Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,359)

Search Parameters:
Keywords = seasonal water level

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 3441 KiB  
Article
Assessment of Water Depth Variability and Rice Farming Using Remote Sensing
by Rubén Simeón, Constanza Rubio, Antonio Uris, Javier Coronado, Alba Agenjos-Moreno and Alberto San Bautista
Sensors 2025, 25(15), 4860; https://doi.org/10.3390/s25154860 - 7 Aug 2025
Abstract
Remote sensing is a widely used tool for crop monitoring to improve water management. Rice, a crop traditionally grown under flooded conditions, requires farmers to understand the relationship between crop reflectance, water depth and final yield. This study focused on seven commercial rice [...] Read more.
Remote sensing is a widely used tool for crop monitoring to improve water management. Rice, a crop traditionally grown under flooded conditions, requires farmers to understand the relationship between crop reflectance, water depth and final yield. This study focused on seven commercial rice fields in 2022 and six in 2023, analyzing the correlations between water depth and Sentinel-2 reflectance over two growing seasons in Valencia, Spain. During the tillering stage across both seasons, water depth showed positive correlations with visible bands and negative correlations with NIR and SWIR bands. There were no correlations with the indices NDVI, GNDVI, NDRE and NDWI. The NIR band showed significant correlations across both seasons, with R2 values of 0.69 and 0.71, respectively. In addition, the calculation of NIR anomalies for each field proved to be a good indicator of final yield anomalies. In 2022, anomalies above 10% corresponded to yield deviations above 500 kg·ha−1, while in 2023, anomalies above 15% were associated with yield deviations above 1000 kg·ha−1. The response of final yield to water level was positive up to average values of 9 cm. The use of the NIR band during the rice crop tillering stage can support farmers in improving irrigation management. Full article
(This article belongs to the Special Issue Remote Sensing for Crop Growth Monitoring)
Show Figures

Figure 1

17 pages, 287 KiB  
Article
Nutritional Quality and Safety of Windowpane Oyster Placuna placenta from Samal, Bataan, Philippines
by Jessica M. Rustia, Judith P. Antonino, Ravelina R. Velasco, Edwin A. Yates and David G. Fernig
Fishes 2025, 10(8), 385; https://doi.org/10.3390/fishes10080385 - 6 Aug 2025
Abstract
The windowpane oyster (Placuna placenta) is common in coastal areas of the Philippines, thriving in brackish waters. Its shells underpin the local craft industries. While its meat is edible, only small amounts are consumed locally, most going to waste. Utilization of [...] Read more.
The windowpane oyster (Placuna placenta) is common in coastal areas of the Philippines, thriving in brackish waters. Its shells underpin the local craft industries. While its meat is edible, only small amounts are consumed locally, most going to waste. Utilization of this potential nutrient source is hindered by the lack of information concerning its organic and mineral content, the possible presence of heavy metal ions, and the risk of microbial pathogens. We report extensive analysis of the meat from Placuna placenta, harvested during three different seasons to account for potential variations. This comprises proximate analysis, mineral, antioxidant, and microbial analyses. While considerable seasonal variation was observed, the windowpane oyster was found to be a rich source of protein, fats, minerals, and carbohydrates, comparing well with the meats of other shellfish and land animals. Following pre-cooking (~90 °C, 25–30 min), the standard local method for food preparation, no viable E. coli or Salmonella sp. were detected. Mineral content was broadly similar to that reported in fish, although iron, zinc, and copper were more highly represented, nevertheless, heavy metals were below internationally acceptable levels, with the exception of one of three samples, which was slightly above the only current standard, FSANZ. Whether the arsenic was in the safer organic form, which is commonly the case for shellfish, or the more toxic inorganic form remains to be established. This and the variation of arsenic over time will need to be considered when developing food products. Overall, the meat of the windowpane oyster is a valuable food resource and its current (albeit low-level) use should lower any barriers to its acceptance, making it suitable for commercialization. The present data support its development for high-value food products in urban markets. Full article
(This article belongs to the Section Processing and Comprehensive Utilization of Fishery Products)
14 pages, 2532 KiB  
Article
Machine Learning for Spatiotemporal Prediction of River Siltation in Typical Reach in Jiangxi, China
by Yong Fu, Jin Luo, Die Zhang, Lingjia Liu, Gan Luo and Xiaofang Zu
Appl. Sci. 2025, 15(15), 8628; https://doi.org/10.3390/app15158628 - 4 Aug 2025
Viewed by 118
Abstract
Accurate forecasting of river siltation is essential for ensuring inland waterway navigability and guiding sustainable sediment management. This study investigates the downstream reach of the Shihutang navigation power hub along the Ganjiang River in Jiangxi Province, China, an area characterized by pronounced seasonal [...] Read more.
Accurate forecasting of river siltation is essential for ensuring inland waterway navigability and guiding sustainable sediment management. This study investigates the downstream reach of the Shihutang navigation power hub along the Ganjiang River in Jiangxi Province, China, an area characterized by pronounced seasonal sedimentation and hydrological variability. To enable fine-scale prediction, we developed a data-driven framework using a random forest regression model that integrates high-resolution bathymetric surveys with hydrological and meteorological observations. Based on the field data from April to July 2024, the model was trained to forecast monthly siltation volumes at a 30 m grid scale over a six-month horizon (July–December 2024). The results revealed a marked increase in siltation from July to September, followed by a decline during the winter months. The accumulation of sediment, combined with falling water levels, was found to significantly reduce the channel depth and width, particularly in the upstream sections, posing a potential risk to navigation safety. This study presents an initial, yet promising attempt to apply machine learning for spatially explicit siltation prediction in data-constrained river systems. The proposed framework provides a practical tool for early warning, targeted dredging, and adaptive channel management. Full article
Show Figures

