Effect of Caffeinated Chewing Gum on Maximal Strength, Muscular Power, and Muscle Recruitment During Bench Press and Back Squat Exercises
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Study Design
2.3. Experimental Protocol
2.4. Maximal Strength (1RM) Test
2.5. Muscular Power Test
2.6. Surface Electromyography (sEMG)
2.7. Supplementation Protocol
2.8. Blinding and Side Effects Assessment Protocol
2.9. Statistical Analyses
3. Results
3.1. Maximal Strength and sEMG Assessment
3.2. Muscular Power and sEMG Assessment
3.3. Perceptual Responses
3.4. Assessment of Blinding and Side Effects
4. Discussion
4.1. Effects of Caffeinated Chewing Gum on Maximal Strength
4.2. Effects of Caffeinated Chewing Gum on Muscular Power
4.3. Difference in Performance Improvements Between Bench Press and Back Squat
4.4. Side Effects of Caffeinated Chewing Gum
4.5. Limitations
4.6. Practical Implications
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Belcher, D.J.; Sousa, C.A.; Carzoli, J.P.; Johnson, T.K.; Helms, E.R.; Visavadiya, N.P.; Zoeller, R.F.; Whitehurst, M.; Zourdos, M.C. Time course of recovery is similar for the back squat, bench press, and deadlift in well-trained males. Appl. Physiol. Nutr. Metab. 2019, 44, 1033–1042. [Google Scholar] [CrossRef]
- Krzysztofik, M. Acute Effects of Different Intensities during Bench Press Exercise on the Mechanical Properties of Triceps Brachii Long Head. Appl. Sci. 2022, 12, 3197. [Google Scholar] [CrossRef]
- Cowley, N.; Nicholson, V.; Timmins, R.; Munteanu, G.; Wood, T.; García-Ramos, A.; Owen, C.; Weakley, J. The Effects of Percentage-Based, Rating of Perceived Exertion, Repetitions in Reserve, and Velocity-Based Training on Performance and Fatigue Responses. J. Strength Cond. Res. 2025, 39, e516–e529. [Google Scholar] [CrossRef]
- Wilk, M.; Krzysztofik, M.; Filip, A.; Zajac, A.; Bogdanis, G.C.; Lockie, R.G. Short-Term Blood Flow Restriction Increases Power Output and Bar Velocity During the Bench Press. J. Strength Cond. Res. 2022, 36, 2082–2088. [Google Scholar] [CrossRef]
- Grgic, J.; Sabol, F.; Venier, S.; Mikulic, I.; Bratkovic, N.; Schoenfeld, B.J.; Pickering, C.; Bishop, D.J.; Pedisic, Z.; Mikulic, P. What Dose of Caffeine to Use: Acute Effects of 3 Doses of Caffeine on Muscle Endurance and Strength. Int. J. Sports Physiol. Perform. 2020, 15, 470–477. [Google Scholar] [CrossRef]
- Haugen, M.E.; Vårvik, F.T.; Grgic, J.; Studsrud, H.; Austheim, E.; Zimmermann, E.M.; Falch, H.N.; Larsen, S.; van den Tillaar, R.; Bjørnsen, T. Effect of isolated and combined ingestion of caffeine and citrulline malate on resistance exercise and jumping performance: A randomized double-blind placebo-controlled crossover study. Eur. J. Nutr. 2023, 62, 2963–2975. [Google Scholar] [CrossRef] [PubMed]
- Weinstein, Y.; Ovadia, Y.; Weinstein, B.; Weinstein, A. The Effects of Amorphous Calcium Carbonate (ACC) Supplementation on Resistance Exercise Performance in Women. Nutrients 2023, 15, 538. [Google Scholar] [CrossRef] [PubMed]
- Cappelletti, S.; Piacentino, D.; Sani, G.; Aromatario, M. Caffeine: Cognitive and physical performance enhancer or psychoactive drug? Curr. Neuropharmacol. 2015, 13, 71–88. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; Ding, L.; Qin, Q.; Lei, T.H.; Girard, O.; Cao, Y. Effect of caffeine ingestion on time trial performance in cyclists: A systematic review and meta-analysis. J. Int. Soc. Sports Nutr. 2024, 21, 2363789. [Google Scholar] [CrossRef]
- Grgic, J.; Mikulic, P. Caffeine ingestion acutely enhances muscular strength and power but not muscular endurance in resistance-trained men. Eur. J. Sport. Sci. 2017, 17, 1029–1036. [Google Scholar] [CrossRef]
