Assessment of Water Depth Variability and Rice Farming Using Remote Sensing
Abstract
1. Introduction
2. Materials and Methods
2.1. Location Description
2.2. Design of the Experiment
2.3. Remote Sensing Data
- Spectral evolution of the Red and NIR bands, and average NDVI values for each plot in the years 2022 and 2023.
- Study of correlations between water height and Sentinel-2 bands.
- Study of anomalies in NIR reflectance values and performance data.
2.4. Measurement of Water Height
- Zp: estimated value for unmeasured p-point;
- n: number of points used in interpolation;
- i: measured value of point i;
- zi: value of the coordinate at the i-th point;
- : distance between the i-th point and the known point i, raised to the power (p = 2).
2.5. Statistical Analysis
3. Results
3.1. Spectral Reflectance
3.2. Study of Correlations Between the Height of the Water Surface and Sentinel-2 Bands
3.3. Relationship Between Field-Level NIR Anomalies and Yield Variability
3.4. Influence of Water Depth on Final Yield
3.4.1. Comparison Between Mean Water Height and Yield in the Plots
3.4.2. Analysis of the Correlation Between the Water Depth and Yield
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bao, J. Rice. ICC Handbook of 21st Century Cereal Science and Technology; Shewry, P.R., Koksel, H., Taylor, J.R.N., Eds.; Elsevier: Amsterdam, The Netherlands, 2023; pp. 145–151. [Google Scholar]
- European Commission. Rice Production. Available online: https://agridata.ec.europa.eu/extensions/DashboardRice/RiceProduction.html (accessed on 22 August 2024).
- Raksapatcharawong, M.; Veerakachen, W.; Homma, K.; Maki, M.; Oki, K. Satellite-Based Drought Impact Assessment on Rice Yield in Thailand with SIMRIW?RS. Remote Sens. 2020, 12, 2099. [Google Scholar] [CrossRef]
- Hendrawan, V.; Komori, D. Developing Flood Vulnerability Curve for Rice Crop Using Remote Sensing and Hydrodynamic Modeling. Int. J. Disaster Risk Reduct. 2021, 54, 102058. [Google Scholar] [CrossRef]
- Khose, S.B.; Mailapalli, D.R.; Biswal, S.; Chatterjee, C. UAV-based multispectral image analytics for generating crop coefficient maps for rice. Arab. J. Geosc. 2022, 15, 1681. [Google Scholar] [CrossRef]
- de Lima, I.P.; Jorge, R.G.; de Lima, J.L.M.P. Remote Sensing Monitoring of Rice Fields: Towards Assessing Water Saving Irrigation Management Practices. Front. Remote Sens. 2021, 2, 762093. [Google Scholar] [CrossRef]
- Bwire, D.; Saito, H.; Sidle, R.C.; Nishiwaki, J. Water Management and Hydrological Characteristics of Paddy-Rice Fields under Alternate Wetting and Drying Irrigation Practice as Climate Smart Practice: A Review. Agronomy 2024, 14, 1421. [Google Scholar] [CrossRef]
- Kraehmer, H.; Thomas, C.; Vidotto, F. Rice Production in Europe. In Rice Production Worldwide; Chauhan, B.S., Jabran, K., Mahajan, G., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 93–116. [Google Scholar]
- Mortimer, A.M.; Namuco, O.; Johnson, D.E. Seedling recruitment in direct-seeded rice: Weed biology and water management. In Proceedings of the Rice Is Life: Scientific Perspectives for the 21st Century, Tsukuba, Japan, 4–7 November 2004; International Rice Research Institute: Los Banos, Philippines. [Google Scholar]
- Juraimi, A.S.; Uddin, M.K.; Anwar, M.P.; Mohamed, M.T.M.; Ismail, M.R.; Man, A. Sustainable weed management in direct seeded rice culture: A review. Aust. J. Crop Sci. 2013, 7, 989. [Google Scholar]
- Rowshon, M.K.; Amin, M.M.; Hassan, S.H.; Shariff, A.M.; Lee, T.S. New performance indicators for rice-based irrigation systems. Paddy Water Environ. 2006, 4, 71–79. [Google Scholar] [CrossRef]
- Tinarelli, A. El Arroz; Mundi-Prensa: Madrid, Spain, 1989. [Google Scholar]
- Osca Lluch, J.M. Cultivos Herbáceos Extensivos: Cereales. Colección Académica; Editorial UPV: Valencia, Spain, 2013; p. 255. [Google Scholar]
- Elías Castillo, F.; Ruiz Beltrán, L. Agroclimatología de España; Instituto Nacional de Investigaciones Agrarias (España): Santiago, Chile, 1977. [Google Scholar]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration: Guidelines for Computing Crop Water Requirements; FAO: Rome, Italy, 1998; Volume 56. [Google Scholar]
- Fita, D.; Rubio, C.; Uris, A.; Castiñeira-Ibáñez, S.; Franch, B.; Tarrazó-Serrano, D.; San Bautista, A. Remote Sensor Images and Vegetation Indices to Optimize Rice Yield Analysis for Specific Growth Stages Within Extensive Data. Appl. Sci. 2025, 15, 3870. [Google Scholar] [CrossRef]
- Welcome to the QGIS Project! Available online: https://www.qgis.org/en/site/ (accessed on 1 January 2024).
