sensor combination based automatic sorting system for waste washing machine parts. Resour. Conserv. Recycl. 2022, 181, 106270. [Google Scholar] [CrossRef]
- Alassali, A.; Barouta, D.; Tirion, H.; Moldt, Y.; Kuchta, K. Towards a high quality recycling of plastics from waste electrical and electronic equipment through separation of contaminated fractions. J. Hazard. Mater. 2020, 387, 121741. [Google Scholar] [CrossRef] [PubMed]
- Maisel, F.; Chancerel, P.; Dimitrova, G.; Emmerich, J.; Nissen, N.F.; Schneider-Ramelow, M. Preparing WEEE plastics for recycling—How optimal particle sizes in pre-processing can improve the separation efficiency of high quality plastics. Resour. Conserv. Recycl. 2020, 154, 104619. [Google Scholar] [CrossRef]
- Jaidev, K.; Biswal, M.; Mohanty, S.; Nayak, S.K. Sustainable Waste Management of Engineering Plastics Generated from E-Waste: A Critical Evaluation of Mechanical, Thermal and Morphological Properties. J. Polym. Environ. 2021, 29, 1763–1776. [Google Scholar] [CrossRef]
- Grigorescu, R.M.; Grigore, M.E.; Ghioca, P.; Iancu, L.; Nicolae, C.-A.; Ion, R.-M.; Teodorescu, S.; Andrei, E.R. Waste Electrical and Electronic Equipment Study regarding the plastic composition. Mater. Plast. 2019, 56, 77–81. [Google Scholar] [CrossRef]
- Liu, X.; Lu, X.; Feng, Y.; Zhang, L.; Yuan, Z. Recycled WEEE plastics in China: Generation trend and environmental impacts. Resour. Conserv. Recycl. 2022, 177, 105978. [Google Scholar] [CrossRef]
- Peeters, J.R.; Vanegas, P.; Tange, L.; Van Houwelingen, J.; Duflou, J.R. Closed loop recycling of plastics containing Flame Retardants. Resour. Conserv. Recycl. 2014, 84, 35–43. [Google Scholar] [CrossRef]
- Peeters, J.R.; Vanegas, P.; Devoldere, T.; Dewulf, W.; Duflou, J.R. Closed Loop Recycling of Plastic Housing for Flat Screen TVs. In Proceedings of the 2012 Electronics Goes Green 2012+, Berlin, Germany, 9–12 September 2012; pp. 1–6. Available online: https://ieeexplore.ieee.org/document/6360558 (accessed on 16 March 2021).
- Wagner, F.; Peeters, J.; De Keyzer, J.; Duflou, J.; Dewulf, W. Evaluation of the quality of postconsumer plastics obtained from disassembly-based recycling strategies. Polym. Eng. Sci. 2018, 58, 485–492. [Google Scholar] [CrossRef]
- Wagner, F.; Peeters, J.; De Keyzer, J.; Duflou, J.; Dewulf, W. Quality Assessment of Plastic Recyclates from Waste Electrical and Electronic Equipment (WEEE): A Case Study for Desktop Computers, Laptops, and Tablets. In Technologies and Eco-Innovation Towards Sustainability II; Hu, A.H., Matsumoto, M., Kuo, T.C., Smith, S., Eds.; Springer: Singapore, 2019; pp. 139–154. ISBN 978-981-13-1195-6. [Google Scholar]
- Hamod, H. Plastic Material Composition and Separation in Waste Electrical and Electronic Equipment (WEEE); LUT University: Lappeenranta, Finland, 2021. [Google Scholar]
- Parenty, A.; Antonini, G.; Palluau, M.; Hugrel, C. Rapport Final Recyclage Chimique des Plastiques; Procetech/Ecosystem: Paris, France, 2020. [Google Scholar]
- European Parliament. Directive 2008/98/Ec of the European Parliament and of the Council of 19 November 2008 on Waste and Repealing Certain Directives; European Parliament: Strasbourg, France, 2008; Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32008L0098&from=EN (accessed on 5 November 2021).