- Acar, K.; Mor, A.; Mor, H.; Kargın, Z.; Alexe, D.I.; Abdioğlu, M.; Karayiğit, R.; Alexe, C.I.; Cojocaru, A.M.; Mocanu, G.D. Caffeine Improves Sprint Time in Simulated Freestyle Swimming Competition but Not the Vertical Jump in Female Swimmers. Nutrients 2024, 16, 1253. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; He, W.; Ding, L.; Lei, T.H.; Schlader, Z.; Mundel, T.; Wang, R.; Guo, L.; Liu, J.; Girard, O. Dose-response effects of caffeine during repeated cycling sprints in normobaric hypoxia to exhaustion. Eur. J. Appl. Physiol. 2025, 125, 223–236. [Google Scholar] [CrossRef] [PubMed]
- Berjisian, E.; Naderi, A.; Mojtahedi, S.; Grgic, J.; Ghahramani, M.H.; Karayigit, R.; Forbes, J.L.; Amaro-Gahete, F.J.; Forbes, S.C. Are Caffeine’s Effects on Resistance Exercise and Jumping Performance Moderated by Training Status? Nutrients 2022, 14, 4840. [Google Scholar] [CrossRef] [PubMed]
- Pallarés, J.G.; Fernández-Elías, V.E.; Ortega, J.F.; Muñoz, G.; Muñoz-Guerra, J.; Mora-Rodríguez, R. Neuromuscular responses to incremental caffeine doses: Performance and side effects. Med. Sci. Sports Exerc. 2013, 45, 2184–2192. [Google Scholar] [CrossRef]
- Ruiz-Fernández, I.; Valadés, D.; Dominguez, R.; Ferragut, C.; Pérez-López, A. Load and muscle group size influence the ergogenic effect of acute caffeine intake in muscular strength, power and endurance. Eur. J. Nutr. 2023, 62, 1783–1794. [Google Scholar] [CrossRef]
- Bazzucchi, I.; Felici, F.; Montini, M.; Figura, F.; Sacchetti, M. Caffeine improves neuromuscular function during maximal dynamic exercise. Muscle Nerve 2011, 43, 839–844. [Google Scholar] [CrossRef]
- Duncan, M.J.; Thake, C.D.; Downs, P.J. Effect of caffeine ingestion on torque and muscle activity during resistance exercise in men. Muscle Nerve 2014, 50, 523–527. [Google Scholar] [CrossRef]
- Warren, G.L.; Park, N.D.; Maresca, R.D.; McKibans, K.I.; Millard-Stafford, M.L. Effect of caffeine ingestion on muscular strength and endurance: A meta-analysis. Med. Sci. Sports Exerc. 2010, 42, 1375–1387. [Google Scholar] [CrossRef]
- Trexler, E.T.; Roelofs, E.J.; Hirsch, K.R.; Mock, M.G.; Smith-Ryan, A.E. Effects of coffee and caffeine anhydrous on strength and sprint performance. J. Int. Soc. Sports Nutr. 2015, 12, 702–710. [Google Scholar] [CrossRef]
- Barreto, G.; Loureiro, L.M.R.; Reis, C.E.G.; Saunders, B. Effects of caffeine chewing gum supplementation on exercise performance: A systematic review and meta-analysis. Eur. J. Sport Sci. 2023, 23, 714–725. [Google Scholar] [CrossRef]
- Kamimori, G.H.; Karyekar, C.S.; Otterstetter, R.; Cox, D.S.; Balkin, T.J.; Belenky, G.L.; Eddington, N.D. The rate of absorption and relative bioavailability of caffeine administered in chewing gum versus capsules to normal healthy volunteers. Int. J. Pharm. 2002, 234, 159–167. [Google Scholar] [CrossRef]
- Paton, C.D.; Lowe, T.; Irvine, A. Caffeinated chewing gum increases repeated sprint performance and augments increases in testosterone in competitive cyclists. Eur. J. Appl. Physiol. 2010, 110, 1243–1250. [Google Scholar] [CrossRef] [PubMed]
- Dittrich, N.; Serpa, M.C.; Lemos, E.C.; De Lucas, R.D.; Guglielmo, L.G.A. Effects of Caffeine Chewing Gum on Exercise Tolerance and Neuromuscular Responses in Well-Trained Runners. J. Strength Cond. Res. 2021, 35, 1671–1676. [Google Scholar] [CrossRef] [PubMed]
- Russell, M.; Reynolds, N.A.; Crewther, B.T.; Cook, C.J.; Kilduff, L.P. Physiological and Performance Effects of Caffeine Gum Consumed During a Simulated Half-Time by Professional Academy Rugby Union Players. J. Strength Cond. Res. 2020, 34, 145–151. [Google Scholar] [CrossRef] [PubMed]
