The Performance of Pleurotus eryngii β-Glucans on Protein Digestion and the Release of Free Amino Acids in the Bloodstream of Obese Adults
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants
2.3. Clinical Assessment and Anthropometric Measurements
2.4. Biochemical Analyses
2.5. Free Amino Acids Quantification
2.5.1. Derivatization of Free Amino Acids
2.5.2. GC/MS Analysis of Free Amino Acids
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ALT | Alanine transaminase |
AAs | Amino acids |
ALP | Alkaline phosphatase |
AUCi | Area under the curve with respect to increase |
AAAs | Aromatic amino acids |
AST | Aspartate aminotransferase |
BMI | Body mass index |
BCAAs | Branched-chain amino acids |
CRP | C-reactive protein |
γ-GT | γ-glutamyl transferase |
GC/MS | Gas chromatography–mass spectrometry |
HDL | High-density lipoprotein |
HC | Hip circumference |
HOMA-IR | Homeostatic Model Assessment for Insulin Resistance |
LDH | Lactate dehydrogenase |
LDL | Low-density lipoprotein |
P. eryngii | Pleurotus eryngii |
TC | Total cholesterol |
TG | Triglycerides |
T2D | Type 2 diabetes |
WC | Waist circumference |
References
- Ambroselli, D.; Masciulli, F.; Romano, E.; Catanzaro, G.; Besharat, Z.M.; Massari, M.C.; Ferretti, E.; Migliaccio, S.; Izzo, L.; Ritieni, A.; et al. New advances in metabolic syndrome, from prevention to treatment: The role of diet and food. Nutrients 2023, 15, 640. [Google Scholar] [CrossRef] [PubMed]
- Blüher, M. Obesity: Global epidemiology and pathogenesis. Nat. Rev. Endocrinol. 2018, 15, 288–298. [Google Scholar] [CrossRef] [PubMed]
- Koutrotsios, G.; Kalogeropoulos, N.; Kaliora, A.; Zervakis, G. Toward an increased functionality in oyster (Pleurotus) mushrooms produced on grape marc or olive mill wastes serving as sources of bioactive compounds. J. Agric. Food Chem. 2018, 66, 5971–5983. [Google Scholar] [CrossRef] [PubMed]
- Ellefsen, C.; Lindstad, L.; Klau, L.; Aachmann, F.; Hiorth, M.; Samuelsen, A. Investigation of the structural and immunomodulatory properties of alkali-soluble β-glucans from Pleurotus eryngii fruiting bodies. Carbohydr. Polym. 2023, 322, 121367. [Google Scholar] [CrossRef]
- Kleftaki, S.; Simati, S.; Amerikanou, C.; Gioxari, A.; Tzavara, C.; Zervakis, G. Pleurotus eryngii improves postprandial glycaemia, hunger and fullness perception, and enhances ghrelin suppression in people with metabolically unhealthy obesity. Pharmacol. Res. 2022, 175, 105979. [Google Scholar] [CrossRef]
- Kleftaki, S.-A.; Amerikanou, C.; Gioxari, A.; Lantzouraki, D.Z.; Sotiroudis, G.; Tsiantas, K.; Tsiaka, T.; Tagkouli, D.; Tzavara, C.; Lachouvaris, L.; et al. A randomized controlled trial on Pleurotus eryngii mushrooms with antioxidant compounds and vitamin D2 in managing metabolic disorders. Antioxidants 2022, 11, 2113. [Google Scholar] [CrossRef]
- Simonson, M.; Boirie, Y.; Guillet, C. Protein, amino acids and obesity treatment. Rev. Endocr. Metab. Disord. 2020, 21, 341–353. [Google Scholar] [CrossRef]
- Wiklund, P.; Zhang, X.; Pekkala, S.; Autio, R.; Kong, L.; Yang, Y.; Keinänen-Kiukaanniemi, S.; Alen, M.; Cheng, S. Insulin resistance is associated with altered amino acid metabolism and adipose tissue dysfunction in normoglycemic women. Sci. Rep. 2016, 6, 24540. [Google Scholar] [CrossRef]
- Newgard, C.B.; An, J.; Bain, J.R.; Muehlbauer, M.J.; Stevens, R.D.; Lien, L.F.; Haqq, A.M.; Shah, S.H.; Arlotto, M.; Slentz, C.A.; et al. A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance. Cell Metab. 2009, 9, 311–326. [Google Scholar] [CrossRef]