Figure 1

28 pages, 3909 KiB  
Article
Exploring How Climate Change Scenarios Shape the Future of Alboran Sea Fisheries
by Isabella Uzategui, Susana Garcia-Tiscar and Paloma Alcorlo
Water 2025, 17(15), 2313; https://doi.org/10.3390/w17152313 - 4 Aug 2025
Viewed by 257
Abstract
Climate change is disrupting marine ecosystems, necessitating a deeper understanding of environmental and fishing-related impacts on exploited species. This study examines the effects of physical factors (temperature, thermal anomalies, salinity, seabed conditions), biogeochemical elements (pH, oxygen levels, nutrients, primary production), and fishing pressure [...] Read more.
Climate change is disrupting marine ecosystems, necessitating a deeper understanding of environmental and fishing-related impacts on exploited species. This study examines the effects of physical factors (temperature, thermal anomalies, salinity, seabed conditions), biogeochemical elements (pH, oxygen levels, nutrients, primary production), and fishing pressure on the biomass of commercially important species in the Alboran Sea from 1999 to 2022. Data were sourced from the Copernicus observational program, focusing on the geographical sub-area 1 (GSA-1) zone across three depth ranges. Generalized Additive Models were applied for analysis. Rising temperatures and seasonal anomalies have largely negative effects, disrupting species’ physiological balance. Changes in water quality, including improved nutrient and oxygen concentrations, have yielded complex ecological responses. Fishing indices highlight the vulnerability of small pelagic fish to climate change and overfishing, underscoring their economic and ecological significance. These findings stress the urgent need for ecosystem-based management strategies that integrate climate change impacts to ensure sustainable marine resource management. Full article
(This article belongs to the Special Issue Impact of Climate Change on Marine Ecosystems)
Show Figures