- Tallis, J.; Duncan, M.J.; Clarke, N.D.; Morris, R.O.; Tamilio, R.A. Are caffeine effects equivalent between different modes of administration: The acute effects of 3 mg.kg(-1) caffeine on the muscular strength and power of male university Rugby Union players. J. Int. Soc. Sports Nutr. 2024, 21, 2419385. [Google Scholar] [CrossRef]
- Ding, L.; Liu, J.; Yao, Y.; Guo, L.; Chen, B.; Cao, Y.; Girard, O. Caffeinated chewing gum enhances maximal strength and muscular endurance during bench press and back squat exercises in resistance-trained men. Front. Nutr. 2025, 12, 1540552. [Google Scholar] [CrossRef]
- Venier, S.; Grgic, J.; Mikulic, P. Acute Enhancement of Jump Performance, Muscle Strength, and Power in Resistance-Trained Men After Consumption of Caffeinated Chewing Gum. Int. J. Sports Physiol. Perform. 2019, 14, 1415–1421. [Google Scholar] [CrossRef]
- Chen, C.H.; Wu, S.H.; Shiu, Y.J.; Yu, S.Y.; Chiu, C.H. Acute enhancement of Romanian deadlift performance after consumption of caffeinated chewing gum. Sci. Rep. 2023, 13, 22016. [Google Scholar] [CrossRef]
- Grgic, J.; Mikulic, P.; Schoenfeld, B.J.; Bishop, D.J.; Pedisic, Z. The Influence of Caffeine Supplementation on Resistance Exercise: A Review. Sports Med. 2019, 49, 17–30. [Google Scholar] [CrossRef]
- Grgic, J. Effects of Caffeine on Resistance Exercise: A Review of Recent Research. Sports Med. 2021, 51, 2281–2298. [Google Scholar] [CrossRef]
- Raya-González, J.; Rendo-Urteaga, T.; Domínguez, R.; Castillo, D.; Rodríguez-Fernández, A.; Grgic, J. Acute Effects of Caffeine Supplementation on Movement Velocity in Resistance Exercise: A Systematic Review and Meta-analysis. Sports Med. 2020, 50, 717–729. [Google Scholar] [CrossRef]
- Filip, A.; Wilk, M.; Krzysztofik, M.; Coso, J.D. Inconsistency in the Ergogenic Effect of Caffeine in Athletes Who Regularly Consume Caffeine: Is It Due to the Disparity in the Criteria That Defines Habitual Caffeine Intake? Nutrients 2020, 12, 1087. [Google Scholar] [CrossRef]
- Bühler, E.; Lachenmeier, D.W.; Schlegel, K.; Winkler, G. Development of a tool to assess the caffeine intake among teenagers and young adults. Ernahrungsumschau 2014, 61, 58–63. [Google Scholar]
- Liu, H.S.; Liu, C.C.; Shiu, Y.J.; Lan, P.T.; Wang, A.Y.; Chiu, C.H. Caffeinated Chewing Gum Improves Basketball Shooting Accuracy and Physical Performance Indicators of Trained Basketball Players: A Double-Blind Crossover Trial. Nutrients 2024, 16, 1256. [Google Scholar] [CrossRef]
- Baechle, T.R.; Earle, R.W. Essentials of Strength Training and Conditioning; Human Kinetics: Champaign, IL, USA, 2000; pp. 395–425. [Google Scholar]
- Bassett, D.R., Jr. International physical activity questionnaire: 12-country reliability and validity. Med. Sci. Sports Exerc. 2003, 35, 1396. [Google Scholar] [CrossRef]
- Cook, D.B.; O’Connor, P.J.; Eubanks, S.A.; Smith, J.C.; Lee, M. Naturally occurring muscle pain during exercise: Assessment and experimental evidence. Med. Sci. Sports Exerc. 1997, 29, 999–1012. [Google Scholar] [CrossRef] [PubMed]
- Borg, G. Perceived exertion as an indicator of somatic stress. Scand. J. Rehabil. Med. 1970, 2, 92–98. [Google Scholar] [CrossRef] [PubMed]
- Duncan, M.J.; Stanley, M.; Parkhouse, N.; Cook, K.; Smith, M. Acute caffeine ingestion enhances strength performance and reduces perceived exertion and muscle pain perception during resistance exercise. Eur. J. Sport. Sci. 2013, 13, 392–399. [Google Scholar] [CrossRef] [PubMed]
- Wilk, M.; Golas, A.; Stastny, P.; Nawrocka, M.; Krzysztofik, M.; Zajac, A. Does Tempo of Resistance Exercise Impact Training Volume? J. Hum. Kinet. 2018, 62, 241–250. [Google Scholar] [CrossRef]
- Grgic, J.; Scapec, B.; Pedisic, Z.; Mikulic, P. Test-Retest Reliability of Velocity and Power in the Deadlift and Squat Exercises Assessed by the GymAware PowerTool System. Front. Physiol. 2020, 11, 561682. [Google Scholar] [CrossRef]