- Deprouw, A.; Borie, M.; Rouquette, L.; ADEME; Moriceau, S. Equipements Électriques et Électroniques: Données 2021; ADEME: Angers, France, 2022; Available online: https://librairie.ademe.fr/dechets-economie-circulaire/6555-equipements-electriques-et-electroniques-donnees-2021.html (accessed on 31 October 2022).
- Nève, N. Proposition D’un Outil D’écoconception des Équipements Électriques et Électroniques Alimenté Par des Indicateurs Centrés Sur L’intégration de Matières Plastiques Recyclées Issues de DEEE Dans Le Cadre D’une Économie Circulaire. Ph.D. Thesis, ENSAM, Talence, France, 2024. Available online: https://pastel.hal.science/tel-04901293 (accessed on 19 January 2025).
- European Commission. Waste Framework Directive; European Commission: Luxembourg, 2022; Available online: https://environment.ec.europa.eu/topics/waste-and-recycling/waste-framework-directive_en (accessed on 21 February 2023).
- Martinez-Leal, J. Développement D’outils D’aide À La Décision en Conception Pilotés Par L’analyse Multicritère de La Valorisabilité du Produit et L’outillage des Lignes Directrices D’écoconception Pour La Fin de Vie. Ph.D Thesis, ENSAM, Bordeaux, France, 2019. Available online: https://pastel.archives-ouvertes.fr/tel-02939064/document (accessed on 13 May 2022).
- Zacho, K.O.; Bundgaard, A.M.; Mosgaard, M.A. Constraints and opportunities for integrating preparation for reuse in the Danish WEEE management system. Resour. Conserv. Recycl. 2018, 138, 13–23. [Google Scholar] [CrossRef]
- EN 45555:2019; General Methods for Assessing the Recyclability and Recoverability of Energy-Related Products. CEN/CLC/TC: Brussels, Belgium, 2019. Available online: https://standards.iteh.ai/catalog/standards/cen/a6432062-6e44-4011-9720-fcbc99e61feb/en-45555-2019 (accessed on 12 September 2022).
- Grimaud, G. Conception des Scénarios de Recyclage Pilotée Par L’évaluation des Performances des Procédés. Ph.D. Thesis, ENSAM, Bordeaux, France, 2019. Available online: https://pastel.archives-ouvertes.fr/tel-02067670/document (accessed on 16 October 2021).
- ISO 21640:2021; Solid Recovered Fuels—Specifications and Classes. ISO: Geneva, Switzerland, 2021. Available online: https://www.iso.org/cms/render/live/fr/sites/isoorg/contents/data/standard/07/13/71309.html (accessed on 15 February 2022).
- Arena, U.; Ardolino, F. Technical and environmental performances of alternative treatments for challenging plastics waste. Resour. Conserv. Recycl. 2022, 183, 106379. [Google Scholar] [CrossRef]
- Kaliyavaradhan, S.K.; Prem, P.R.; Ambily, P.S.; Mo, K.H. Effective utilization of e-waste plastics and glasses in construction products-a review and future research directions. Resour. Conserv. Recycl. 2022, 176, 105936. [Google Scholar] [CrossRef]
- Chu, J.; Zhou, Y.; Cai, Y.; Wang, X.; Li, C.; Liu, Q. Life-cycle greenhouse gas emissions and the associated carbon-peak strategies for PS, PVC, and ABS plastics in China. Resour. Conserv. Recycl. 2022, 182, 106295. [Google Scholar] [CrossRef]
- European Parliament. Directive 2012/19/EU of the European Parliament and the Coucil of July 4th, 2012; European Parliament: Strasbourg, France, 2012; Available online: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX%3A32012L0019 (accessed on 22 June 2021).
- Sander, K.; Schilling, S.; Tojo, N.; Van Rossem, C.; Vernon, J.; George, C. ‘The producer responsibility principle of the WEEE directive’, Europe, DG ENV. Study Contract N° 07010401/2006/449269/MAR/G4, Aug. 2007. Available online: https://ec.europa.eu/environment/pdf/waste/weee/final_rep_okopol.pdf (accessed on 20 July 2021).
