Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (620)

Search Parameters:
Keywords = self-assembly film

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 4478 KiB  
Article
Design and Characterization of PAA/CHI/Triclosan Multilayer Films with Long-Term Antibacterial Activity
by Balzhan Savdenbekova, Aruzhan Sailau, Ayazhan Seidulayeva, Zhanar Bekissanova, Ardak Jumagaziyeva and Renata Nemkayeva
Polymers 2025, 17(13), 1789; https://doi.org/10.3390/polym17131789 - 27 Jun 2025
Viewed by 341
Abstract
The development of antibacterial coatings for biomedical applications is crucial to prevent implant-associated infections (IAIs). In this study, we designed and evaluated a multilayer coating based on chitosan (CHI), polyacrylic acid (PAA), and triclosan (TCS) using the layer-by-layer (LbL) self-assembly technique. The successful [...] Read more.
The development of antibacterial coatings for biomedical applications is crucial to prevent implant-associated infections (IAIs). In this study, we designed and evaluated a multilayer coating based on chitosan (CHI), polyacrylic acid (PAA), and triclosan (TCS) using the layer-by-layer (LbL) self-assembly technique. The successful incorporation of TCS was confirmed by Fourier-transform infrared (FTIR) spectroscopy. Surface roughness and topography were analyzed using atomic force microscopy (AFM) and scanning electron microscopy (SEM). Additionally, the pH-dependent behavior of PAA/CHI films was studied to assess its effect on TCS loading. According to disk diffusion assays, coatings assembled at pH 5 (PAA5/CHI5/TCS) exhibited the strongest antibacterial activity, with inhibition zones of 60.0 ± 0.0 mm for S. aureus and 33.67 ± 1.5 mm for E. coli. The long-term stability of the coatings was evaluated by measuring the antibacterial activity after 1, 10, 20, 30, and 40 days, with results confirming that antimicrobial properties and structural integrity were preserved over time. Furthermore, TCS release kinetics were assessed under physiological (pH 7.4) and acidic (pH 5.5) conditions, revealing enhanced release at pH 5.5. These findings highlight the potential of this multilayer system for biomedical applications requiring both stability and pH-responsive drug release. Full article
(This article belongs to the Special Issue Polymer Thin Films: Synthesis, Characterization and Applications)
Show Figures

Graphical abstract

11 pages, 1648 KiB  
Article
Solar-Driven Interfacial Evaporation Using Bumpy Gold Nanoshell Films with Controlled Shell Thickness
by Yoon-Hee Kim, Hye-Seong Cho, Kwanghee Yoo, Cho-Hee Yang, Sung-Kyu Lee, Homan Kang and Bong-Hyun Jun
Int. J. Mol. Sci. 2025, 26(13), 6160; https://doi.org/10.3390/ijms26136160 - 26 Jun 2025
Viewed by 281
Abstract
Metal nanostructure-assisted solar-driven interfacial evaporation systems have emerged as a promising solution to achieve sustainable water production. Herein, we fabricated photothermal films of a bumpy gold nanoshell with controlled shell thicknesses (11.7 nm and 16.6 nm) and gap structures to enhance their photothermal [...] Read more.
Metal nanostructure-assisted solar-driven interfacial evaporation systems have emerged as a promising solution to achieve sustainable water production. Herein, we fabricated photothermal films of a bumpy gold nanoshell with controlled shell thicknesses (11.7 nm and 16.6 nm) and gap structures to enhance their photothermal conversion efficiency. FDTD simulation of bumpy nanoshell modeling revealed that thinner nanoshells exhibited higher absorption efficiency across the visible–NIR spectrum. Photothermal films prepared by a three-phase self-assembly method exhibited superior photothermal conversion, with films using thinner nanoshells (11.7 nm) achieving higher surface temperatures and faster water evaporation under both laser and sunlight irradiation. Furthermore, evaporation performance was evaluated using different support layers. Films on PVDF membranes with optimized hydrophilicity and minimized heat convection achieved the highest evaporation rate of 1.067 kg m−2 h−1 under sunlight exposure (937.1 W/m2), outperforming cellulose and PTFE supports. This work highlights the critical role of nanostructure design and support layer engineering in enhancing photothermal conversion efficiency, offering a strategy for the development of efficient solar-driven desalination systems. Full article
Show Figures

