Versatile High-Performance Liquid Chromatography and Ultraviolet Detection-Based Method for the Determination of Thioproline in Pharmaceutical and Cosmetic Products
Abstract
1. Introduction
2. Results and Discussion
2.1. Sample Preparation
2.1.1. Extraction
2.1.2. Derivatization
2.1.3. Filtration
2.1.4. Stability of Processed Samples
2.2. Chromatographic and Detection Conditions
2.2.1. Selection of Separation Conditions
2.2.2. Selection of Detection Conditions
2.3. Validation of the Method
2.3.1. System Suitability
2.3.2. Selectivity
2.3.3. Linearity
2.3.4. Precision and Accuracy
2.3.5. The Limit of Quantification
2.3.6. Carry-Over Effect
2.3.7. Matrix Effect
2.3.8. Reinjection Reproducibility
2.3.9. Extraction Efficiency (Recovery)
2.4. Application of the Method
3. Materials and Methods
3.1. Reagents and Materials
3.2. Instrumentation
3.3. Stock Solutions
3.4. Sample Collection
3.5. Pharmaceutical and Cosmetic Products Preparation
3.6. Chromatographic Analysis Conditions
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ACN | Acetonitrile |
CMQT | 2-Chloro-1-methylquinolinium tetrafluoroborate |
Cys | Cysteine |
Cys-Gly | Cysteinyl-glycine |
CV | Coefficient of variation |
FA | Formaldehyde |
Glu | Glutathione |
Hcy | Homocysteine |
HPLC | High performance liquid chromatography |
HPPTCA | 2-(3-hydroxy-5-phosphonooxymethyl-2-methyl-4-pyridyl)-1,3-thiazolidine-4-carboxylic acid |
LOQ | Limit of quantification |
MeOH | Methanol |
MS | Mass spectrometry |
PBS | Phosphate buffer |
PCA | Perchloric acid |
PP | Polypropylene |
PTFE | Polytetrafluoroethylene |
RP | Reversed phase |
SLE | Solid-liquid extraction |
TCA | Trichloroacetic acid |
tPro | Thioproline |
tPro-CMQT | 2-S-quinolinium derivative of thioproline |
UV | Ultraviolet detection |
References
- Ham, Y.H.; Jason Chan, K.K.; Chan, W. Thioproline Serves as an Efficient Antioxidant Protecting Human Cells from Oxidative Stress and Improves Cell Viability. Chem. Res. Toxicol. 2020, 33, 1815–1821. [Google Scholar] [CrossRef]
- Lyu, M.; Liu, H.; Ye, Y.; Yin, Z. Inhibition Effect of Thiol-Type Antioxidants on Protein Oxidative Aggregation Caused by Free Radicals. Biophys. Chem. 2020, 260, 106367. [Google Scholar] [CrossRef] [PubMed]
- Partyka, M.; Piotrowski, D.; Partyka, P.; Rzucidło, M.; Kluz, M.; Błotnicki, M.; Jaroszewicz, J.; Gutkowska, D.; Gutkowski, K. Six Months of Thiazolidine Carboxylic Acid Treatment Causes Significant Improvement in Fibrotest in Patients with Non-Alcoholic Fatty Liver Disease. J. Gastroenterol. Hepatol. Endosc. 2022, 7, 1110. [Google Scholar]
- Kumagai, H.; Mukaisho, K.I.; Sugihara, H.; Miwa, K.; Yamamoto, G.; Hattori, T. Thioproline Inhibits Development of Esophageal Adenocarcinoma Induced by Gastroduodenal Reflux in Rats. Carcinogenesis 2004, 25, 723–727. [Google Scholar] [CrossRef] [PubMed]
- Tahira, T.; Ohgaki, H.; Wakabayashi, K.; Nagao, M.; Sugimura, T. The Inhibitory Effect of Thioproline on Carcinogenesis Induced by N-Benzylmethylamine and Nitrite. Food Chem. Toxicol. 1988, 26, 511–516. [Google Scholar] [CrossRef]
- Cañero, R.G.; López-Alarcón, L.; Veloso, J.J.; Guijarro, M.D.C. Effect of L-thioproline on the Progression and Events of the Cell Cycle of HeLa Cells. Int. J. Cancer 1988, 41, 859–862. [Google Scholar] [CrossRef]