- UK Environment Agency. Datasheet. Available online: https://www.gov.uk/government/statistical-data-sets/waste-electrical-and-electronic-equipment-weee-in-the-uk (accessed on 13 March 2022).
- Sousa, R.; Agante, E.; Cerejeira, J.; Portela, M. EEE fees and the WEEE system—A model of efficiency and income in European countries. Waste Manag. 2018, 79, 770–780. [Google Scholar] [CrossRef] [PubMed]
- Deng, R.; Zhuo, Y.; Shen, Y. Recent progress in silicon photovoltaic module recycling processes. Resour. Conserv. Recycl. 2022, 187, 106612. [Google Scholar] [CrossRef]
- EU Parliament. Regulation (EC) No 1907/2006 of the European Parliament and of the Council of 18 December 2006 Concerning the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH). 2006, p. 552. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:02006R1907-20210215&from=EN (accessed on 20 January 2021).
- EU Parliament. Directive 2011/65/Eu of the European Parliament and of the Council. 2011. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32011L0065 (accessed on 22 October 2022).
- CENELEC; CEN. Standards in Support of the European Green Deal Commitments; CENELEC: Brussels, Belgium, 2020; Available online: https://www.cencenelec.eu/media/CEN-CENELEC/Areas%20of%20Work/CENELEC%20sectors/Accumulators,%20Primary%20cells%20and%20Primary%20Batteries/Documents/standardsinsupporteuropeangreendealcommitments.pdf (accessed on 17 January 2022).
- ISO 15270:2019; Plastics—Guidelines for the Recovery and Recycling of Plastics Waste. ISO: Geneva, Switzerland, 2019. Available online: https://www.iso.org/cms/render/live/fr/sites/isoorg/contents/data/standard/04/50/45089.html (accessed on 28 June 2021).
- EN 15343:2008; Plastics-Recycled Plastics-Plastics Recycling Traceability and Assessment of Conformity and Recycled Content. CEN: Brussels, Belgium, 2008. Available online: https://standards.iteh.ai/catalog/standards/cen/a1a8ffaf-bf7d-4b1c-ba13-f8b368625569/en-15343-2007 (accessed on 29 November 2022).
- Archives des Nations Unies. Convention de Bâle; Archives des Nations Unies: New York, NY, USA, 1992; Available online: https://treaties.un.org/pages/ViewDetails.aspx?src=IND&mtdsg_no=XXVII-3&chapter=27&clang=_fr (accessed on 12 December 2023).
- EN 15347:2007; Plastics-Recycled Plastics-Characterisation of Plastics Wastes. CEN: Brussels, Belgium, 2007. Available online: https://standards.iteh.ai/catalog/standards/cen/57c2829d-c8cc-4f95-b1ab-ef0610fad6af/en-15347-2007 (accessed on 29 November 2022).
- Bernard, D.; Nève, N.; Charbuillet, C. Tri des Plastiques Issus des DEEE: 28 Technologies Comparées; Chaire Mines Urbaines-Ecosystem: Paris, France, 2022; p. 28. Available online: https://pro.ecosystem.eco/page/guide-tri-plastique (accessed on 22 January 2023).