Figure 1

19 pages, 8666 KiB  
Article
The Impact of PEO and PVP Additives on the Structure and Properties of Silk Fibroin Adsorption Layers
by Olga Yu. Milyaeva, Kseniya Yu. Rotanova, Anastasiya R. Rafikova, Reinhard Miller, Giuseppe Loglio and Boris A. Noskov
Polymers 2025, 17(13), 1733; https://doi.org/10.3390/polym17131733 - 21 Jun 2025
Viewed by 478
Abstract
Materials formed with a base of silk fibroin (SF) are successfully used in tissue engineering since their properties are similar to those of natural extracellular matrixes. Mixing SF with different polymers, for example, polyethylene oxide (PEO) and polyvinylpyrrolidone (PVP), allows the production of [...] Read more.
Materials formed with a base of silk fibroin (SF) are successfully used in tissue engineering since their properties are similar to those of natural extracellular matrixes. Mixing SF with different polymers, for example, polyethylene oxide (PEO) and polyvinylpyrrolidone (PVP), allows the production of fibers, hydrogels, and films and their morphology to be controlled. The impact of PEO and PVP on formation and structure of SF adsorption layers was studied at different was studied at different polymer concentrations (from 0.002 to 0.5 mg/mL) and surface lifetimes. The protein concentration was fixed at 0.02 and 0.2 mg/mL. These concentrations are characterized by different types of spontaneously formed structures at the air–water interface. Since both synthetic polymers possess surface activity, they can penetrate the fibroin adsorption layer, leading to a decrease in the dynamic surface elasticity at almost constant surface tension and a decrease in ellipsometric angle Δ and adsorption layer thickness. As shown by AFM, the presence of polymers increases the porosity of the adsorption layer, due to the possible arrangement of protein and polymer molecules into separate domains, and can result in various morphology types such as fibers or tree-like ribbons. Therefore, polymers like PEO and PVP can be used to regulate the SF self-assembly at the interface, which in turn can affect the properties of the materials with high surface areas like electrospun matts and scaffolds. Full article
(This article belongs to the Special Issue Development and Application of Polymer Scaffolds, 2nd Volume)
Show Figures

Graphical abstract

13 pages, 2540 KiB  
Article
Simple Nanochannel-Modified Electrode for Sensitive Detection of Alkaline Phosphatase Through Electrochemiluminescence Signal Quenching by Enzymatic Reaction
by Tianjun Ma, Xuan Luo, Fengna Xi and Nuo Yang
Biosensors 2025, 15(6), 377; https://doi.org/10.3390/bios15060377 - 11 Jun 2025
Cited by 1 | Viewed by 595
Abstract
Development of sensitive and convenient alkaline phosphatase (ALP) detection methods is of great significance for food analysis, biomedical applications, and clinical tests. In this work, a sensitive detection method for ALP was established based on nanochannel-modified electrodes, where the electrochemical luminescence (ECL) signal [...] Read more.
Development of sensitive and convenient alkaline phosphatase (ALP) detection methods is of great significance for food analysis, biomedical applications, and clinical tests. In this work, a sensitive detection method for ALP was established based on nanochannel-modified electrodes, where the electrochemical luminescence (ECL) signal was quenched by the enzymatic reaction product. Vertically ordered mesoporous silica film (VMSF) was rapidly grown on low-cost ITO via the electrochemically assisted self-assembly (EASA) method. The resulting modified electrode (VMSF/ITO) exhibited a uniform and ordered nanochannel structure with nanochannel diameter of 2–3 nm and charge-selective permeability, enabling the enrichment of cationic ECL emitter tris(2,2′-bipyridyl)ruthenium(II) (Ru(bpy)32+). Compared to the ITO electrode, VMSF/ITO increased the ECL signal by 60 times. In the presence of ALP, it catalyzes the hydrolysis of its substrate, disodium phenyl phosphate hydrate (DPP), generating phenol (Phe), which quenched the ECL signal of Ru(bpy)32+ and the co-reactant N,N-Dipropyl-1-propanamine (TPA). Based on this principle, ECL detection of ALP can be achieved. The linear detection range for ALP was 0.01 U/L to 30 U/L, with a limit of detection (LOD) of 0.008 U/L. The sensor exhibited high selectivity. Combined with the anti-contamination and anti-interference capabilities of VMSF, the constructed sensor enabled the detection of ALP levels in milk samples. Full article
(This article belongs to the Special Issue Biosensing and Diagnosis—2nd Edition)
Show Figures