- Hermens, H.J.; Freriks, B.; Disselhorst-Klug, C.; Rau, G. Development of recommendations for SEMG sensors and sensor placement procedures. J. Electromyogr. Kinesiol. 2000, 10, 361–374. [Google Scholar] [CrossRef]
- da Silva, J.J.; Schoenfeld, B.J.; Marchetti, P.N.; Pecoraro, S.L.; Greve, J.M.D.; Marchetti, P.H. Muscle Activation Differs Between Partial and Full Back Squat Exercise With External Load Equated. J. Strength Cond. Res. 2017, 31, 1688–1693. [Google Scholar] [CrossRef]
- Vantrease, W.C.; Townsend, J.R.; Sapp, P.A.; Henry, R.N.; Johnson, K.D. Maximal Strength, Muscle Activation, and Bar Velocity Comparisons Between Squatting With a Traditional or Safety Squat Bar. J. Strength Cond. Res. 2021, 35, S1–S5. [Google Scholar] [CrossRef]
- Yavuz, H.U.; Erdağ, D.; Amca, A.M.; Aritan, S. Kinematic and EMG activities during front and back squat variations in maximum loads. J. Sports Sci. 2015, 33, 1058–1066. [Google Scholar] [CrossRef]
- Schwanbeck, S.; Chilibeck, P.D.; Binsted, G. A comparison of free weight squat to Smith machine squat using electromyography. J. Strength Cond. Res. 2009, 23, 2588–2591. [Google Scholar] [CrossRef]
- Snyder, B.J.; Fry, W.R. Effect of verbal instruction on muscle activity during the bench press exercise. J. Strength Cond. Res. 2012, 26, 2394–2400. [Google Scholar] [CrossRef] [PubMed]
- Bilodeau, M.; Schindler-Ivens, S.; Williams, D.M.; Chandran, R.; Sharma, S.S. EMG frequency content changes with increasing force and during fatigue in the quadriceps femoris muscle of men and women. J. Electromyogr. Kinesiol. 2003, 13, 83–92. [Google Scholar] [CrossRef] [PubMed]
- Saunders, B.; de Oliveira, L.F.; da Silva, R.P.; de Salles Painelli, V.; Gonçalves, L.S.; Yamaguchi, G.; Mutti, T.; Maciel, E.; Roschel, H.; Artioli, G.G.; et al. Placebo in sports nutrition: A proof-of-principle study involving caffeine supplementation. Scand. J. Med. Sci. Sports 2017, 27, 1240–1247. [Google Scholar] [CrossRef] [PubMed]
- Wilk, M.; Krzysztofik, M.; Filip, A.; Zajac, A.; Del Coso, J. The Effects of High Doses of Caffeine on Maximal Strength and Muscular Endurance in Athletes Habituated to Caffeine. Nutrients 2019, 11, 1912. [Google Scholar] [CrossRef]
- Cohen, J. The Effect Size Index: D. Statistical Power Analysis for the Behavioral Sciences; Lawrence Erlbaum Associates: Mahwah, NJ, USA, 1988. [Google Scholar]
- Best, R.; McDonald, K.; Hurst, P.; Pickering, C. Can taste be ergogenic? Eur. J. Nutr. 2021, 60, 45–54. [Google Scholar] [CrossRef]
- Pickering, C. Are caffeine’s performance-enhancing effects partially driven by its bitter taste? Med. Hypotheses 2019, 131, 109301. [Google Scholar] [CrossRef] [PubMed]
- Davis, J.K.; Green, J.M. Caffeine and anaerobic performance: Ergogenic value and mechanisms of action. Sports Med. 2009, 39, 813–832. [Google Scholar] [CrossRef] [PubMed]
- Hendrix, C.R.; Housh, T.J.; Mielke, M.; Zuniga, J.M.; Camic, C.L.; Johnson, G.O.; Schmidt, R.J.; Housh, D.J. Acute effects of a caffeine-containing supplement on bench press and leg extension strength and time to exhaustion during cycle ergometry. J. Strength Cond. Res. 2010, 24, 859–865. [Google Scholar] [CrossRef] [PubMed]
- Mizuno, M.; Kimura, Y.; Tokizawa, K.; Ishii, K.; Oda, K.; Sasaki, T.; Nakamura, Y.; Muraoka, I.; Ishiwata, K. Greater adenosine A(2A) receptor densities in cardiac and skeletal muscle in endurance-trained men: A [11C]TMSX PET study. Nucl. Med. Biol. 2005, 32, 831–836. [Google Scholar] [CrossRef]
- Sawynok, J. Adenosine Receptor Targets for Pain. Neurosci. Int. J. Under Editor. Dir. IBRO 2016, 338, 1–18. [Google Scholar] [CrossRef]
- Edwards, R.H. Human muscle function and fatigue. Ciba Found. Symp. 1981, 82, 1–18. [Google Scholar] [CrossRef]