- Windisch-Kern, S.; Gerold, E.; Nigl, T.; Jandric, A.; Altendorfer, M.; Rutrecht, B.; Scherhaufer, S.; Raupenstrauch, H.; Pomberger, R.; Antrekowitsch, H.; et al. Recycling chains for lithium-ion batteries: A critical examination of current challenges, opportunities and process dependencies. Waste Manag. 2022, 138, 125–139. [Google Scholar] [CrossRef]
- Soomro, I.A.; Ahmad, A.; Raza, R.H. Printed Circuit Board identification using Deep Convolutional Neural Networks to facilitate recycling. Resour. Conserv. Recycl. 2022, 177, 105963. [Google Scholar] [CrossRef]
- Konaté, F.O.; Ancia, P.; Soma, F.; Bougouma, M.; Buess-Herman, C.; Yonli, A.H.; Vitry, V. Waste electrical and electronic equipments as urban mines in Burkina Faso: Characterization and release of metal particles. Waste Manag. 2022, 139, 17–24. [Google Scholar] [CrossRef]
- Lu, Y.; Yang, B.; Gao, Y.; Xu, Z. An automatic sorting system for electronic components detached from waste printed circuit boards. Waste Manag. 2022, 137, 1–8. [Google Scholar] [CrossRef]
- McMahon, K.; Ryan-Fogarty, Y.; Fitzpatrick, C. Estimating job creation potential of compliant WEEE pre-treatment in Ireland. Resour. Conserv. Recycl. 2021, 166, 105230. [Google Scholar] [CrossRef]
- Van den Eynde, S.; Waumans, S.; Dimas, T.; Díaz-Romero, D.J.; Zaplana, I.; Peeters, J. Evaluating the effectiveness of density-based sorting of plastics from WEEE and ELVs. Resour. Conserv. Recycl. 2024, 209, 107753. [Google Scholar] [CrossRef]
- Wang, J.; Wang, H.; Yue, D. Optimization of Surface Treatment Using Sodium Hypochlorite Facilitates Coseparation of ABS and PC from WEEE Plastics by Flotation. Environ. Sci. Technol. 2019, 53, 2086–2094. [Google Scholar] [CrossRef] [PubMed]
- Bill, A.; Haarman, A.; Gasser, M.; Böni, H.; Rösslein, M.; Wäger, P.A. Characterizing plastics from large household appliances: Brominated flame retardants, other additives and density profiles. Resour. Conserv. Recycl. 2022, 177, 105956. [Google Scholar] [CrossRef]
- Maris, E.; Botané, P.; Wavrer, P.; Froelich, D. Characterizing plastics originating from WEEE: A case study in France. Miner. Eng. 2015, 76, 28–37. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, Y.; Wang, C. Surface modification and selective flotation of waste plastics for effective recycling—A review. Sep. Purif. Technol. 2019, 226, 75–94. [Google Scholar] [CrossRef]
- Fu, S.; Qian, Y.; Yuan, H.; Fang, Y. Effect of cone angles of a hydrocyclone for the separation of waste plastics with low value of density difference. Waste Manag. 2022, 140, 183–192. [Google Scholar] [CrossRef]
- Kökkılıç, O.; Mohammadi-Jam, S.; Chu, P.; Marion, C.; Yang, Y.; Waters, K.E. Separation of plastic wastes using froth flotation—An overview. Adv. Colloid Interface Sci. 2022, 308, 102769. [Google Scholar] [CrossRef]
- Pita, F.; Castilho, A. Separation of plastics by froth flotation. The role of size, shape and density of the particles. Waste Manag. 2017, 60, 91–99. [Google Scholar] [CrossRef]
- Wang, Z.; Jiang, H.; Zhang, Y.; Bian, K.; Wang, H.; Wang, C. Stepwise flotation separation of WEEE plastics by polymeric aluminum chloride towards source control of microplastics. Waste Manag. 2022, 149, 1–10. [Google Scholar] [CrossRef]
- Thanh Truc, N.T.; Lee, B.-K. Sustainable and Selective Separation of PVC and ABS from a WEEE Plastic Mixture Using Microwave and/or Mild-Heat Treatment with Froth Flotation. Environ. Sci. Technol. 2016, 50, 10580–10587. [Google Scholar] [CrossRef]