Figure 1

15 pages, 2677 KiB  
Article
Enzyme-Based Solid-Phase Electrochemiluminescence Sensors with Stable, Anchored Emitters for Sensitive Glucose Detection
by Chunyin Wei, Yanyan Zheng, Fei Yan and Lifang Xu
Biosensors 2025, 15(5), 332; https://doi.org/10.3390/bios15050332 - 21 May 2025
Cited by 2 | Viewed by 614
Abstract
Glucose (Glu) detection, as a fundamental analytical technique, has applications in medical diagnostics, clinical testing, bioanalysis and environmental monitoring. In this work, a solid-phase electrochemiluminescence (ECL) enzyme sensor was developed by immobilizing the ECL emitter in a stable manner within bipolar silica nanochannel [...] Read more.
Glucose (Glu) detection, as a fundamental analytical technique, has applications in medical diagnostics, clinical testing, bioanalysis and environmental monitoring. In this work, a solid-phase electrochemiluminescence (ECL) enzyme sensor was developed by immobilizing the ECL emitter in a stable manner within bipolar silica nanochannel array film (bp-SNA), enabling sensitive glucose detection. The sensor was constructed using an electrochemical-assisted self-assembly (EASA) method with various siloxane precursors to quickly modify the surface of indium tin oxide (ITO) electrodes with a bilayer SNA of different charge properties. The inner layer, including negatively charged SNA (n-SNA), attracted the positively charged ECL emitter tris(2,2′-bipyridyl)ruthenium(II) (Ru(bpy)32+) via electrostatic interaction, while the outer layer, including positively charged SNA (p-SNA), repelled it, forming a barrier that efficiently concentrated the Ru(bpy)32+ emitter in a stable manner. After modifying the amine groups on the p-SNA surface with aldehyde groups, glucose oxidase (GOx) was covalently immobilized, forming the enzyme electrode. In the presence of glucose, GOx catalyzed the conversion of glucose to hydrogen peroxide (H2O2), which acted as a quencher for the Ru(bpy)32+/triethanolamine (TPA) system, reducing the ECL signal and enabling quantitative glucose analysis. The sensor exhibited a wide linear range from 10 μM to 7.0 mM and a limit of detection (LOD) of 1 μM (S/N = 3). Glucose detection in fetal bovine serum was realized. By replacing the enzyme type on the electrode surface, this sensing strategy holds the potential to provide a universal platform for the detection of different metabolites. Full article
(This article belongs to the Special Issue Recent Developments in Nanomaterial-Based Electrochemical Biosensors)
Show Figures