- De Bandt, J.-P.; Coumoul, X.; Barouki, R. Branched-chain amino acids and insulin resistance, from protein supply to diet-induced obesity. Nutrients 2022, 15, 68. [Google Scholar] [CrossRef]
- Vanweert, F.; De Ligt, M.; Hoeks, J.; Hesselink, M.K.C.; Schrauwen, P.; Phielix, E. Elevated plasma branched-chain amino acid levels correlate with type 2 diabetes–related metabolic disturbances. J. Clin. Endocrinol. Metab. 2020, 106, e1827–e1836. [Google Scholar] [CrossRef]
- Shi, M.; Han, S.; Klier, K.; Fobo, G.; Montrone, C.; Yu, S.; Harada, M.; Henning, A.-K.; Friedrich, N.; Bahls, M.; et al. Identification of candidate metabolite biomarkers for metabolic syndrome and its five components in population-based human cohorts. Cardiovasc. Diabetol. 2023, 22, 18. [Google Scholar] [CrossRef]
- Vangipurapu, J.; Stancáková, A.; Smith, U.; Kuusisto, J.; Laakso, M. Nine amino acids are associated with decreased insulin secretion and elevated glucose levels in a 7.4-year follow-up study of 5,181 Finnish men. Diabetes 2019, 68, 1353–1358. [Google Scholar] [CrossRef] [PubMed]
- Boachie, R.T.; Commandeur, M.M.B.; Abioye, R.O.; Capuano, E.; Oliviero, T.; Fogliano, V.; Udenigwe, C.C. β-Glucan interaction with lentil (Lens culinaris) and yellow pea (Pisum sativum) proteins suppresses their in vitro digestibility. J. Agric. Food Chem. 2021, 69, 10630–10637. [Google Scholar] [CrossRef] [PubMed]
- Qu, X.; Li, B.; Yang, W.; Nazarenko, Y. Effect of oat β-glucan on in vitro digestion characteristics of set-type yogurt. Acta Innov. 2022, 43, 5–14. [Google Scholar] [CrossRef]
- Rinaldi, L.; Rioux, L.-E.; Britten, M.; Turgeon, S.L. In vitro bioaccessibility of peptides and amino acids from yogurt made with starch, pectin, or β-glucan. Int. Dairy J. 2014, 46, 39–45. [Google Scholar] [CrossRef]
- Liu, C.; Sun, C.; Cheng, Y. β-Glucan alleviates mice with ulcerative colitis through interactions between gut microbes and amino acids metabolism. J. Sci. Food Agric. 2023, 103, 4006–4016. [Google Scholar] [CrossRef]
- Kaspar, H.; Dettmer, K.; Gronwald, W.; Oefner, P.J. Automated GC–MS analysis of free amino acids in biological fluids. J. Chromatogr. B 2008, 870, 222–232. [Google Scholar] [CrossRef]
- Ferreira, S.S.; Passos, C.P.; Madureira, P.; Vilanova, M.; Coimbra, M.A. Structure–function relationships of immunostimulatory polysaccharides: A review. Carbohydr. Polym. 2015, 132, 378–396. [Google Scholar] [CrossRef]
- Vetvicka, V.; Gover, O.; Karpovsky, M.; Hayby, H.; Danay, O.; Ezov, N.; Hadar, Y.; Schwartz, B. Immune-modulating activities of glucans extracted from Pleurotus ostreatus and Pleurotus eryngii. J. Funct. Foods 2019, 54, 81–91. [Google Scholar] [CrossRef]
- Wouk, J.; Dekker, R.F.H.; Queiroz, E.A.I.F.; Barbosa-Dekker, A.M. β-Glucans as a panacea for a healthy heart? Their roles in preventing and treating cardiovascular diseases. Int. J. Biol. Macromol. 2021, 177, 176–203. [Google Scholar] [CrossRef]
- Cerletti, C.; Esposito, S.; Iacoviello, L. Edible mushrooms and beta-glucans: Impact on human health. Nutrients 2021, 13, 2195. [Google Scholar] [CrossRef] [PubMed]