- Suo, M.; Mukaisho, K.I.; Shimomura, A.; Sugihara, H.; Hattori, T. Thioproline Prevents Carcinogenesis in the Remnant Stomach Induced by Duodenal Reflux. Cancer Lett. 2006, 237, 256–262. [Google Scholar] [CrossRef]
- de la Fuente, M.; Ferrández, D.; Muñoz, F.; de Juan, E.; Miquel, J. Stimulation by the Antioxidant Thioproline of the Lymphocyte Functions of Old Mice. Mech. Ageing Dev. 1993, 68, 27–36. [Google Scholar] [CrossRef]
- Correa, R.; Del Río, M.; De La Fuente, M. Improvement of Murine Immune Functions in Vitro by Thioproline. Immunopharmacology 1999, 44, 281–291. [Google Scholar] [CrossRef]
- De La Fuente, M.; Ferrández, M.D.; Del Rio, M.; Sol Burgos, M.; Miquel, J. Enhancement of Leukocyte Functions in Aged Mice Supplemented with the Antioxidant Thioproline. Mech. Ageing Dev. 1998, 104, 213–225. [Google Scholar] [CrossRef]
- Haggag, R.S.; Gawad, D.A.; Belal, S.F.; Elbardisy, H.M. Spectrophotometric and Spectrofluorimetric Determination of Mesna, Acetylcysteine and Timonacic Acid through the Reaction with Acetoxymercuri Fluorescein. Anal. Methods 2016, 8, 2479–2493. [Google Scholar] [CrossRef]
- Amin, O.A.R.; Belal, S.F.; Bakry, R. Adsorptive and Catalytic Cathodic Stripping Voltammetric Determination of Timonacic. Port. Electrochim. Acta 2011, 29, 115–125. [Google Scholar] [CrossRef]
- Bakry, R.S.; Razak, O.A.; El Walily, A.F.M.; Belal, S.F. Spectrophotometric Investigation of the Formed Chelate between Timonacic and Palladium(II) and Its Analytical Applications. J. Pharm. Biomed. Anal. 1998, 17, 95–101. [Google Scholar] [CrossRef] [PubMed]
- Pan, G.; Au, C.K.; Ham, Y.H.; Yu, J.Z.; Cai, Z.; Chan, W. Urinary Thioproline and Thioprolinyl Glycine as Specific Biomarkers of Formaldehyde Exposure in Humans. Environ. Sci. Technol. 2024, 58, 16368–16375. [Google Scholar] [CrossRef] [PubMed]
- Landmesser, A.; Scherer, G.; Pluym, N.; Niessner, R.; Scherer, M. A Novel Quantification Method for Sulfur-Containing Biomarkers of Formaldehyde and Acetaldehyde Exposure in Human Urine and Plasma Samples. Anal. Bioanal. Chem. 2020, 412, 7535–7546. [Google Scholar] [CrossRef]
- Shin, H.S.; Ahn, H.S.; Lee, B.H. Determination of Thiazolidine-4-Carboxylates in Urine by Chloroformate Derivatization and Gas Chromatography-Electron Impact Mass Spectrometry. J. Mass Spectrom. 2007, 42, 1225–1232. [Google Scholar] [CrossRef]
- Kataoka, H. Selective and Sensitive Determination of Protein and Non-Protein Amino Acids by Capillary Gas Chromatography with Nitrogen-Phosphorus Selective Detection. Biomed. Chromatogr. 1997, 11, 154–159. [Google Scholar] [CrossRef]
- Kataoka, H.; Matsumura, S.; Makita, M. Determination of Amino Acids in Biological Fluids by Capillary Gas Chromatography with Nitrogen-Phosphorus Selective Detection. J. Pharm. Biomed. Anal. 1997, 15, 1271–1279. [Google Scholar] [CrossRef]
- Li, G.Y.; Lee, H.Y.; Shin, H.S.; Kim, H.Y.; Lim, C.H.; Lee, B.H. Identification of Gene Markers for Formaldehyde Exposure in Humans. Environ. Health Perspect. 2007, 115, 1460–1466. [Google Scholar] [CrossRef]