- Ouergui, I.; Delleli, S.; Bridge, C.A.; Messaoudi, H.; Chtourou, H.; Ballmann, C.G.; Ardigò, L.P.; Franchini, E. Acute effects of caffeine supplementation on taekwondo performance: The influence of competition level and sex. Sci. Rep. 2023, 13, 13795. [Google Scholar] [CrossRef]
- Wu, W.; Chen, Z.; Zhou, H.; Wang, L.; Li, X.; Lv, Y.; Sun, T.; Yu, L. Effects of Acute Ingestion of Caffeine Capsules on Muscle Strength and Muscle Endurance: A Systematic Review and Meta-Analysis. Nutrients 2024, 16, 1146. [Google Scholar] [CrossRef]
- Black, C.D.; Waddell, D.E.; Gonglach, A.R. Caffeine’s Ergogenic Effects on Cycling: Neuromuscular and Perceptual Factors. Med. Sci. Sports Exerc. 2015, 47, 1145–1158. [Google Scholar] [CrossRef]
- Timmins, T.D.; Saunders, D.H. Effect of Caffeine Ingestion on Maximal Voluntary Contraction Strength in Upper- and Lower-Body Muscle Groups. J. Strength Cond. Res. 2014, 28, 3239–3244. [Google Scholar] [CrossRef]
- Shield, A.; Zhou, S. Assessing voluntary muscle activation with the twitch interpolation technique. Sports Med. 2004, 34, 253–267. [Google Scholar] [CrossRef]
- de Souza, J.G.; Del Coso, J.; Fonseca, F.S.; Silva, B.V.C.; de Souza, D.B.; da Silva Gianoni, R.L.; Filip-Stachnik, A.; Serrão, J.C.; Claudino, J.G. Risk or benefit? Side effects of caffeine supplementation in sport: A systematic review. Eur. J. Nutr. 2022, 61, 3823–3834. [Google Scholar] [CrossRef]
- Vigotsky, A.D.; Halperin, I.; Lehman, G.J.; Trajano, G.S.; Vieira, T.M. Interpreting Signal Amplitudes in Surface Electromyography Studies in Sport and Rehabilitation Sciences. Front. Physiol. 2017, 8, 985. [Google Scholar] [CrossRef]
Indicators | Caffeine | Placebo | |
---|---|---|---|
MF (Hz) | bench press | ||
pectoralis major | 114.77 ± 8.36 * | 109.14 ± 11.95 | |
anterior deltoid | 103.85 ± 11.97 * | 97.77 ± 12.84 | |
posterior deltoid | 135.81 ± 11.64 * | 127.31 ± 16.81 | |
biceps brachii | 103.89 ± 14.45 * | 97.04 ± 15.46 | |
lateral head of the triceps | 115.52 ± 10.05 | 115.33 ± 18.75 | |
back squat | |||
gluteus maximus | 96.06 ± 12.92 | 96.30 ± 14.84 | |
rectus femoris | 138.73 ± 7.33 | 138.43 ± 13.24 | |
vastus medialis | 135.81 ± 11.66 * | 127.31 ± 16.81 | |
vastus lateralis | 117.20 ± 19.52 | 110.05 ± 12.14 | |
biceps femoris | 135.86 ± 18.36 | 135.20 ± 13.27 | |
tibialis anterior | 175.74 ± 19.44 | 179.03 ± 14.09 | |
MDF (Hz) | bench press | ||
pectoralis major | 87.12 ± 9.67 * | 80.43 ± 11.36 | |
anterior deltoid | 80.36 ± 9.71 * | 73.58 ± 8.54 | |
posterior deltoid | 71.83 ± 6.91 | 73.14 ± 13.03 | |
biceps brachii | 73.46 ± 13.15 | 68.94 ± 13.24 | |
lateral head of the triceps | 88.52 ± 8.25 | 88.56 ± 16.82 | |
back squat | |||
gluteus maximus | 65.49 ± 11.29 | 65.30 ± 12.12 | |
rectus femoris | 108.09 ± 11.74 | 106.65 ± 15.79 | |
vastus medialis | 107.16 ± 13.85 * | 99.66 ± 16.86 | |
vastus lateralis | 92.61 ± 14.52 | 86.32 ± 9.84 | |
biceps femoris | 98.30 ± 23.35 | 99.32 ± 12.85 | |
tibialis anterior | 153.97 ± 30.00 | 157.47 ± 21.52 | |
RMS | bench press | ||
pectoralis major | 539.087 ± 243.322 | 507.364 ± 152.605 | |
anterior deltoid | 1242.864 ± 532.495 | 1204.086 ± 422.809 | |
posterior deltoid | 106.594 ± 24.952 | 196.141 ± 440.537 | |
biceps brachii | 168.001 ± 60.284 | 195.402 ± 129.067 | |
lateral head of the triceps | 1286.349 ± 699.629 | 1276.917 ± 538.298 | |
back squat | |||
gluteus maximus | 241.989 ± 91.331 | 258.463 ± 188.696 | |
rectus femoris | 424.604 ± 159.942 | 401.519 ± 145.232 | |
vastus medialis | 516.985 ± 183.246 | 519.793 ± 184.793 | |
vastus lateralis | 737.438 ± 279.843 | 766.806 ± 225.589 | |
biceps femoris | 246.338 ± 473.980 | 141.424 ± 67.653 | |
tibialis anterior | 358.288 ± 222.216 | 293.237 ± 134.362 |