Figure 1

28 pages, 5779 KiB  
Article
Regional Wave Spectra Prediction Method Based on Deep Learning
by Yuning Liu, Rui Li, Wei Hu, Peng Ren and Chao Xu
J. Mar. Sci. Eng. 2025, 13(8), 1461; https://doi.org/10.3390/jmse13081461 - 30 Jul 2025
Viewed by 232
Abstract
The wave spectrum, as a key statistical feature describing wave energy distribution, is crucial for understanding wave propagation mechanisms and supporting ocean engineering applications. This study, based on ERA5 reanalysis spectrum data, proposes a model combining CNN and xLSTM for rapid gridded wave [...] Read more.
The wave spectrum, as a key statistical feature describing wave energy distribution, is crucial for understanding wave propagation mechanisms and supporting ocean engineering applications. This study, based on ERA5 reanalysis spectrum data, proposes a model combining CNN and xLSTM for rapid gridded wave spectrum prediction over the Bohai and Yellow Seas domain. It uses 2D gridded spectrum data rather than a spectrum at specific points as input and analyzes the impact of various input factors at different time lags on wave development. The results show that incorporating water depth and mean sea level pressure significantly reduces errors. The model performs well across seasons with the seasonal spatial average root mean square error (SARMSE) of spectral energy remaining below 0.040 m2·s and RMSEs for significant wave height (SWH) and mean wave period (MWP) of 0.138 m and 1.331 s, respectively. At individual points, the spectral density bias is near zero, correlation coefficients range from 0.95 to 0.98, and the peak frequency RMSE is between 0.03 and 0.04 Hz. During a typical cold wave event, the model accurately reproduces the energy evolution and peak frequency shift. Buoy observations confirm that the model effectively tracks significant wave height trends under varying conditions. Moreover, applying a frequency-weighted loss function enhances the model’s ability to capture high-frequency spectral components, further improving prediction accuracy. Overall, the proposed method shows strong performance in spectrum prediction and provides a valuable approach for regional wave spectrum modeling. Full article
(This article belongs to the Section Physical Oceanography)
Show Figures

Figure 1

24 pages, 2240 KiB  
Article
Yeast Diversity on Sandy Lake Beaches Used for Recreation in Olsztyn, Poland
by Tomasz Bałabański, Anna Biedunkiewicz and Jan P. Jastrzębski
Pathogens 2025, 14(8), 744; https://doi.org/10.3390/pathogens14080744 - 29 Jul 2025
Viewed by 566
Abstract
Yeasts possess a range of environmental adaptations that allow them to colonize soil and sand. They can circulate seasonally between different components of lake ecosystems, including beach sand, water, and the coastal phyllosphere. The accumulation of people on beaches promotes the development and [...] Read more.
Yeasts possess a range of environmental adaptations that allow them to colonize soil and sand. They can circulate seasonally between different components of lake ecosystems, including beach sand, water, and the coastal phyllosphere. The accumulation of people on beaches promotes the development and transmission of yeasts, posing an increasing sanitary and epidemiological risk. The aim of this study was to determine the species and quantitative composition of potentially pathogenic and pathogenic yeasts for humans present in the sand of supervised and unsupervised beaches along the shores of lakes in the city of Olsztyn (northeastern Poland). The study material consisted of sand samples collected during two summer seasons (2019; 2020) from 12 research sites on sandy beaches of four lakes located within the administrative boundaries of Olsztyn. Standard isolation and identification methods used in diagnostic mycological laboratories were applied and are described in detail in the following sections of this study. A total of 259 yeast isolates (264, counting species in two-species isolates separately) belonging to 62 species representing 47 genera were obtained during the study. Among all the isolates, five were identified as mixed (two species from a single colony). Eight isolated species were classified into biosafety level 2 (BSL-2) and risk group 2 (RG-2). The highest average number of viable yeast cells was found in sand samples collected in July 2019 (5.56 × 102 CFU/g), August, and September 2020 (1.03 × 103 CFU/g and 1.94 × 103 CFU/g, respectively). The lowest concentrations were in samples collected in April, September, and October 2019, and October 2020 (1.48 × 102 CFU/g, 1.47 × 102 CFU/g, 1.40 × 102 CFU/g, and 1.40 × 102 CFU/g, respectively). The results indicate sand contamination with yeasts that may pose etiological factors for human mycoses. In light of these findings, continuous sanitary-epidemiological monitoring of beach sand and further studies on its mycological cleanliness are warranted, along with actions leading to appropriate legal regulations. Full article
Show Figures