- Mohabuth, N.; Miles, N. The recovery of recyclable materials from Waste Electrical and Electronic Equipment (WEEE) by using vertical vibration separation. Resour. Conserv. Recycl. 2005, 45, 60–69. [Google Scholar] [CrossRef]
- Calin, L.; Cătinean, A.; Bilici, M.; Dăscălescu, L.; Samuilă, A. Electrostatic separation of HIPS/ABS and HIPS/ABS-PC plastic mixtures from IT equipment using fluidized bed tribocharging. Part. Sci. Technol. 2022, 40, 113–122. [Google Scholar] [CrossRef]
- Kroell, N.; Chen, X.; Greiff, K.; Feil, A. Optical sensors and machine learning algorithms in sensor-based material flow characterization for mechanical recycling processes: A systematic literature review. Waste Manag. 2022, 149, 259–290. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Kroell, N.; Feil, A.; Greiff, K. Chapter 9-Sensor-based sorting. In Handbook of Recycling, 2nd ed.; Meskers, C., Worrell, E., Reuter, M.A., Eds.; Elsevier: Amsterdam, The Netherlands, 2024; pp. 145–159. [Google Scholar] [CrossRef]
- Wagner, F.; Peeters, J.R.; Ramon, H.; De Keyzer, J.; Duflou, J.R.; Dewulf, W. Quality assessment of mixed plastic flakes from Waste Electrical and Electronic Equipment (WEEE) by spectroscopic techniques. Resour. Conserv. Recycl. 2020, 158, 104801. [Google Scholar] [CrossRef]
- Jacquin, L. Traitement de Données Incertaines: Application au tri des Matières Plastiques. Ph.D. Thesis, IMT-MINES ALES-IMT-Mines Alès Ecole Mines-Télécom, Alès, France, 2021. Available online: https://theses.hal.science/tel-04076948 (accessed on 12 June 2022).
- Signoret, C.; Girard, P.; Guen, A.L.; Caro-Bretelle, A.-S.; Lopez-Cuesta, J.-M.; Ienny, P.; Perrin, D. Degradation of Styrenic Plastics during Recycling: Accommodation of PP within ABS after WEEE Plastics Imperfect Sorting. Polymers 2021, 13, 1439. [Google Scholar] [CrossRef] [PubMed]
- Signoret, C. Valorisation de Matières Premières Secondaires (MPS) Thermoplastiques en Mélange Issues de tri Spectroscopique en Ligne-Projet Mélanie. Ph.D. Thesis, IMT Mines Alès, France, 2019. Available online: https://theses.fr/2019EMAL0005 (accessed on 31 August 2024).
- Vogelgesang, M.; Kaczmarek, V.; Lopes, A.d.C.P.; Li, C.; Ionescu, E.; Schebek, L. Automated material flow characterization of WEEE in sorting plants using deep learning and regression models on RGB data. Waste Manag. 2025, 204, 114904. [Google Scholar] [CrossRef]
- Han, H.; Zhen, X.; Zhang, Q.; Li, F.; Du, Y.; Gu, Y.; Wu, Y. Automatic used mobile phone color determination: Enhancing the used mobile phone recycling in China. Resour. Conserv. Recycl. 2022, 187, 106627. [Google Scholar] [CrossRef]
- Chaine, C.; Hursthouse, A.S.; Jandric, A.; McLean, B.; McLellan, I.; McMahon, B.; McNulty, J.; Miller, J.; Salhofer, S.; Viza, E. Optimized industrial sorting of WEEE plastics: Development of fast and robust h-XRF technique for hazardous components. Case Stud. Chem. Environ. Eng. 2023, 7, 100292. [Google Scholar] [CrossRef]
- Adarsh, U.K.; Bhoje Gowd, E.; Bankapur, A.; Kartha, V.B.; Chidangil, S.; Unnikrishnan, V.K. Development of an inter-confirmatory plastic characterization system using spectroscopic techniques for waste management. Waste Manag. 2022, 150, 339–351. [Google Scholar] [CrossRef]
- Singh, B.; Sharma, N. Mechanistic implications of plastic degradation. Polym. Degrad. Stab. 2008, 93, 561–584. [Google Scholar] [CrossRef]
- Freymond, C.; Guinault, A.; Charbuillet, C.; Fayolle, B. Reprocessing of polymer blends from WEEE: A methodology for predicting embrittlement. Polym. Test. 2022, 106, 107458. [Google Scholar] [CrossRef]