Indicator | 25% 1RM | 50% 1RM | 75% 1RM | 90% 1RM | p Value (pη2) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Caffeine | Placebo | p Value | Caffeine | Placebo | p Value | Caffeine | Placebo | p Value | Caffeine | Placebo | p Value | Condition | Load | Interaction | ||
MF (Hz) | bench press | |||||||||||||||
pectoralis major | 127.38 ± 15.53 | 122.05 ± 12.80 | 0.137 | 129.60 ± 12.42 | 123.17 ± 11.96 | 0.254 | 126.11 ± 11.90 | 120.32 ± 10.39 | 0.407 | 199.96 ± 8.70 | 111.37 ± 16.18 | 0.197 | 0.094 (0.18) | <0.05 (0.32) | 0.955 (0.014) | |
anterior deltoid | 105.37 ± 11.83 | 104.92 ± 10.22 | 0.892 | 111.70 ± 12.82 | 109.83 ± 13.31 | 0.582 | 112.56 ± 14.17 | 107.75 ± 12.71 | 0.154 | 107.70 ± 12.45 | 105.29 ± 10.73 | 0.432 | 0.286 (0.08) | <0.05 (0.35) | 0.229 (0.086) | |
posterior deltoid | 104.17 ± 15.65 | 110.38 ± 11.80 | 0.123 | 110.04 ± 18.42 | 114.78 ± 15.64 | 0.472 | 103.73 ± 16.68 | 109.61 ± 14.38 | 0.331 | 105.11 ± 10.84 | 108.51 ± 18.71 | 0.472 | 0.147 (0.14) | 0.366 (0.07) | 0.643 (0.043) | |
biceps brachii | 109.77 ± 17.51 | 100.85 ± 9.29 | <0.05 | 112.23 ± 15.69 | 102.64 ± 15.65 | <0.05 | 112.66 ± 21.66 | 107.62 ± 17.26 | 0.193 | 112.66 ± 15.78 | 106.16 ± 19.64 | 0.066 | <0.05 (0.39) | 0.367 (0.07) | 0.684 (0.032) | |
lateral head of the triceps | 120.91 ± 10.94 | 122.92 ± 14.62 | 0.309 | 120.21 ± 13.95 | 127.45 ± 19.62 | 0.231 | 120.37 ± 14.08 | 124.95 ± 17.04 | 0.504 | 117.46 ± 14.48 | 121.60 ± 19.99 | 0.349 | 0.339 (0.06) | <0.05 (0.24) | 0.203 (0.106) | |
back squat | ||||||||||||||||
gluteus maximus | 92.97 ± 12.17 | 94.63 ± 15.28 | 0.668 | 94.57 ± 12.87 | 96.07 ± 14.15 | 0.713 | 98.49 ± 15.04 | 96.60 ± 13.83 | 0.674 | 96.30 ± 16.72 | 96.19 ± 19.44 | 0.987 | 0.960 (0.00) | 0.220 (0.09) | 0.914 (0.019) | |
rectus femoris | 140.56 ± 7.76 | 142.41 ± 12.79 | 0.554 | 142.03 ± 7.76 | 142.51 ± 15.0 | 0.887 | 141.49 ± 8.84 | 143.40 ± 10.81 | 0.37 | 133.20 ± 21.15 | 135.40 ± 12.60 | 0.625 | 0.514 (0.03) | <0.05 (0.33) | 0.997 (0.004) | |
vastus medialis | 138.26 ± 12.37 | 126.71 ± 12.81 | <0.05 | 138.99 ± 11.88 | 133.48 ± 14.93 | <0.05 | 138.18 ± 10.94 | 130.51 ± 14.16 | <0.05 | 133.26 ± 22.47 | 129.68 ± 16.59 | 0.575 | <0.05 (0.27) | 0.098 (0.11) | 0.238 (0.085) | |
vastus lateralis | 114.02 ± 16.02 | 112.71 ± 15.59 | 0.762 | 119.17 ± 17.34 | 114.18 ± 15.41 | 0.284 | 118.78 ± 17.72 | 115.10 ± 15.25 | 0.488 | 114.84 ± 19.35 | 111.84 ± 15.27 | 0.553 | 0.419 (0.04) | <0.05 (0.17) | 0.485 (0.033) | |
biceps femoris | 124.31 ± 14.85 | 123.43 ± 13.54 | 0.869 | 135.62 ± 20.21 | 126.86 ± 15.59 | 0.133 | 140.70 ± 22.91 | 132.27 ± 17.21 | 0.151 | 130.12 ± 27.96 | 129.07 ± 17.45 | 0.906 | 0.241 (0.09) | <0.05 (0.20) | 0.726 (0.036) | |
tibialis anterior | 180.26 ± 21.10 | 175.47 ± 15.00 | 0.395 | 174.91 ± 18.87 | 173.03 ± 20.20 | 0.755 | 177.43 ± 20.48 | 174.36 ± 19.35 | 0.572 | 168.59 ± 35.00 | 174.98 ± 18.96 | 0.321 | 0.720 (0.01) | 0.588 (0.05) | 0.413 (0.064) | |
MDF (Hz) | bench press | |||||||||||||||
pectoralis major | 96.26 ± 19.67 | 90.01 ± 13.74 | 0.187 | 97.90 ± 14.52 | 85.84 ± 13.20 | <0.05 | 95.16 ± 12.93 | 85.22 ± 11.19 | <0.05 | 89.03 ± 8.56 | 77.46 ± 18.50 | <0.05 | <0.05 (0.33) | <0.05 (0.33) | 0.690 (0.03) | |
anterior deltoid | 21.80 ± 11.06 | 78.37 ± 6.18 | 0.264 | 84.84 ± 13.88 | 82.62 ± 11.10 | 0.622 | 85.95 ± 14.28 | 80.55 ± 8.13 | 0.113 | 81.34 ± 12.74 | 79.60 ± 8.77 | 0.496 | 0.187 (0.11) | <0.05 (0.22) | 0.206 (0.09) | |
posterior deltoid | 62.51 ± 14.45 | 66.60 ± 9.21 | 0.855 | 71.23 ± 13.40 | 74.35 ± 11.75 | 0.966 | 65.62 ± 13.26 | 73.93 ± 16.91 | 0.799 | 68.75 ± 11.84 | 74.47 ± 16.41 | 0.933 | 0.115 (0.17) | <0.05 (0.17) | 0.306 (0.08) | |