Figure 1

10 pages, 2024 KiB  
Article
Bifunctional 4,5-Diiodoimidazole Interfacial Engineering Enables Simultaneous Defect Passivation and Crystallization Control for High-Efficiency Inverted Perovskite Solar Cells
by Huaxi Gao, Yu Zhang, Ihtesham Ghani, Min Xin, Danish Khan, Junyu Wang, Di Lu, Tao Cao, Wei Chen, Xin Yang and Zeguo Tang
Nanomaterials 2025, 15(10), 766; https://doi.org/10.3390/nano15100766 - 20 May 2025
Viewed by 483
Abstract
Despite the rapid efficiency advancement of perovskite solar cells (PSCs), non-radiative recombination at the buried interface between self-assembled monolayers (SAMs) and perovskite remains a critical bottleneck, primarily due to interfacial defects and energy level mismatch. In this study, we demonstrate a bifunctional interlayer [...] Read more.
Despite the rapid efficiency advancement of perovskite solar cells (PSCs), non-radiative recombination at the buried interface between self-assembled monolayers (SAMs) and perovskite remains a critical bottleneck, primarily due to interfacial defects and energy level mismatch. In this study, we demonstrate a bifunctional interlayer engineering strategy by introducing 4,5-diiodoimidazole (4,5-Di-I) at the Me-4PACz/perovskite interface. This approach uniquely addresses two fundamental limitations of SAM-based interfaces: the insufficient defect passivation capability of conventional Me-4PACz due to steric hindrance effects and the poor perovskite wettability on hydrophobic SAM surfaces that exacerbates interfacial voids. The imidazole derivatives not only form strong Pb–N coordination bonds with undercoordinated Pb2+ but also modulate the surface energy of Me-4PACz, enabling the growth of pinhole-free perovskite films with preferential crystal orientation. The champion device with 4,5-Di-I modification achieves a power conversion efficiency (PCE) of 24.10%, with a VOC enhancement from 1.12 V to 1.14 V, while maintaining 91% of initial PCE after 1300 h in N₂ atmosphere (25 °C), demonstrating superior stability under ISOS-L-2 protocols. This work establishes a universal strategy for interfacial multifunctionality design, proving that simultaneous defect suppression and crystallization control can break the long-standing trade-off between efficiency and stability in solution-processed photovoltaics. Full article
(This article belongs to the Special Issue Advanced Nanoscale Materials and (Flexible) Devices)
Show Figures

Graphical abstract

17 pages, 7796 KiB  
Article
Silk-Soy Alloy Materials: Influence of Silk Types (Mori, Thai, Muga, Tussah, and Eri) on the Structure, Properties, and Functionality of Insect–Plant Protein Blends (II)
by Nagireddy Poluri, Christopher R. Gough, Joseph Perrotta, Joseph Pinto, Maxwell Cohen, Steven Sanderlin, Christopher Velardo, Anthony Barca and Xiao Hu
Int. J. Mol. Sci. 2025, 26(10), 4563; https://doi.org/10.3390/ijms26104563 - 9 May 2025
Cited by 1 | Viewed by 590
Abstract
Natural proteins present a sustainable and biocompatible alternative to conventional fossil fuel-derived plastics, with versatile applications in fields ranging from medicine to food packaging. Extending our previous research on silk–corn zein composites, this study utilizes soy protein—another plant protein extensively employed within biomedical [...] Read more.
Natural proteins present a sustainable and biocompatible alternative to conventional fossil fuel-derived plastics, with versatile applications in fields ranging from medicine to food packaging. Extending our previous research on silk–corn zein composites, this study utilizes soy protein—another plant protein extensively employed within biomedical applications—in conjunction with silk fibroin proteins extracted from a variety of domestic (Mori and Thai) and wild (Muga, Tussah, and Eri) silkworm species. By combining these proteins in varying ratios (0%, 10%, 25%, 50%, 75%, 90%, and 100%), silk–soy films were successfully fabricated with high miscibility. The structural and thermal stability of these films was confirmed through various characterization techniques, including Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), and scanning electron microscopy (SEM). Structural refinements were then achieved through post-water annealing treatments. After annealing, it was observed that when soy protein was introduced into both types of silk, the silks exhibited a greater amount of intermolecular and intramolecular β-sheet content. This phenomenon can be attributed to soy’s intrinsic ability to self-assemble into β-sheets through electrostatic and hydrophobic interactions, which also improved the overall thermal stability and morphology of the composite films. The unique self-assembling properties of soy and its ability to promote β-sheet formation facilitate the customization of the silk source and the soy-to-silk ratio. This adaptability establishes protein-based thin films as a versatile and sustainable option for diverse applications in fields such as medicine, tissue engineering, food packaging, and beyond. Full article
(This article belongs to the Collection Feature Papers in 'Macromolecules')
Show Figures