Graphical abstract

24 pages, 42622 KiB  
Article
Seasonal Comparative Monitoring of Plastic and Microplastic Pollution in Lake Garda (Italy) Using Seabin During Summer–Autumn 2024
by Marco Papparotto, Claudia Gavazza, Paolo Matteotti and Luca Fambri
Microplastics 2025, 4(3), 44; https://doi.org/10.3390/microplastics4030044 - 28 Jul 2025
Viewed by 371
Abstract
Plastic (P) and microplastic (MP) pollution in marine and freshwater environments is an increasingly urgent issue that needs to be addressed at many levels. The Seabin (an easily operated and cost-effective floating debris collection device) can help clean up buoyant plastic debris in [...] Read more.
Plastic (P) and microplastic (MP) pollution in marine and freshwater environments is an increasingly urgent issue that needs to be addressed at many levels. The Seabin (an easily operated and cost-effective floating debris collection device) can help clean up buoyant plastic debris in calm waters while monitoring water pollution. A Seabin was used to conduct a comparative analysis of plastic and microplastic concentrations in northern Lake Garda (Italy) during peak and low tourist seasons. The composition of the litter was further investigated using Fourier-Transform Infrared (FTIR) spectroscopy. The analysis showed a decreased mean amount of plastic from summer (32.5 mg/m3) to autumn (17.6 mg/m3), with an average number of collected microplastics per day of 45 ± 15 and 15 ± 3, respectively. Packaging and foam accounted for 92.2% of the recognized plastic waste products. The material composition of the plastic mass (442 pieces, 103.0 g) was mainly identified as polypropylene (PP, 47.1%) and polyethylene (PE, 21.8%). Moreover, 313 microplastics (approximately 2.0 g) were counted with average weight in the range of 1–16 mg. A case study of selected plastic debris was also conducted. Spectroscopic, microscopic, and thermal analysis of specimens provided insights into how aging affects plastics in this specific environment. The purpose of this study was to establish a baseline for further research on the topic, to provide guidelines for similar analyses from a multidisciplinary perspective, to monitor plastic pollution in Lake Garda, and to inform policy makers, scientists, and the public. Full article
(This article belongs to the Collection Feature Paper in Microplastics)
Show Figures

Figure 1

18 pages, 5229 KiB  
Article
Exploring the Spectral Variability of Estonian Lakes Using Spaceborne Imaging Spectroscopy
by Alice Fabbretto, Mariano Bresciani, Andrea Pellegrino, Kersti Kangro, Anna Joelle Greife, Lodovica Panizza, François Steinmetz, Joel Kuusk, Claudia Giardino and Krista Alikas
Appl. Sci. 2025, 15(15), 8357; https://doi.org/10.3390/app15158357 - 27 Jul 2025
Viewed by 301
Abstract
This study investigates the potential of spaceborne imaging spectroscopy to support the analysis of the status of two major Estonian lakes, i.e., Lake Peipsi and Lake Võrtsjärv, using data from the PRISMA and EnMAP missions. The study encompasses nine specific applications across 12 [...] Read more.
This study investigates the potential of spaceborne imaging spectroscopy to support the analysis of the status of two major Estonian lakes, i.e., Lake Peipsi and Lake Võrtsjärv, using data from the PRISMA and EnMAP missions. The study encompasses nine specific applications across 12 satellite scenes, including the validation of remote sensing reflectance (Rrs), optical water type classification, estimation of phycocyanin concentration, detection of macrophytes, and characterization of reflectance for lake ice/snow coverage. Rrs validation, which was performed using in situ measurements and Sentinel-2 and Sentinel-3 as references, showed a level of agreement with Spectral Angle < 16°. Hyperspectral imagery successfully captured fine-scale spatial and spectral features not detectable by multispectral sensors, in particular it was possible to identify cyanobacterial pigments and optical variations driven by seasonal and meteorological dynamics. Through the combined use of in situ observations, the study can serve as a starting point for the use of hyperspectral data in northern freshwater systems, offering new insights into ecological processes. Given the increasing global concern over freshwater ecosystem health, this work provides a transferable framework for leveraging new-generation hyperspectral missions to enhance water quality monitoring on a global scale. Full article
Show Figures