biceps brachii | 76.91 ± 17.44 | 67.71 ± 8.68 | <0.05 | 80.39 ± 15.59 | 72.21 ± 14.90 | <0.05 | 79.66 ± 22.15 | 76.34 ± 15.56 | <0.05 | 80.52 ± 16.21 | 76.52 ± 20.49 | 0.293 | <0.05 (0.29) | 0.105 (0.13) | 0.414 (0.06) | |
lateral head of the triceps | 89.38 ± 10.37 | 93.16 ± 14.23 | 0.295 | 90.99 ± 11.95 | 99.25 ± 19.39 | 0.120 | 90.77 ± 13.16 | 94.94 ± 16.19 | 0.317 | 90.18 ± 11.58 | 93.78 ± 17.99 | 0.378 | 0.232 (0.09) | <0.05 (0.23) | 0.350 (0.07) | |
back squat | ||||||||||||||||
gluteus maximus | 59.18 ± 10.69 | 59.80 ± 12.01 | 0.790 | 62.14 ± 11.72 | 61.53 ± 11.59 | 0.830 | 66.36 ± 14.19 | 63.70 ± 12.87 | 0.470 | 67.55 ± 13.48 | 66.79 ± 13.28 | 0.840 | 0.810 (0.01) | <0.05 (0.42) | 0.850 (0.03) | |
rectus femoris | 105.40 ± 9.76 | 108.20 ± 14.09 | 0.235 | 108.40 ± 10.10 | 108.86 ± 16.20 | 0.885 | 109.57 ± 11.71 | 110.72 ± 15.20 | 0.635 | 103.24 ± 19.27 | 105.03 ± 16.57 | 0.623 | 0.470 (0.04) | <0.05 (0.20) | 0.984 (0.01) | |
vastus medialis | 107.22 ± 14.25 | 96.56 ± 12.77 | <0.05 | 109.02 ± 15.08 | 103.90 ± 15.94 | 0.099 | 108.86 ± 12.59 | 102.54 ± 14.12 | 0.060 | 104.86 ± 20.68 | 104.40 ± 14.46 | 0.918 | <0.05 (0.24) | 0.163 (0.11) | 0.065 (0.16) | |
vastus lateralis | 88.59 ± 13.00 | 85.34 ± 13.34 | 0.333 | 94.15 ± 14.37 | 88.23 ± 15.53 | 0.209 | 94.49 ± 15.80 | 89.14 ± 14.10 | 0.238 | 90.96 ± 17.44 | 88.47 ± 13.18 | 0.625 | 0.267 (0.08) | <0.05 (0.23) | 0.509 (0.03) | |
biceps femoris | 84.35 ± 13.28 | 83.38 ± 13.90 | 0.808 | 97.98 ± 20.74 | 86.31 ± 17.90 | 0.080 | 105.36 ± 21.76 | 92.72 ± 19.53 | 0.059 | 95.32 ± 23.53 | 95.17 ± 17.43 | 0.984 | 0.129 (0.15) | <0.05 (0.30) | 0.292 (0.08) | |
tibialis anterior | 155.47 ± 29.34 | 148.66 ± 21.81 | 0.408 | 148.81 ± 28.73 | 146.98 ± 26.89 | 0.923 | 151.40 ± 27.26 | 150.51 ± 25.90 | 0.895 | 145.51 ± 37.48 | 151.50 ± 25.64 | 0.311 | 0.841 (0.00) | 0.839 (0.03) | 0.467 (0.06) | |
RMS | bench press | |||||||||||||||
pectoralis major | 0.500 ± 0.172 | 0.428 ± 0.115 | <0.05 | 0.495 ± 0.124 | 0.493 ± 0.129 | 0.961 | 0.521 ± 0.156 | 0.588 ± 0.368 | 0.541 | 0.539 ± 0.113 | 0.543 ± 0.134 | 0.971 | 0.695 (0.011) | <0.05 (0.22) | 0.173 (0.10) | |
anterior deltoid | 0.509 ± 0.116 | 0.422 ± 0.186 | <0.05 | 0.535 ± 0.116 | 0.482 ± 0.157 | 0.163 | 0.541 ± 0.094 | 0.512 ± 0.144 | 0.345 | 0.586 ± 0.090 | 0.534 ± 0.150 | 0.124 | 0.073 (0.199) | 0.46 (0.06) | 0.408 (0.06) | |
posterior deltoid | 0.514 ± 0.124 | 0.480 ± 0.124 | 0.272 | 0.595 ± 0.155 | 0.530 ± 0.116 | 0.097 | 0.646 ± 0.165 | 0.605 ± 0.103 | 0.327 | 0.686 ± 0.186 | 0.633 ± 0.136 | 0.372 | 0.184 (0.114) | <0.05 (0.66) | 0.852 (0.03) | |
biceps brachii | 0.301 ± 0.139 | 0.251 ± 0.132 | 0.156 | 0.363 ± 0.173 | 0.316 ± 0.161 | 0.387 | 0.373 ± 0.163 | 0.338 ± 0.214 | 0.564 | 0.371 ± 0.209 | 0.348 ± 0.229 | 0.720 | 0.366 (0.055) | <0.05 (0.25) | 0.964 (0.01) | |
lateral head of the triceps | 0.325 ± 0.115 | 0.263 ± 0.078 | 0.071 | 0.427 ± 0.128 | 0.367 ± 0.076 | 0.110 | 0.463 ± 0.103 | 0.432 ± 0.100 | 0.434 | 0.493 ± 0.090 | 0.509 ± 0.121 | 0.695 | 0.244 (0.089) | <0.05 (0.47) | <0.05 (0.17) | |
back squat | ||||||||||||||||
gluteus maximus | 0.308 ± 0.131 | 0.256 ± 0.100 | <0.05 | 0.442 ± 0.154 | 0.365 ± 0.134 | <0.05 | 0.539 ± 0.169 | 0.446 ± 0.111 | <0.05 | 0.567 ± 0.154 | 0.517 ± 0.154 | 0.153 | < 0.05 (0.29) | <0.05 (0.80) | 0.450 (0.056) | |
rectus femoris | 0.442 ± 0.116 | 0.376 ± 0.134 | 0.082 | 0.448 ± 0.110 | 0.420 ± 0.147 | 0.448 | 0.521 ± 0.134 | 0.501 ± 0.158 | 0.691 | 0.590 ± 0.200 | 0.526 ± 0.113 | 0.187 | 0.100 (0.17) | <0.05 (0.44) | 0.527 (0.05) | |
vastus medialis | 0.514 ± 0.124 | 0.480 ± 0.124 | 0.272 | 0.595 ± 0.155 | 0.530 ± 0.116 | 0.097 | 0.646 ± 0.165 | 0.605 ± 0.103 | 0.327 | 0.686 ± 0.186 | 0.633 ± 0.136 | 0.372 | 0.184 (0.11) | <0.05 (0.66) | 0.852 (0.03) | |