Figure 1

14 pages, 3406 KiB  
Article
Implication of Surface Passivation on the In-Plane Charge Transport in the Oriented Thin Films of P3HT
by Nisarg Hirens Purabiarao, Kumar Vivek Gaurav, Shubham Sharma, Yoshito Ando and Shyam Sudhir Pandey
Electron. Mater. 2025, 6(2), 6; https://doi.org/10.3390/electronicmat6020006 - 7 May 2025
Viewed by 1111
Abstract
Optimizing charge transport in organic semiconductors is crucial for advancing next-generation optoelectronic devices. The performance of organic field-effect transistors (OFETs) is significantly influenced by the alignment of films in the channel direction and the quality of the dielectric surface, which should be uniform, [...] Read more.
Optimizing charge transport in organic semiconductors is crucial for advancing next-generation optoelectronic devices. The performance of organic field-effect transistors (OFETs) is significantly influenced by the alignment of films in the channel direction and the quality of the dielectric surface, which should be uniform, smooth, and free of charge-trapping defects. Our study reports the enhancement of OFET performance using large-area, uniform, and oriented thin films of regioregular poly[3-hexylthiophene] (RR-P3HT), prepared via the Floating Film Transfer Method (FTM) on octadecyltrichlorosilane (OTS) passivated SiO2 surfaces. SiO2 surfaces inherently possess dangling bonds that act as charge traps, but these can be effectively passivated through optimized surface treatments. OTS treatment has improved the optical anisotropy of thin films and the surface wettability of SiO2. Notably, using octadecene as a solvent during OTS passivation, as opposed to toluene, resulted in a significant enhancement of charge carrier transport. Specifically, passivation with OTS-F (10 mM OTS in octadecene at 100 °C for 48 h) led to a >150 times increase in mobility and a reduction in threshold voltage compared to OTS-A (5 mM OTS in toluene for 12 h at room temperature). Under optimal conditions, these FTM-processed RR-P3HT films achieved the best device performance, with a saturated mobility (μsat) of 0.18 cm2V−1s−1. Full article
Show Figures

Figure 1

12 pages, 3536 KiB  
Article
Rapid Assembly of Block Copolymer Thin Films via Accelerating the Swelling Process During Solvent Annealing
by Tian-en Shui, Tongxin Chang, Zhe Wang and Haiying Huang
Polymers 2025, 17(9), 1242; https://doi.org/10.3390/polym17091242 - 2 May 2025
Viewed by 609
Abstract
Block copolymer (BCP) lithography is widely regarded as a promising next-generation nanolithography technique. However, achieving rapid assembly with defect-free morphology remains a significant challenge for its practical application. In this study, we presented a facile and efficient solvent annealing method for fabricating well-ordered [...] Read more.
Block copolymer (BCP) lithography is widely regarded as a promising next-generation nanolithography technique. However, achieving rapid assembly with defect-free morphology remains a significant challenge for its practical application. In this study, we presented a facile and efficient solvent annealing method for fabricating well-ordered BCP thin films within minutes on both flat and topographically patterned substrates. By accelerating the swelling process, rapid film swelling was observed within just 10 s of annealing, leading to well-ordered morphologies in 1~3 min. Furthermore, we systematically investigated the influence of swelling ratio (SR) on film morphology by precisely tuning solvent vapor pressure. For cylinder-forming poly(styrene-block-2-vinylpyridine) (PS-b-P2VP) films, we identified three distinct SR-dependent ordering regimes: (I) Excessive SR led to a disordered morphology; (II) near-optimal SR balanced long-range and short-range orders, and a slight increase in SR enhanced the long-range order but introduced short-range defects. (III) Insufficient SR failed to provide adequate chain mobility, limiting long-range order development. These findings highlight the critical role of SR in controlling defect density in nanopatterned surfaces. Long-range-ordered BCP nanopatterns can only be achieved under optimal SR conditions that ensure sufficient chain mobility. We believe this rapid annealing strategy, which is also applicable to other solvent-based annealing systems for BCP films, may contribute to next-generation nanolithography for microfabrication. Full article
Show Figures