Figure 1

24 pages, 1412 KiB  
Article
Arthrospira platensis var. toliarensis: A Local Sustainable Microalga for Food System Resilience
by Antonio Fidinirina Telesphore, Andreea Veronica Botezatu, Daniela Ionela Istrati, Bianca Furdui, Rodica Mihaela Dinica and Valérie Lalao Andriamanamisata Razafindratovo
Foods 2025, 14(15), 2634; https://doi.org/10.3390/foods14152634 - 27 Jul 2025
Viewed by 349
Abstract
The intensifying global demand for sustainable and nutrient-dense food sources necessitates the exploration of underutilized local resources. Arthrospira platensis var. toliarensis, a cyanobacterium endemic to Madagascar, was evaluated for its nutritional, functional, and environmental potential under small-scale, low-input outdoor cultivation. The study [...] Read more.
The intensifying global demand for sustainable and nutrient-dense food sources necessitates the exploration of underutilized local resources. Arthrospira platensis var. toliarensis, a cyanobacterium endemic to Madagascar, was evaluated for its nutritional, functional, and environmental potential under small-scale, low-input outdoor cultivation. The study assessed growth kinetics, physicochemical parameters, and composition during two contrasting seasons. Biomass increased 7.5-fold in 10 days, reaching a productivity of 7.8 ± 0.58 g/m2/day and a protein yield of 4.68 ± 0.35 g/m2/day. The hot-season harvest showed significantly higher protein content (65.1% vs. 44.6%), enriched in essential amino acids. On a dry matter basis, mineral profiling revealed high levels of sodium (2140 ± 35.4 mg/100 g), potassium (1530 ± 21.8 mg/100 g), calcium (968 ± 15.1 mg/100 g), phosphorus (815 ± 13.2 mg/100 g), magnesium (389.28 ± 6.4 mg/100 g), and iron (235 ± 9.1 mg/100 g), underscoring its value as a micronutrient-rich supplement. The hydroethanolic extract had the highest polyphenol content (4.67 g GAE/100 g of dry extract), while the hexanic extract exhibited the strongest antioxidant capacity (IC50 = 101.03 ± 1.37 µg/mL), indicating fat-soluble antioxidants. Aflatoxin levels (B1, B2, G1, and G2) remained below EU safety thresholds. Compared to soy and beef, this strain showed superior protein productivity and water-use efficiency. These findings confirm A. platensis var. toliarensis as a promising, ecologically sound alternative for improving food and nutrition security, and its local production can offer substantial benefits to smallholder livelihoods. Full article
Show Figures

Figure 1

15 pages, 1787 KiB  
Article
Flow Regime Impacts on Chemical Pollution in the Water and Sediments of the Moopetsi River and Human Health Risk in South Africa
by Abraham Addo-Bediako, Thato Matita and Wilmien Luus-Powell
Water 2025, 17(15), 2200; https://doi.org/10.3390/w17152200 - 23 Jul 2025
Viewed by 280
Abstract
Many effluents from human activities discharged into freshwater ecosystems cause chemical pollution. Chemical pollution in rivers is a serious threat to freshwater ecosystems due to the associated potential human health risks. This study determined the extent of chemical pollution, identified potential sources of [...] Read more.
Many effluents from human activities discharged into freshwater ecosystems cause chemical pollution. Chemical pollution in rivers is a serious threat to freshwater ecosystems due to the associated potential human health risks. This study determined the extent of chemical pollution, identified potential sources of pollution and assessed human health risk in the Moopetsi River, an intermittent river in the Limpopo Province of South Africa. Chemical analyses were conducted on water and sediment samples collected during high-flow, low-flow and intermittent-flow regimes. The findings showed seasonal variations in the chemical pollution levels in the sediments and the highest contamination was measured during intermittent flow. The enrichment factor and geoaccumulation index values identified chromium and nickel as major contributors to sediment contamination. The mean arsenic, chromium and nickel levels exceeded the established guideline values. An evaluation of human health risk was conducted using ingestion and dermal absorption pathways. The results showed that ingestion has greater non-carcinogenic and carcinogenic risks than dermal exposure, especially for children during intermittent flow. The elements of great concern for non-carcinogenic risk were chromium, manganese and nickel and for carcinogenic risk, they were arsenic, chromium, nickel and lead. The outcome of this study is useful for waste management and conservation to reduce environmental degradation and human health risk. Full article
(This article belongs to the Special Issue Advances in Metal Removal and Recovery from Water)
Show Figures