vastus lateralis | 0.670 ± 0.737 | 0.465 ± 0.214 | 0.184 | 0.590 ± 0.142 | 0.548 ± 0.189 | 0.292 | 0.640 ± 0.138 | 0.612 ± 0.216 | 0.313 | 0.682 ± 0.182 | 0.646 ± 0.203 | 0.315 | 0.419 (0.04) | <0.05 (0.66) | 0.467 (0.05) | |
biceps femoris | 0.359 ± 0.264 | 0.269 ± 0.123 | 0.217 | 0.504 ± 0.344 | 0.315 ± 0.095 | 0.033 | 0.527 ± 0.338 | 0.605 ± 0.103 | 0.063 | 0.488 ± 0.297 | 0.633 ± 0.136 | 0.861 | 0.820 (0.01) | <0.05 (0.87) | 0.003 (0.65) | |
tibialis anterior | 0.428 ± 0.529 | 0.257 ± 0.174 | 0.195 | 0.301 ± 0.227 | 0.232 ± 0.111 | 0.204 | 0.324 ± 0.134 | 0.314 ± 0.184 | 0.804 | 0.314 ± 0.132 | 0.321 ± 0.186 | 0.866 | 0.172 (0.12) | 0.257 (0.08) | 0.212 (0.09) |
Indicators | Caffeine | Placebo | |
---|---|---|---|
RPE (6–20) | bench press | 15 ± 3 | 16 ± 3 |
back squat | 17 ± 3 | 16 ± 3 | |
PP (0–10) | bench press | 1 ± 2 | 1 ± 1 |
back squat | 1 ± 2 | 1 ± 2 |
Indicator | 25% 1RM | 50% 1RM | 75% 1RM | 90% 1RM | p Value (pη2) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Caffeine | Placebo | p Value | Caffeine | Placebo | p Value | Caffeine | Placebo | p Value | Caffeine | Placebo | p Value | Condition | Load | Interaction | ||
RPE (6–20) | bench press | 7 ± 1 | 7 ± 1 | 0.261 | 10 ± 2 | 9 ± 2 | 0.757 | 12 ± 2 | 12 ± 2 | 0.406 | 14 ± 3 | 14 ± 3 | 0.652 | 0.497 (0.03) | <0.05 (0.84) | 0.893 (0.02) |
back squat | 7 ± 1 | 7 ± 1 | 0.544 | 10 ± 2 | 10 ± 2 | 0.648 | 11 ± 2 | 12 ± 2 | 0.205 | 13 ± 2 | 14 ± 3 | 0.076 | 0.331 (0.06) | <0.05 (0.86) | 0.142 (0.10) | |
PP (0–10) | bench press | 0 ± 1 | 0 ± 1 | 0.237 | 1 ± 1 | 0 ± 1 | 0.774 | 1 ± 1 | 1 ± 1 | 0.300 | 1 ± 1 | 1 ± 1 | 0.333 | 0.158 (0.13) | <0.05 (0.22) | 0.921 (0.01) |
back squat | 0 ± 1 | 1 ± 1 | 0.204 | 1 ± 1 | 1 ± 1 | 0.158 | 1 ± 1 | 1 ± 1 | 0.325 | 1 ± 1 | 1 ± 1 | 0.105 | 0.155 (0.13) | <0.05 (0.21) | 0.659 (0.04) |
Side Effect | Caffeine | Placebo | ||
---|---|---|---|---|
+0 | +24 | +0 | +24 | |
Muscle soreness | 6 (37.5%) | 8 (50%) | 6 (37.5%) | 7 (43.75%) |
Increased urine output | 6 (37.5%) | 6 (37.5%) * | 2 (12.5%) | 0 (0%) |
Tachycardia and heart palpitations | 5 (31.25%) | 0 (0%) | 1 (6.25) | 1 (6.25%) |
Anxiety or nervousness | 2 (12.5%) | 1 (6.25%) | 1 (6.25%) | 0 (0%) |
Headache | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) |
Gastrointestinal problems | 2 (12.5%) | 3 (18.75%) | 0 (0%) | 0 (0%) |
Insomnia | - | 7 (43.75%) | - | 2 (12.5%) |
Increased vigor/activeness | 14 (87.5%) * | 5 (31.25%) | 4 (25%) | 4 (25%) |
Perception of performance improvement | 14 (87.5%) * | - | 2 (12.5%) | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ding, L.; Liu, J.; Ma, Y.; Lei, T.-H.; Barnes, M.; Guo, L.; Chen, B.; Cao, Y.; Girard, O. Effect of Caffeinated Chewing Gum on Maximal Strength, Muscular Power, and Muscle Recruitment During Bench Press and Back Squat Exercises. Nutrients 2025, 17, 2455. https://doi.org/10.3390/nu17152455
Ding L, Liu J, Ma Y, Lei T-H, Barnes M, Guo L, Chen B, Cao Y, Girard O. Effect of Caffeinated Chewing Gum on Maximal Strength, Muscular Power, and Muscle Recruitment During Bench Press and Back Squat Exercises. Nutrients. 2025; 17(15):2455. https://doi.org/10.3390/nu17152455
Chicago/Turabian StyleDing, Li, Jue Liu, Yixuan Ma, Tze-Huan Lei, Mathew Barnes, Li Guo, Bin Chen, Yinhang Cao, and Olivier Girard. 2025. "Effect of Caffeinated Chewing Gum on Maximal Strength, Muscular Power, and Muscle Recruitment During Bench Press and Back Squat Exercises" Nutrients 17, no. 15: 2455. https://doi.org/10.3390/nu17152455
APA StyleDing, L., Liu, J., Ma, Y., Lei, T.-H., Barnes, M., Guo, L., Chen, B., Cao, Y., & Girard, O. (2025). Effect of Caffeinated Chewing Gum on Maximal Strength, Muscular Power, and Muscle Recruitment During Bench Press and Back Squat Exercises. Nutrients, 17(15), 2455. https://doi.org/10.3390/nu17152455