- Lankelma, J.; Penders, P.G.M.; Leyva, A.; Pinedo, H.M. Determination of Thioproline in Plasma Using High Performance Liquid Chromatography. Cancer Lett. 1981, 12, 131–137. [Google Scholar] [CrossRef]
- Huang, J.; Mondul, A.M.; Weinstein, S.J.; Derkach, A.; Moore, S.C.; Sampson, J.N.; Albanes, D. Prospective Serum Metabolomic Profiling of Lethal Prostate Cancer. Int. J. Cancer 2019, 145, 3231–3243. [Google Scholar] [CrossRef]
- Liu, J.; Chan, W. Quantification of Thiazolidine-4-Carboxylic Acid in Toxicant-Exposed Cells by Isotope-Dilution Liquid Chromatography-Mass Spectrometry Reveals an Intrinsic Antagonistic Response to Oxidative Stress-Induced Toxicity. Chem. Res. Toxicol. 2015, 28, 394–400. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Meng, X.; Chan, W. Quantitation of Thioprolines in Grape Wine by Isotope Dilution-Liquid Chromatography-Tandem Mass Spectrometry. J. Agric. Food Chem. 2016, 64, 1361–1366. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.H.; Kim, H.J.; Shin, H.S. Identification and Quantification of Antitumor Thioproline and Methylthioproline in Korean Traditional Foods by a Liquid Chromatography-Atmospheric Pressure Chemical Ionization-Tandem Mass Spectrometry. J. Pharm. Biomed. Anal. 2014, 100, 58–63. [Google Scholar] [CrossRef] [PubMed]
- Suvachittanont, W.; Kurashima, Y.; Esumi, H.; Tsuda, M. Formation of Thiazolidine-4-Carboxylic Acid (Thioproline), an Effective Nitrite-Trapping Agent in Human Body, in Parkia Speciosa Seeds and Other Edible Leguminous Seeds in Thailand. Food Chem. 1996, 55, 359–363. [Google Scholar] [CrossRef]
- Kurashima, Y.; Tsuda, M.; Sugimura, T. Marked Formation of Thiazolidine-4-Carboxylic Acid, an Effective Nitrite Trapping Agent in Vivo, on Boiling of Dried Shiitake Mushroom (Lentinus edodes). J. Agric. Food Chem. 1990, 38, 1945–1949. [Google Scholar] [CrossRef]
- Tsuda, M.; Frank, N.; Sato, S.; Sugimura, T. Marked Increase in the Urinary Level of N-Nitrosothioproline after Ingestion of Cod with Vegetables. Cancer Res. 1988, 48, 4049–4052. [Google Scholar]
- Liu, J.; Chan, K.K.J.; Chan, W. Identification of Protein Thiazolidination as a Novel Molecular Signature for Oxidative Stress and Formaldehyde Exposure. Chem. Res. Toxicol. 2016, 29, 1865–1871. [Google Scholar] [CrossRef]
- Kuśmierek, K.; Chwatko, G.; Głowacki, R.; Kubalczyk, P.; Bald, E. Ultraviolet Derivatization of Low-Molecular-Mass Thiols for High Performance Liquid Chromatography and Capillary Electrophoresis Analysis. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2011, 879, 1290–1307. [Google Scholar] [CrossRef]
- Chwatko, G.; Bald, E. Determination of Thiosulfate in Human Urine by High Performance Liquid Chromatography. Talanta 2009, 79, 229–234. [Google Scholar] [CrossRef]
- Ji, Y.; Luo, H.; Li, H.; Lin, Z.; Luo, W. Determination of Plasma Homocysteine with a UHPLC–MS/MS Method: Application to Analyze the Correlation between Plasma Homocysteine and Whole Blood 5-Methyltetrahydrofolate in Healthy Volunteers. Biomed. Chromatogr. 2020, 34, e4845. [Google Scholar] [CrossRef]