Figure 1

22 pages, 2461 KiB  
Article
Environmental Drivers of Phytoplankton Structure in a Semi-Arid Reservoir
by Fangze Zi, Tianjian Song, Wenxia Cai, Jiaxuan Liu, Yanwu Ma, Xuyuan Lin, Xinhong Zhao, Bolin Hu, Daoquan Ren, Yong Song and Shengao Chen
Biology 2025, 14(8), 914; https://doi.org/10.3390/biology14080914 - 22 Jul 2025
Viewed by 312
Abstract
Artificial reservoirs in arid regions provide unique ecological environments for studying the spatial and functional dynamics of plankton communities under the combined stressors of climate change and anthropogenic activities. This study conducted a systematic investigation of the phytoplankton community structure and its environmental [...] Read more.
Artificial reservoirs in arid regions provide unique ecological environments for studying the spatial and functional dynamics of plankton communities under the combined stressors of climate change and anthropogenic activities. This study conducted a systematic investigation of the phytoplankton community structure and its environmental drivers in 17 artificial reservoirs in the Ili region of Xinjiang in August and October 2024. The Ili region is located in the temperate continental arid zone of northwestern China. A total of 209 phytoplankton species were identified, with Bacillariophyta, Chlorophyta, and Cyanobacteria comprising over 92% of the community, indicating an oligarchic dominance pattern. The decoupling between numerical dominance (diatoms) and biomass dominance (cyanobacteria) revealed functional differentiation and ecological complementarity among major taxa. Through multivariate analyses, including Mantel tests, principal component analysis (PCA), and redundancy analysis (RDA), we found that phytoplankton community structures at different ecological levels responded distinctly to environmental gradients. Oxidation-reduction potential (ORP), dissolved oxygen (DO), and mineralization parameters (EC, TDS) were key drivers of morphological operational taxonomic unit (MOTU). In contrast, dominant species (SP) were more responsive to salinity and pH. A seasonal analysis demonstrated significant shifts in correlation structures between summer and autumn, reflecting the regulatory influence of the climate on redox conditions and nutrient solubility. Machine learning using the random forest model effectively identified core taxa (e.g., MOTU1 and SP1) with strong discriminatory power, confirming their potential as bioindicators for water quality assessments and the early warning of ecological shifts. These core taxa exhibited wide spatial distribution and stable dominance, while localized dominant species showed high sensitivity to site-specific environmental conditions. Our findings underscore the need to integrate taxonomic resolution with functional and spatial analyses to reveal ecological response mechanisms in arid-zone reservoirs. This study provides a scientific foundation for environmental monitoring, water resource management, and resilience assessments in climate-sensitive freshwater ecosystems. Full article
(This article belongs to the Special Issue Wetland Ecosystems (2nd Edition))
Show Figures