- López, A.M.; Noriega, L.G.; Diaz, M.; Torres, N.; Tovar, A.R. Plasma branched-chain and aromatic amino acid concentration after ingestion of an urban or rural diet in rural Mexican women. BMC Obes. 2015, 2, 38. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.; He, D.; Luo, C.; Lin, X.; Wu, J.; Yin, X.; Jia, C.; Pan, Q.; Dong, X.; Zheng, F.; et al. Metabolic syndrome and its components are associated with altered amino acid profile in Chinese Han population. Front. Endocrinol. 2022, 12, 795044. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Miki, T.; Fukunaga, A.; Eguchi, M.; Kochi, T.; Nanri, A.; Kabe, I.; Mizoue, T. Associations of serum amino acids with insulin resistance among people with and without overweight or obesity: A prospective study in Japan. Clin. Nutr. 2022, 41, 1827–1833. [Google Scholar] [CrossRef]
- Weng, L.; Quinlivan, E.; Gong, Y.; Beitelshees, A.L.; Shahin, M.H.; Turner, S.T.; Chapman, A.B.; Gums, J.G.; Johnson, J.A.; Frye, R.F.; et al. Association of branched and aromatic amino acids levels with metabolic syndrome and impaired fasting glucose in hypertensive patients. Metab. Syndr. Relat. Disord. 2015, 13, 195–202. [Google Scholar] [CrossRef]
- Chen, T.; Ni, Y.; Ma, X.; Bao, Y.; Liu, J.; Huang, F.; Hu, C.; Xie, G.; Zhao, A.; Jia, W.; et al. Branched-chain and aromatic amino acid profiles and diabetes risk in Chinese populations. Sci. Rep. 2016, 6, 20594. [Google Scholar] [CrossRef]
- Ntzouvani, A.; Nomikos, T.; Panagiotakos, D.; Fragopoulou, E.; Pitsavos, C.; McCann, A.; Ueland, P.M.; Antonopoulou, S. Amino acid profile and metabolic syndrome in a male Mediterranean population: A cross-sectional study. Nutr. Metab. Cardiovasc. Dis. 2017, 27, 1021–1030. [Google Scholar] [CrossRef]
- Ottosson, F.; Ericson, U.; Almgren, P.; Nilsson, J.; Magnusson, M.; Fernandez, C.; Melander, O. Postprandial levels of branched-chain and aromatic amino acids associate with fasting glycaemia. J. Amino Acids 2016, 2016, 8576730. [Google Scholar] [CrossRef]
- Schop, M.; Jansman, A.J.M.; De Vries, S.; Gerrits, W.J.J. Increased diet viscosity by oat β-glucans decreases the passage rate of liquids in the stomach and affects digesta physicochemical properties in growing pigs. Animal 2020, 14, 269–276. [Google Scholar] [CrossRef]
- Have, G.A.M.T.; Engelen, M.P.K.J.; Luiking, Y.C.; Deutz, N.E.P. Absorption kinetics of amino acids, peptides, and intact proteins. Int. J. Sport Nutr. Exerc. Metab. 2007, 17, S23–S36. [Google Scholar] [CrossRef]
- Grundy, M.M.L.; Quint, J.; Rieder, A.; Ballance, S.; Dreiss, C.A.; Cross, K.L.; Gray, R.; Bajka, B.H.; Butterworth, P.J.; Ellis, P.R.; et al. The impact of oat structure and β-glucan on in vitro lipid digestion. J. Funct. Foods 2017, 38, 378–388. [Google Scholar] [CrossRef]
- Colosimo, R.; Mulet-Cabero, A.-I.; Cross, K.L.; Haider, K.; Edwards, C.H.; Warren, F.J.; Finnigan, T.J.A.; Wilde, P.J. β-Glucan release from fungal and plant cell walls after simulated gastrointestinal digestion. J. Funct. Foods 2021, 83, 104543. [Google Scholar] [CrossRef]
Protein (g) | Fat (g) | Available Carbohydrates (g) | Energy Content (Kcal) | |
---|---|---|---|---|
Control meal | 23.0 | 12.7 | 55.4 | 427.9 |
P. eryngii meal | 25.5 | 13.3 | 52.6 | 432.1 |
Characteristics | Baseline (N = 13) | |
---|---|---|
Gender | N | % |
Males | 8 | 61.5 |
Females | 5 | 38.5 |
Mean | SD | |
Age (years) | 56.3 | 11.1 |
ΒΜΙ (kg/m2) | 35.6 | 6.6 |
WC (cm) | 115.8 | 14.0 |
HC (cm) | 116.4 | 10.4 |
Fat (%) | 38.9 | 8.9 |
Glucose (mg/dL) | 105.9 | 32.9 |
Insulin (μU/mL) | 14.8 | 8.6 |
HOMA-IR | 4.36 | 4.0 |
ΤC (mg/dL) | 195.7 | 33.2 |
TG (mg/dL) | 129.4 | 61.6 |
HDL (mg/dL) | 47.6 | 8.2 |
LDL (mg/dL) | 119.8 | 31.1 |