- European Space Agency. Europea Agencia Espacial. SNAP Sentinel Application Plaform. Available online: https://earth.esa.int/eogateway/tools/snap (accessed on 2 May 2024).
- Rouse, J.; Haas, R.; Schell, J.; Deering, D. Monitoring vegetation systems in the great plains with ERTS. In Proceedings of the Third ERTS Symposium, Washington, DC, USA, 10–14 December 1973; Volume 1, pp. 309–317. [Google Scholar]
- Gitelson, A.A.; Kaufman, Y.J.; Merzlyak, M.N. Use of a Green Channel in Remote Sensing of Global Vegetation from EOS-MODIS. Remote Sens. Environ. 1996, 58, 289–298. [Google Scholar] [CrossRef]
- Herrmann, I.; Karnieli, A.; Bonfil, D.; Cohen, Y.; Alchanatis, V. SWIR-based spectral indices for assessing nitrogen content in potato fields. Int. J. Remote Sens. 2010, 31, 5127–5143. [Google Scholar] [CrossRef]
- Gao, B.C. NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens. Environ. 1996, 58, 257–266. [Google Scholar] [CrossRef]
- Lancashire, P.D.; Bleiholder, H.; Langelüddecke, P.; Stauss, R.; Boom, T.V.; Weber, E. An uniform decimal code for growth stages of crops and weeds. Ann. Appl. Biol. 1991, 119, 561–601. [Google Scholar] [CrossRef]
- San Bautista, A.; Fita, D.; Franch, B.; Castiñeira-Ibáñez, S.; Arizo, P.; Sánchez-Torres, M.J.; Becker-Reshef, I.; Uris, A.; Rubio, C. Crop Monitoring Strategy Based on Remote Sensing Data (Sentinel-2 and Planet), Study Case in a Rice Field after Applying Glycinebetaine. Agronomy 2022, 12, 708. [Google Scholar] [CrossRef]
- Franch, B.; Bautista, A.S.; Fita, D.; Rubio, C.; Tarrazó-Serrano, D.; Sánchez, A.; Skakun, S.; Vermote, E.; Becker-Reshef, I.; Uris, A. Within-Field Rice Yield Estimation Based on Sentinel-2 Satellite Data. Remote Sens. 2021, 13, 4095. [Google Scholar] [CrossRef]
- Yang, C.-Y.; Yang, M.-D.; Tseng, W.-C.; Hsu, Y.-C.; Li, G.-S.; Lai, M.-H.; Wu, D.-H.; Lu, H.-Y. Assessment of Rice Developmental Stage Using Time Series UAV Imagery for Variable Irrigation Management. Sensors 2020, 20, 5354. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.W.; Lu, C.T.; Wang, Y.M.; Lin, K.H.; Ma, X.; Lin, W.S. Rice (Oryza sativa L.) Growth Modeling Based on Growth Degree Day (GDD) and Artificial Intelligence Algorithms. Agriculture 2022, 12, 59. [Google Scholar] [CrossRef]
- Tian, J.; Tian, Y.; Cao, Y.; Wan, W.; Liu, K. Research on Rice Fields Extraction by NDVI Difference Method Based on Sentinel Data. Sensors 2023, 23, 5876. [Google Scholar] [CrossRef]
- Fita, D.; Bautista, A.S.; Castiñeira-Ibáñez, S.; Franch, B.; Domingo, C.; Rubio, C. Remote Sensing Dynamics for Analyzing Nitrogen Impact on Rice Yield in Limited Environments. Agriculture 2024, 14, 1753. [Google Scholar] [CrossRef]
- Moeini Rad, A.; Ashourloo, D.; Salehi Shahrabi, H.; Nematollahi, H. Developing an Automatic Phenology-Based Algorithm for Rice Detection Using Sentinel-2 Time-Series Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 1471–1481. [Google Scholar] [CrossRef]