- Piechocka, J.; Wyszczelska-Rokiel, M.; Głowacki, R. Simultaneous Determination of 2-(3-Hydroxy-5-Phosphonooxymethyl-2-Methyl-4-Pyridyl)-1,3-Thiazolidine-4-Carboxylic Acid and Main Plasma Aminothiols by HPLC–UV Based Method. Sci. Rep. 2023, 13, 9294. [Google Scholar] [CrossRef]
- Kubalczyk, P.; Chwatko, G.; Bald, E. Capillary Electrophoresis Determination of Tiopronin in Human Urine after Derivatization with 2-Chloro-1-Methylquinolinium Tetrafluoroborate. Curr. Anal. Chem. 2014, 10, 375–380. [Google Scholar] [CrossRef]
- Kubalczyk, P.; Bald, E.; Furmaniak, P.; Głowacki, R. Simultaneous Determination of Total Homocysteine and Cysteine in Human Plasma by Capillary Zone Electrophoresis with PH-Mediated Sample Stacking. Anal. Methods 2014, 6, 4138–4143. [Google Scholar] [CrossRef]
- Chwatko, G.; Kuźniak, E.; Kubalczyk, P.; Borowczyk, K.; Wyszczelska-Rokiel, M.; Głowacki, R.; Cofino, W.P.; Havel, L.; Kizek, R.; Trnkova, L.; et al. Determination of Cysteine and Glutathione in Cucumber Leaves by HPLC with UV Detection. Anal. Methods 2014, 6, 8039–8044. [Google Scholar] [CrossRef]
- Borowczyk, K.; Wyszczelska-Rokiel, M.; Kubalczyk, P.; Głowacki, R. Simultaneous Determination of Albumin and Low-Molecular-Mass Thiols in Plasma by HPLC with UV Detection. J. Chromatogr. B 2015, 981–982, 57–64. [Google Scholar] [CrossRef] [PubMed]
- Kubalczyk, P.; Borowczyk, K.; Chwatko, G.; Głowacki, R. Simple Micellar Electrokinetic Chromatography Method for the Determination of Hydrogen Sulfide in Hen Tissues. Electrophoresis 2015, 36, 1028–1032. [Google Scholar] [CrossRef]
- Kubalczyk, P.; Chwatko, G.; Głowacki, R. Fast and Simple MEKC Sweeping Method for Determination of Thiosulfate in Urine. Electrophoresis 2016, 37, 1155–1160. [Google Scholar] [CrossRef] [PubMed]
- Głowacki, R.; Stachniuk, J.; Borowczyk, K. A Simple HPLC-UV Method for Simultaneous Determination of Cysteine and Cysteinylglycine in Biological Fluids. Acta Chromatogr. 2016, 28, 333–346. [Google Scholar] [CrossRef]
- Kamińska, A.; Olejarz, P.; Borowczyk, K.; Głowacki, R.; Chwatko, G. Simultaneous Determination of Total Homocysteine, Cysteine, Glutathione, and N-Acetylcysteine in Brain Homogenates by HPLC. J. Sep. Sci. 2018, 41, 3241–3249. [Google Scholar] [CrossRef]
- Piechocka, J.; Wrońska, M.; Głowacki, R. Chromatographic Strategies for the Determination of Aminothiols in Human Saliva. Trends Anal. Chem. 2020, 126, 115866. [Google Scholar] [CrossRef]
- Isokawa, M.; Kanamori, T.; Funatsu, T.; Tsunoda, M. Analytical Methods Involving Separation Techniques for Determination of Low-Molecular-Weight Biothiols in Human Plasma and Blood. J. Chromatogr. B 2014, 964, 103–115. [Google Scholar] [CrossRef]
- Głowacki, R.; Piechocka, J.; Bald, E.; Chwatko, G. Application of Separation Techniques in Analytics of Biologically Relevant Sulfur Compounds. In Handbook of Bioanalytics; Buszewski, B., Baranowska, I., Eds.; Springer Nature: Cham, Switzerland, 2022; pp. 233–256. ISBN 9783030639570. [Google Scholar]
- ICH. M10 Guideline for Bioanalytical Method Validation and Study Sample Analysis; ICH: Geneva, Switzerland, 2022. [Google Scholar]
- Piechocka, J.; Głowacki, R. Comprehensive Studies on the Development of HPLC-MS/MS and HPLC-FL Based Methods for Routine Determination of Homocysteine Thiolactone in Human Urine. Talanta 2024, 272, 125791. [Google Scholar] [CrossRef]