Figure 1

15 pages, 13565 KiB  
Article
RGB Imaging and Irrigation Management Reveal Water Stress Thresholds in Three Urban Shrubs in Northern China
by Yuan Niu, Xiaotian Xu, Wenxu Huang, Jiaying Li, Shaoning Li, Na Zhao, Bin Li, Chengyang Xu and Shaowei Lu
Plants 2025, 14(15), 2253; https://doi.org/10.3390/plants14152253 - 22 Jul 2025
Viewed by 255
Abstract
The context of global climate change, water stress has a significant impact on the ecological function and landscape value of urban greening shrubs. In this study, three typical greening shrubs (Euonymus japonicus, Ligustrum × vicaryi, and Berberis thunbergii var. atropurpurea) in [...] Read more.
The context of global climate change, water stress has a significant impact on the ecological function and landscape value of urban greening shrubs. In this study, three typical greening shrubs (Euonymus japonicus, Ligustrum × vicaryi, and Berberis thunbergii var. atropurpurea) in North China were subjected to a two-year field-controlled experiment (2022–2023) with four water treatments: full irrigation, deficit irrigation, natural rainfall, and extreme drought. The key findings are as follows: (1) Extreme drought reduced the color indices substantially—the GCC of E. japonicus decreased by 40% (2023); the RCC of B. thunbergii var. atropurpurea declined by 35% (2022); and the color indices of L. × vicaryi remained stable (variation < 15%). (2) Early-season soil water content (SWC) strongly correlated with the color index of E. japonicus (r2 = 0.42, p < 0.05) but weakly with B. thunbergii (r2 = 0.28), suggesting species-specific drought-tolerance mechanisms like reduced leaf area. (3) Deficit irrigation (SWC ≈ 40%) maintained color indices between fully irrigated and drought-stressed levels. Notably, B. thunbergii retained high redness (RCC > 0.8) at an SWC ≈ 40%; E. japonicus required an SWC > 60% to preserve greenness (GCC). The research results provide a scientific basis for urban greening plant screening and water-saving irrigation strategies, and expand the application scenarios of color coordinates in plant physiological and ecological research. Full article
Show Figures

Graphical abstract

22 pages, 3283 KiB  
Article
Optimal Configuration of Distributed Pumped Storage Capacity with Clean Energy
by Yongjia Wang, Hao Zhong, Xun Li, Wenzhuo Hu and Zhenhui Ouyang
Energies 2025, 18(15), 3896; https://doi.org/10.3390/en18153896 - 22 Jul 2025
Viewed by 232
Abstract
Aiming at the economic problems of industrial users with wind power, photovoltaic, and small hydropower resources in clean energy consumption and trading with superior power grids, this paper proposes a distributed pumped storage capacity optimization configuration method considering clean energy systems. First, considering [...] Read more.
Aiming at the economic problems of industrial users with wind power, photovoltaic, and small hydropower resources in clean energy consumption and trading with superior power grids, this paper proposes a distributed pumped storage capacity optimization configuration method considering clean energy systems. First, considering the maximization of the investment benefit of distributed pumped storage as the upper goal, a configuration scheme of the installed capacity is formulated. Second, under the two-part electricity price mechanism, combined with the basin hydraulic coupling relationship model, the operation strategy optimization of distributed pumped storage power stations and small hydropower stations is carried out with the minimum operation cost of the clean energy system as the lower optimization objective. Finally, the bi-level optimization model is solved by combining the alternating direction multiplier method and CPLEX solver. This study demonstrates that distributed pumped storage implementation enhances seasonal operational performance, improving clean energy utilization while reducing industrial electricity costs. A post-implementation analysis revealed monthly operating cost reductions of 2.36, 1.72, and 2.13 million RMB for wet, dry, and normal periods, respectively. Coordinated dispatch strategies significantly decreased hydropower station water wastage by 82,000, 28,000, and 52,000 cubic meters during corresponding periods, confirming simultaneous economic and resource efficiency improvements. Full article
Show Figures