- Hamarat, I.; Kuram, E.; Ozcelik, B. Investigation the mechanical, rheological, and morphological properties of acrylonitrile butadiene styrene blends with different recycling number content. Proc. Inst. Mech. Eng. Part E J. Process Mech. Eng. 2018, 232, 449–458. [Google Scholar] [CrossRef]
- Freymond, C.; Mackré-Delannoy, X.; Guinault, A.; Charbuillet, C.; Fayolle, B. Thermal oxidation of acrylonitrile-butadiene-styrene: Origin of the ductile/brittle transition. Polym. Degrad. Stab. 2022, 206, 110186. [Google Scholar] [CrossRef]
- Jehanno, C.; Pérez-Madrigal, M.M.; Demarteau, J.; Sardon, H.; Dove, A.P. Organocatalysis for depolymerisation. Polym. Chem. 2019, 10, 172–186. [Google Scholar] [CrossRef]
- Wang, J.; Li, Y.; Song, J.; He, M.; Song, J.; Xia, K. Recycling of acrylonitrile–butadiene–styrene (ABS) copolymers from waste electrical and electronic equipment (WEEE), through using an epoxy-based chain extender. Polym. Degrad. Stab. 2015, 112, 167–174. [Google Scholar] [CrossRef]
- Kühnel, T.; Wagner, F.; Berthold, A.; Langer, B.; De Keyzer, J. Influence of Label Impurities in Recycling on the Mechanical Properties of PC/ABS Materials. Macromol. Symp. 2019, 384, 1900037. [Google Scholar] [CrossRef]
- Qin, Y.; Yao, Z.; Ruan, J.; Xu, Z. Motion Behavior Model and Multistage Magnetic Separation Method for the Removal of Impurities from Recycled Waste Plastics. ACS Sustain. Chem. Eng. 2021, 9, 10920–10928. [Google Scholar] [CrossRef]
- Beigbeder, J.; Perrin, D.; Mascaro, J.-F.; Lopez-Cuesta, J.-M. Study of the physico-chemical properties of recycled polymers from waste electrical and electronic equipment (WEEE) sorted by high resolution near infrared devices. Resour. Conserv. Recycl. 2013, 78, 105–114. [Google Scholar] [CrossRef]
- Messiha, M.; Frank, A.; Koch, T.; Arbeiter, F.; Pinter, G. Effect of polyethylene and polypropylene cross-contamination on slow crack growth resistance. Int. J. Polym. Anal. Charact. 2020, 25, 649–666. [Google Scholar] [CrossRef]
- Vazquez, Y.V.; Barbosa, S.E. Compatibilization of HIPS/ABS blends from WEEE by using Styrene-Butadiene Rubber (SBR). J. Environ. Manag. 2018, 217, 381–390. [Google Scholar] [CrossRef]
- Perrin, D.; Mantaux, O.; Ienny, P.; Léger, R.; Dumon, M.; Lopez-Cuesta, J.-M. Influence of impurities on the performances of HIPS recycled from Waste Electric and Electronic Equipment (WEEE). Waste Manag. 2016, 56, 438–445. [Google Scholar] [CrossRef]
WEEE (Screens) | WEEE-Plastics (All Categories) | ||
---|---|---|---|
Informal scheme | Official scheme | Informal scheme | Official scheme |
31.7% to 69.5% | 27.70% | 12% | 50% |
(a) | (b) | ||
---|---|---|---|
Material | Proportion | Polymer Type | Proportion |
Aluminium | 8.8% | PP | 20% |
Copper | 2% | ABS | 19% |
Steel | 33.4% | PS/HIPS | 18% |
Plastics (all types) | 37.3% | PC/PC-ABS | 7% |
Printed circuit boards (PCB) | 2.8% | Other plastics | 36% |
Other materials | 15.6% |
France | United Kingdom |
---|---|
Categories of household WEEE | Categories for collected WEEE: |
1. Large cooling appliances | 1. Large household appliances |
2. Large non-cooling appliances | 2. Small household appliances |
3. Screens | 3. IT and telecommunications equipment |
4. Small devices of all kinds | 4. Consumer equipment |
5. Lighting equipment | 5. Lighting equipment |
6. Photovoltaic panels | 6. Electrical and electronic tools |
7. Toys, leisure, and sports | |