- Bald, E.; Głowacki, R. 2-Chloro-1-Methylquinolinium Tetrafluoroborate as an Effective and Thiol Specific UV-Tagging Reagent for Liquid Chromatography. J. Liq. Chromatogr. Relat. Technol. 2001, 24, 1323–1339. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions, or products referred to in the content. |
Regression Equation | R | CV Slope (%) | Range (µmol/L) | Precision (%) | Accuracy (%) | LOQ (µmol/L) | ||
---|---|---|---|---|---|---|---|---|
Min | Max | Min | Max | |||||
y = 4.0506x + 0.3992 | 0.9999 | 1.31 | 0.5–125 | 0.30 | 11.23 | 93.22 | 104.31 | 0.5 |
Concentration (µmol/L) | Precision (%) | Accuracy (%) | ||
---|---|---|---|---|
Intra-Assay | Inter-Assay | Intra-Assay | Inter-Assay | |
0.5 | 11.23 | 9.64 | 93.85 | 101.51 |
10 | 3.14 | 4.17 | 104.31 | 103.48 |
50 | 1.47 | 1.75 | 99.89 | 100.80 |
100 | 0.77 | 2.00 | 100.53 | 101.40 |
Product Type | No. | tPro Content of Product | ||
---|---|---|---|---|
Estimated | Declared by Producer | |||
(µg ± SD/g Product) | (mg ± SD/Tablet) | |||
Tablet 1 | 1 | - | 99.1 ± 2.1 | 100 mg/tablet |
Tablet 2 | 2 | - | 99.8 ± 4.1 | 100 mg/tablet |
Face cream 1 | 3 | 16.3 ± 0.3 | - | No data |
Face cream 2 | 4 | 52.2 ± 2.1 | - | No data |
Face cream 3 | 5 | 159.8 ± 15.3 | - | No data |
Face cream 4 | 6 | 16.5 ± 1.6 | - | No data |
Face cream 5 | 7 | 6.9 ± 0.7 | - | No data |
Face cream 6 | 8 | 8.6 ± 1.1 | - | No data |
Face cream 7 | 9 | 5.1 ± 0.5 * | - | No data |
Face cream 8 | 10 | 7.2 ± 0.5 | - | No data |
Face cream 9 | 11 | 205.6 ± 14.6 | - | No data |
Face cream 10 | 12 | 7.7 ± 1.2 | - | No data |
Face cream 11 | 13 | Not found | - | No data |
Face cream 12 | 14 | Not found | - | No data |
Face serum | 15 | 0.1 ± 0.0 * | - | No data |
Face foundation | 16 | Not found | - | No data |
Face foundation | 17 | Not found | - | No data |
Suncream | 18 | 14.5 ± 1.6 | - | No data |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gaweł, M.; Płodzik, M.; Głowacki, R.; Piechocka, J. Versatile High-Performance Liquid Chromatography and Ultraviolet Detection-Based Method for the Determination of Thioproline in Pharmaceutical and Cosmetic Products. Molecules 2025, 30, 3152. https://doi.org/10.3390/molecules30153152
Gaweł M, Płodzik M, Głowacki R, Piechocka J. Versatile High-Performance Liquid Chromatography and Ultraviolet Detection-Based Method for the Determination of Thioproline in Pharmaceutical and Cosmetic Products. Molecules. 2025; 30(15):3152. https://doi.org/10.3390/molecules30153152
Chicago/Turabian StyleGaweł, Marta, Martyna Płodzik, Rafał Głowacki, and Justyna Piechocka. 2025. "Versatile High-Performance Liquid Chromatography and Ultraviolet Detection-Based Method for the Determination of Thioproline in Pharmaceutical and Cosmetic Products" Molecules 30, no. 15: 3152. https://doi.org/10.3390/molecules30153152
APA StyleGaweł, M., Płodzik, M., Głowacki, R., & Piechocka, J. (2025). Versatile High-Performance Liquid Chromatography and Ultraviolet Detection-Based Method for the Determination of Thioproline in Pharmaceutical and Cosmetic Products. Molecules, 30(15), 3152. https://doi.org/10.3390/molecules30153152