Figure 1

21 pages, 5851 KiB  
Article
A Janus Amyloid-like Nanofilm Inhibits Colorectal Cancer Postoperative Recurrence and Abdominal Adhesion via Synergistic Enzyme Cascade
by Man Zhang, Junhao Kou, Zhenyi Song, Ling Qiu, Chunzhao Yang and Qi Xue
Nanomaterials 2025, 15(9), 670; https://doi.org/10.3390/nano15090670 - 28 Apr 2025
Viewed by 661
Abstract
Postoperative peritoneal adhesion and high recurrence rates are critical challenges in the clinical treatment of colorectal cancer. In this study, based on amyloid-like protein self-assembly technology, a novel Janus protein film was developed. The protein film encapsulates glucose oxidase (GOx) and catalase (CAT), [...] Read more.
Postoperative peritoneal adhesion and high recurrence rates are critical challenges in the clinical treatment of colorectal cancer. In this study, based on amyloid-like protein self-assembly technology, a novel Janus protein film was developed. The protein film encapsulates glucose oxidase (GOx) and catalase (CAT), which is named PTL@GC. Through a one-step method involving cysteine-reduced lysozyme-induced amyloid-like self-assembly, the film was co-loaded with GOx and CAT to achieve synergistic anti-adhesion and anti-tumor recurrence effects. The Janus film features a hydrophobic side that stably adheres to the intestinal surface without exogenous chemical modification and a hydrophilic side that prevents adhesion. The loaded GOx selectively induces disulfidptosis in SLC7A11-overexpressing tumor cells, while CAT degrades H2O2 to alleviate hypoxia and inhibit oxidative stress, significantly reducing adhesion-related fibrosis. The experimental results demonstrate that PTL@GC exhibited excellent mechanical properties, high enzyme activity retention (>90%), and controllable degradability (complete metabolism within 50 days). In animal models, PTL@GC reduced postoperative adhesion area by 22.77%, decreased local tumor burden to 28.42% of the control group, and achieved an inhibition rate of 58.49%, without inducing systemic toxicity. This study presents a biologically safe and functionally synergistic approach to addressing dual complications following colorectal cancer surgery, offering potential insights for future research on multifunctional Janus materials. Full article
(This article belongs to the Special Issue Design and Applications of Protein/Peptide Nanomaterials)
Show Figures

Figure 1

14 pages, 5969 KiB  
Article
Si3N4 Nanoparticle Reinforced Si3N4 Nanofiber Aerogel for Thermal Insulation and Electromagnetic Wave Transmission
by Zongwei Tong, Xiangjie Yan, Yun Liu, Yali Zhao and Kexun Li
Gels 2025, 11(5), 324; https://doi.org/10.3390/gels11050324 - 26 Apr 2025
Viewed by 530
Abstract
Traditional nanoparticle aerogels suffer from inherent brittleness and thermal instability at elevated temperatures. In recent years, ceramic nanofiber aerogels, utilizing flexible nanofibers as structural units, have emerged as mechanically resilient alternatives with ultrahigh porosity (>90%). However, their thermal insulation capabilities are compromised by [...] Read more.
Traditional nanoparticle aerogels suffer from inherent brittleness and thermal instability at elevated temperatures. In recent years, ceramic nanofiber aerogels, utilizing flexible nanofibers as structural units, have emerged as mechanically resilient alternatives with ultrahigh porosity (>90%). However, their thermal insulation capabilities are compromised by micron-scale pores (10–100 μm) and overdependence on ultralow density, which exacerbates mechanical fragility. This study pioneers a gas-phase self-assembly strategy to fabricate Si3N4 nanoparticle reinforced Si3N4 nanofiber aerogels (SNP-R-SNFA) with gradient pore architectures. By leveraging methyltrimethoxysilane/vinyltriethoxysilane composite aerogel (MVa) as a reactive template, we achieved spontaneous growth of Si3N4 nanofiber films (SNP-R-SNF) featuring nanoparticle-fiber interpenetration and porosity gradients. The microstructure formation mechanism of SNP-R-SNF was analyzed using field-emission scanning electron microscopy. Layer assembly and hot-pressing composite technology were employed to prepare the SNP-R-SNFA, which showed low density (0.033 g/cm3), exceptional compression resilience, insensitive frequency dependence of dielectric properties (ε′ = 2.31–2.39, tan δ < 0.08 across 8–18 GHz). Infrared imaging displayed backside 893 °C cooler than front, demonstrating superior insulation performance. This study not only provides material solutions for integrated electromagnetic wave-transparent/thermal insulation applications but more importantly establishes an innovative paradigm for enhancing the mechanical robustness of nanofiber-based aerogels. Full article
(This article belongs to the Special Issue Gel Formation Processes and Materials for Functional Thin Films)
Show Figures