Figure 1

21 pages, 12252 KiB  
Article
Changes in Intra-Annual River Runoff in the Ile and Zhetysu Alatau Mountains Under Climate Change Conditions
by Rustam G. Abdrakhimov, Victor P. Blagovechshenskiy, Sandugash U. Ranova, Aigul N. Akzharkynova, Sezar Gülbaz, Ulzhan R. Aldabergen and Aidana N. Kamalbekova
Water 2025, 17(14), 2165; https://doi.org/10.3390/w17142165 - 21 Jul 2025
Viewed by 338
Abstract
This paper presents the results of studies on intra-annual runoff changes in the Ile River basin based on data from gauging stations up to 2021. Changes in climatic characteristics that determine runoff formation in the mountainous and foothill areas of the river catchment [...] Read more.
This paper presents the results of studies on intra-annual runoff changes in the Ile River basin based on data from gauging stations up to 2021. Changes in climatic characteristics that determine runoff formation in the mountainous and foothill areas of the river catchment have led to alterations in the water regime of the watercourses. The analysis of the temporal and spatial patterns of river flow formation in the basin, as well as its distribution by seasons and months, is essential for solving applied water management problems and assessing the risks of hazardous hydrological phenomena, such as high floods and low water levels. The statistical analysis of annual and monthly river runoff fluctuations enabled the identification of relatively homogeneous estimation periods during stationary observations under varying climatic conditions. The obtained characteristics of annual and intra-annual river runoff in the Ile River basin for the modern period provide insights into changes in average monthly water discharge and, more broadly, runoff volume during different phases of the water regime. In the future, these characteristics are expected to guide the design of hydraulic structures and the rational use of surface runoff in this intensively developing region of Kazakhstan. Full article
(This article belongs to the Section Water and Climate Change)
Show Figures

Figure 1

17 pages, 4255 KiB  
Article
Exploring the Global and Regional Factors Influencing the Density of Trachurus japonicus in the South China Sea
by Mingshuai Sun, Yaquan Li, Zuozhi Chen, Youwei Xu, Yutao Yang, Yan Zhang, Yalan Peng and Haoda Zhou
Biology 2025, 14(7), 895; https://doi.org/10.3390/biology14070895 - 21 Jul 2025
Viewed by 233
Abstract
In this cross-disciplinary investigation, we uncover a suite of previously unexamined factors and their intricate interplay that hold causal relationships with the distribution of Trachurus japonicus in the northern reaches of the South China Sea, thereby extending the existing research paradigms. Leveraging advanced [...] Read more.
In this cross-disciplinary investigation, we uncover a suite of previously unexamined factors and their intricate interplay that hold causal relationships with the distribution of Trachurus japonicus in the northern reaches of the South China Sea, thereby extending the existing research paradigms. Leveraging advanced machine learning algorithms and causal inference, our robust experimental design uncovered nine key global and regional factors affecting the distribution of T. japonicus density. A robust experimental design identified nine key factors significantly influencing this density: mean sea-level pressure (msl-0, msl-4), surface pressure (sp-0, sp-4), Summit ozone concentration (Ozone_sum), F10.7 solar flux index (F10.7_index), nitrate concentration at 20 m depth (N3M20), sonar-detected effective vertical range beneath the surface (Height), and survey month (Month). Crucially, stable causal relationships were identified among Ozone_sum, F10.7_index, Height, and N3M20. Variations in Ozone_sum likely impact surface UV radiation levels, influencing plankton dynamics (a primary food source) and potentially larval/juvenile fish survival. The F10.7_index, reflecting solar activity, may affect geomagnetic fields, potentially influencing the migration and orientation behavior of T. japonicus. N3M20 directly modulates primary productivity by limiting phytoplankton growth, thereby shaping the availability and distribution of prey organisms throughout the food web. Height defines the vertical habitat range acoustically detectable, intrinsically linking directly to the vertical distribution and availability of the fish stock itself. Surface pressures (msl-0/sp-0) and their lagged effects (msl-4/sp-4) significantly influence sea surface temperature profiles, ocean currents, and stratification, all critical determinants of suitable habitats and prey aggregation. The strong influence of Month predominantly reflects seasonal changes in water temperature, reproductive cycles, and associated shifts in nutrient supply and plankton blooms. Rigorous robustness checks (Data Subset and Random Common Cause Refutation) confirmed the reliability and consistency of these causal findings. This elucidation of the distinct biological and physical pathways linking these diverse factors leading to T. japonicus density provides a significantly improved foundation for predicting distribution patterns globally and offers concrete scientific insights for sustainable fishery management strategies. Full article
Show Figures

Figure 1

Back to TopTop