AST (U/L) | 21.5 | 7.1 |
ALT (U/L) | 26.4 | 16.0 |
γ-GT (U/L) | 25.2 | 15.5 |
ALP (U/L) | 61.3 | 16.1 |
LDH (U/L) | 178.3 | 18.9 |
Urea (mg/dL) | 42.6 | 20.4 |
Uric acid (mg/dL) | 6.1 | 1.6 |
Creatinine(mg/dL) | 0.9 | 0.4 |
Iron (μg/dl) | 82.7 | 11.9 |
Ferritin (ng/mL) | 125.9 | 92.8 |
CRP (mg/L) | 2.9 | 1.4 |
Group | |||
---|---|---|---|
Control Meal | P. eryngii Meal | ||
Mean ± SD | Mean ± SD | p-value | |
Alanine AUCi | 23,101.1 ± 19,965 | 12,856.8 ± 26,935.7 | 0.209 |
Valine AUCi | 14,862.1 ± 16,860.8 | 12,222.1 ± 12,138.5 | 0.417 |
Leucine AUCi | 12,073.6 ± 10,153 | 9820.8 ± 5852 | 0.206 |
Aloisoleucine AUCi | 1273.8 ± 29,265.5 | −430.1 ± 31,845 | 0.898 |
Isoleucine AUCi | 9945.1 ± 9300.5 | −226.6 ± 31,473.2 | 0.307 |
Phenylalanine AUCi | 5046.8 ± 2531.1 | 3889.6 ± 1773.2 | 0.027 |
Tyrosine AUCi | 4959.9 ± 2222 | 3382.5 ± 1658.8 | 0.008 |
Tryptophan AUCi | 3517.8 ± 1810.6 | 1887.6 ± 1163.8 | 0.003 |
Glutamic acid AUCi | 12,632.4 ± 14,284.6 | 6774.9 ± 12,560.9 | 0.348 |
Glycine AUCi | 3201 ± 10,956 | −286 ± 12,271.6 | 0.369 |
a-Aminobutyric acid AUCi | −62.7 ± 1896.4 | −334.4 ± 2389.2 | 0.502 |
Threonine AUCi | 7032.3 ± 10,461 | 7390.9 ± 9517.2 | 0.937 |
Serine AUCi | 8248.9 ± 10,030.9 | 7465.7 ± 11,921.8 | 0.884 |
Proline AUCi | 35,099.9 ± 18,684.6 | 29,110.4 ± 13,137.3 | 0.313 |
Asparagine AUCi | 45,248.5 ± 36,773 | 39,271.1 ± 31,880.2 | 0.667 |
Thioproline AUCi | 247.5 ± 1201.2 | 345.4 ± 810.7 | 0.822 |
Aspartic acid AUCi | 742.5 ± 1790.8 | 663.3 ± 1716 | 0.856 |
Methionine AUCi | 1659.9 ± 1199 | 1446.5 ± 1266.1 | 0.556 |
Hydroxyproline AUCi | 1115.4 ± 1558.7 | 1049.4 ± 1148.4 | 0.909 |
Glutamine AUCi | 34,790.8 ± 46,304.5 | 31,037.6 ± 48,439.6 | 0.652 |
Ornithine AUCi | 3204.3 ± 2879.8 | 2979.9 ± 1919.5 | 0.728 |
Lysine AUCi | 10,063.9 ± 6319.5 | 7527.3 ± 4842.2 | 0.160 |
Histidine AUCi | 964.7 ± 3801.6 | 927.3 ± 3124 | 0.967 |
Cystine AUCi | 139.7 ± 1404.7 | 500.5 ± 1018.6 | 0.492 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amerikanou, C.; Kleftaki, S.-A.; Gioxari, A.; Tagkouli, D.; Kasoura, A.; Simati, S.; Tzavara, C.; Kokkinos, A.; Kalogeropoulos, N.; Kaliora, A.C. The Performance of Pleurotus eryngii β-Glucans on Protein Digestion and the Release of Free Amino Acids in the Bloodstream of Obese Adults. Foods 2025, 14, 2649. https://doi.org/10.3390/foods14152649
Amerikanou C, Kleftaki S-A, Gioxari A, Tagkouli D, Kasoura A, Simati S, Tzavara C, Kokkinos A, Kalogeropoulos N, Kaliora AC. The Performance of Pleurotus eryngii β-Glucans on Protein Digestion and the Release of Free Amino Acids in the Bloodstream of Obese Adults. Foods. 2025; 14(15):2649. https://doi.org/10.3390/foods14152649
Chicago/Turabian StyleAmerikanou, Charalampia, Stamatia-Angeliki Kleftaki, Aristea Gioxari, Dimitra Tagkouli, Alexandra Kasoura, Stamatia Simati, Chara Tzavara, Alexander Kokkinos, Nick Kalogeropoulos, and Andriana C. Kaliora. 2025. "The Performance of Pleurotus eryngii β-Glucans on Protein Digestion and the Release of Free Amino Acids in the Bloodstream of Obese Adults" Foods 14, no. 15: 2649. https://doi.org/10.3390/foods14152649
APA StyleAmerikanou, C., Kleftaki, S.-A., Gioxari, A., Tagkouli, D., Kasoura, A., Simati, S., Tzavara, C., Kokkinos, A., Kalogeropoulos, N., & Kaliora, A. C. (2025). The Performance of Pleurotus eryngii β-Glucans on Protein Digestion and the Release of Free Amino Acids in the Bloodstream of Obese Adults. Foods, 14(15), 2649. https://doi.org/10.3390/foods14152649