Figure 1

13 pages, 4740 KiB  
Article
Explore the Structural and Electronic Properties at the Organic/Organic Interfaces of Thiophene-Based Supramolecular Architectures
by Lixia Kang, Hui Lu, Shunze Xia, Xianfei Xu, Yao Tian and Zechao Yang
Nanomaterials 2025, 15(8), 601; https://doi.org/10.3390/nano15080601 - 14 Apr 2025
Viewed by 499
Abstract
The structural and electronic properties at organic/organic interfaces determine the functionality of organic electronics. Here, we investigated the structural and electronic properties at interfaces between methyl-substituted dicyanovinyl-quinquethiophenes (DCV5T-Me2) and other electron acceptor molecules, namely fullerene (C60) and tetracyanoquinodimethane (TCNQ), [...] Read more.
The structural and electronic properties at organic/organic interfaces determine the functionality of organic electronics. Here, we investigated the structural and electronic properties at interfaces between methyl-substituted dicyanovinyl-quinquethiophenes (DCV5T-Me2) and other electron acceptor molecules, namely fullerene (C60) and tetracyanoquinodimethane (TCNQ), by using low-temperature scanning tunneling microscopy/spectroscopy (STM/STS). Upon adsorption on Au(111), DCV5T-Me2 molecules self-assemble into compact islands at sub-monolayer coverage through hydrogen bonding and electrostatic interactions. A similar bonding configuration dominates in the second layer of a bilayer film, where DCV5T-Me2 possesses higher-lying LUMO (lowest unoccupied molecular orbital) and LUMO+1 in energy due to a decoupling effect. The co-deposition of DCV5T-Me2 and C60 does not result in ordered hybrid assemblies at the sub-monolayer coverage on Au(111). On the other hand, C60 molecules can self-assemble into ordered islands on top of the DCV5T-Me2 monolayer. The dI/dV spectra reveal that the LUMO of decoupled C60 is 400 mV lower in energy than the LUMO of decoupled DCV5T-Me2. This energy difference facilitates electron transfer from DCV5T-Me2 to C60. The co-deposition of DCV5T-Me2 and TCNQ leads to the formation of hybrid nanostructures. A tip-induced electric field can manipulate the charging and discharging of TCNQ by surrounding DCV5T-Me2, manifested as sharp peaks and dips in dI/dV spectra recorded over TCNQ. Full article
(This article belongs to the Special Issue Surface and Interfacial Sciences of Low-Dimensional Nanomaterials)
Show Figures

Figure 1

16 pages, 11834 KiB  
Article
Self-Assembly of Lamellar/Micellar Block Copolymers Induced Through Their Rich Exposure to Various Solvent Vapors: An AFM Study
by Iulia Babutan, Leonard Ionut Atanase and Ioan Botiz
Materials 2025, 18(8), 1759; https://doi.org/10.3390/ma18081759 - 11 Apr 2025
Cited by 1 | Viewed by 588
Abstract
In this work, we have employed an advanced method of solvent vapor annealing to expose spin-cast thin films made from various lamellar and micellar block copolymers to generous amounts of different types of solvent vapors, with the final goal of stimulating the films’ [...] Read more.
In this work, we have employed an advanced method of solvent vapor annealing to expose spin-cast thin films made from various lamellar and micellar block copolymers to generous amounts of different types of solvent vapors, with the final goal of stimulating the films’ self-assembly into (hierarchically) ordered structures. As revealed by atomic force microscopy measurements, periodic lamellar nanostructures of molecular dimensions based on poly(4-vinylpyridine)-b-polybutadiene and poly(2-vinylpyridine)-b-polybutadiene, as well as micellar structures further packed into either (parallel) stripe-like or honeycomb-resembling configurations based on poly(2-vinylpyridine)-b-poly(tert-butyl methacrylate)-b-poly(methacrylate cyclohexyl), were successfully produced through processing. Full article
(This article belongs to the Section Polymeric Materials)
Show Figures