Collection of industrial WEEE | 8. Medical devices |
1. Heating and cooling appliances | 9. Monitoring and control instruments |
2. Screens | 10. Automatic dispensers |
4. Large appliances | 11. Display equipment |
5. Small appliances | 12. Cooling appliances containing refrigerants |
6. IT and telecom equipment | 13. Gas discharge lamps and LED light sources |
14. Photovoltaic panels |
Equipment Type | Sent to Recycling | Sent to Energy Recovery | Sent to Landfill |
---|---|---|---|
Temperature exchange equipment (all) | 90% | 8% | 2% |
Screens (all) | 60% | 32% | 8% |
FPD screens | 74.8% | 10% | 13% |
Large household appliances | 80% | 17% | 3% |
Small household appliances | 80% | 17% | 3% |
Small ICT | 80% | 17% | 3% |
Name of Technique | Type of Technique | Bromine Separation | Recognises Black Plastics | Polymer Separation | Purity Rate of Target Material | Use | Cost |
---|---|---|---|---|---|---|---|
Magnetic sorting | Sorting, dry | No | No | No | 99% | Industrial | Low |
Eddy current | Sorting, dry | No | No | No | 99% | Industrial | Low |
Densiometric | Separation, fluid | Indirectly | No | Yes, many types | >90% | Industrial | Low |
Hydrocyclone | Separation, fluid | Indirectly | No | Yes, many types | >95% | Industrial | Low |
Selective flotation | Separation, fluid | No | No | Yes, many types | 85–95% | Industrial | Low |
Vibrating air table | Separation, dry | No | No | Yes, but not all | >85% | Industrial | Low |
Electrostatic | Separation, dry | No | No | Yes, very precise | >95% | Industrial | Medium |
FT-NIR | Separation, optical | No | No | Yes, very precise | >90% | Laboratory | High |
MIR | Separation, optical | Yes | Yes | Yes, very precise | >90% | Semi- Industrial | High |
Visible light spectrometry | Separation, optical | No | No | By colour | >90% | Semi- Industrial | High |
X-ray fluorescence | Separation, optical | Yes | No | Not the primary use | >95% | Semi- Industrial | High |
X-ray transmission | Separation, optical | Yes | Yes | Yes, very precise | >95% | Industrial | High |
LIBS | Separation, optical | No | Yes | Yes, very precise | 99% | Industrial | High |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nève, N.; Mackré-Delannoy, X.; Fayolle, B.; Gervais, M.; Pompidou, S.; Charbuillet, C.; Sollogoub, C.; Perry, N. A Review of Methods and Data on the Recycling of Plastics from the European Waste Stream of Electric and Electronic Equipment. Recycling 2025, 10, 148. https://doi.org/10.3390/recycling10040148
Nève N, Mackré-Delannoy X, Fayolle B, Gervais M, Pompidou S, Charbuillet C, Sollogoub C, Perry N. A Review of Methods and Data on the Recycling of Plastics from the European Waste Stream of Electric and Electronic Equipment. Recycling. 2025; 10(4):148. https://doi.org/10.3390/recycling10040148
Chicago/Turabian StyleNève, Nicolas, Xavier Mackré-Delannoy, Bruno Fayolle, Matthieu Gervais, Stéphane Pompidou, Carole Charbuillet, Cyrille Sollogoub, and Nicolas Perry. 2025. "A Review of Methods and Data on the Recycling of Plastics from the European Waste Stream of Electric and Electronic Equipment" Recycling 10, no. 4: 148. https://doi.org/10.3390/recycling10040148
APA StyleNève, N., Mackré-Delannoy, X., Fayolle, B., Gervais, M., Pompidou, S., Charbuillet, C., Sollogoub, C., & Perry, N. (2025). A Review of Methods and Data on the Recycling of Plastics from the European Waste Stream of Electric and Electronic Equipment. Recycling, 10(4), 148. https://doi.org/10.3390/recycling10040148