Figure 1

17 pages, 2470 KiB  
Article
Interfacial Behavior of Janus Nanorods: A Dissipative Particle Dynamics (DPD) Study on Water–Oil Systems and Nanoconfinement
by Alexsandra Pereira dos Santos, Carolina Ferreira de Matos Jauris and José Rafael Bordin
Water 2025, 17(8), 1128; https://doi.org/10.3390/w17081128 - 10 Apr 2025
Viewed by 446
Abstract
Janus nanorods are a special class of nanorods composed of two distinct surface regions, one hydrophilic and one hydrophobic. This amphiphilic characteristic makes them promising candidates for stabilizing water–oil interfaces. Oily wastewater (OWW) contamination, resulting from industrial activities such as petroleum extraction and [...] Read more.
Janus nanorods are a special class of nanorods composed of two distinct surface regions, one hydrophilic and one hydrophobic. This amphiphilic characteristic makes them promising candidates for stabilizing water–oil interfaces. Oily wastewater (OWW) contamination, resulting from industrial activities such as petroleum extraction and refining and vegetable oil processing, poses significant risks to ecosystems, water resources, and public health. Traditional surfactants used in enhanced oil recovery (EOR) and wastewater treatment often introduce secondary pollution due to their persistence and toxicity. In this work, we investigate the interfacial behavior of Janus NRs under two different conditions: a thin oil film surrounded by water and a nanoconfined system with purely repulsive walls. Using dissipative particle dynamics (DPD) simulations, we analyze how nanorod length and confinement influence interfacial tension and self-assembly. In bulk systems, shorter NRs (dimers and quadrimers) effectively reduce interfacial tension by adsorbing at the oil–water interface, while longer NRs (hexamers) exhibit bulk aggregation, limiting their surfactant efficiency. In contrast, under nanoconfinement, all NR sizes increase interfacial tension due to steric constraints, with longer NRs preferentially adsorbing onto the solid–liquid interface. These results pave the way for the rational design of nanostructured materials for applications in enhanced oil recovery, wastewater treatment, and membrane filtration. Full article
Show Figures

Figure 1

22 pages, 3815 KiB  
Review
Vacuum Processability of Self-Assembled Monolayers and Their Chemical Interaction with Perovskite Interfaces
by Hyeji Han, Siwon Yun, Zobia Irshad, Wonjong Lee, Min Kim, Jongchul Lim and Jinseck Kim
Energies 2025, 18(7), 1782; https://doi.org/10.3390/en18071782 - 2 Apr 2025
Viewed by 1733
Abstract
Self-assembled monolayers (SAMs) have gained significant attention as an interfacial engineering strategy for perovskite solar cells (PSCs) due to their efficient charge transport ability and work function tunability. While solution-based methods such as dip-coating and spin-coating are widely used for SAM deposition, challenges [...] Read more.
Self-assembled monolayers (SAMs) have gained significant attention as an interfacial engineering strategy for perovskite solar cells (PSCs) due to their efficient charge transport ability and work function tunability. While solution-based methods such as dip-coating and spin-coating are widely used for SAM deposition, challenges such as non-uniform coverage, solvent contamination, and limited control over molecular orientation hinder their scalability and reproducibility. In contrast, vacuum deposition techniques, including thermal evaporation, overcome these limitations by enabling the formation of highly uniform materials with precise control over thickness and molecular arrangement. Importantly, the chemical interactions between SAM materials and perovskite layers, including coordination bonding with Pb2+ ions, play an important role in passivating surface defects, modulating energy levels, and promoting uniform perovskite crystallization. These interactions not only enhance wettability but also improve the overall quality and stability of perovskite films. This review highlights the advantages of vacuum-deposited SAMs, promoting strong chemical interactions with perovskite layers and improving interfacial properties critical for scalable applications. Full article
(This article belongs to the Section A2: Solar Energy and Photovoltaic Systems)
Show Figures

Figure 1

Back to TopTop