- Zheng, H.; Cheng, T.; Zhou, M.; Li, D.; Yao, X.; Tian, Y.; Cao, W.; Zhu, Y. Improved estimation of rice aboveground biomass combining textural and spectral analysis of UAV imagery. Precis. Agric 2019, 20, 611–629. [Google Scholar] [CrossRef]
- Liu, J.; Zhu, Y.; Song, L.; Su, X.; Li, J.; Zheng, J.; Zhu, X.; Ren, L.; Wang, W.; Li, X. Optimizing window size and directional parameters of GLCM texture features for estimating rice AGB based on UAVs multispectral imagery. Front. Plant Sci. 2023, 14, 1284235. [Google Scholar] [CrossRef]
- Huang, S.; Tang, L.; Hupy, J.P.; Wang, Y.; Shao, G. A commentary review on the use of normalized difference vegetation index (NDVI) in the era of popular remote sensing. J. For. Res. 2021, 32, 1–6. [Google Scholar] [CrossRef]
- Rehman, T.R.; Reis, A.F.B.; Akbar, N.; Linquist, B.A. Use of Normalized Difference Vegetation Index to Assess N Status and Predict Grain Yield in Rice. Agron. J. 2019, 111, 2889–2898. [Google Scholar] [CrossRef]
- Yu, F.; Bai, J.; Jin, Z.; Zhang, H.; Guo, Z.; Chen, C. Research on precise fertilization method of rice tillering stage based on UAV hyperspectral remote sensing prescription map. Agronomy 2022, 12, 2893. [Google Scholar] [CrossRef]
- Liu, W.; Baret, F.; Gu, X.; Tong, Q.; Zheng, L.; Zhang, B. Relating soil surface moisture to reflectance. Remote Sens. Environ. 2002, 81, 238–246. [Google Scholar]
- McGuirk, S.L.; Cairns, I.H. Relationships between soil moisture and visible–NIR soil reflectance: A review presenting new analyses and data to fill the gaps. Geotechnics 2024, 4, 78–108. [Google Scholar] [CrossRef]
- Niel, T.G.V.; Mcvicar, T.R. Current and potential uses of optical remote sensing in rice-based irrigation systems: A review. Aust. J. Agric. Res. 2004, 55, 155–185. [Google Scholar] [CrossRef]
- Casanova, D.; Epema, G.F.; Goudriaan, J. Monitoring rice reflectance at field level for estimating biomass and LAI. Field Crop Res. 1998, 55, 83–92. [Google Scholar] [CrossRef]
- Palmer, A. Determination of Nitrogen in Rice Crops Using Remote Sensing Techniques. Bachelor’s Thesis, Charles Sturt University, Bathurst, Australia, 2002. [Google Scholar]
- Bartolucci, L.A.; Robinson, B.F.; Silva, L.F. Field measurements of the spectral response of natural waters. Photogramm. Eng. Remote Sens. 1977, 43, 595–598. [Google Scholar]
- Xiao, X.; Boles, S.; Frolking, S.; Salas, W.; Moore, B.; Li, C.; He, L.; Zhao, R. Observation of flooding and rice transplanting of paddy rice fields at the site to landscape scales in China using vegetation sensor data. Int. J. Remote Sens. 2002, 23, 3009–3022. [Google Scholar] [CrossRef]
- Boschetti, M.; Nutini, F.; Manfron, G.; Brivio, P.A.; Nelson, A. Comparative Analysis of Normalised Difference Spectral Indices Derived from MODIS for Detecting Surface Water in Flooded Rice Cropping Systems. PLoS ONE 2014, 9, e88741. [Google Scholar] [CrossRef] [PubMed]
- Albertini, C.; Gioia, A.; Iacobellis, V.; Manfreda, S. Detection of surface water and floods with multispectral satellites. Remote Sens. 2022, 14, 6005. [Google Scholar] [CrossRef]
- Boschetti, M.; Busetto, L.; Manfron, G.; Laborte, A.; Asilo, S.; Pazhanivelan, S.; Nelson, A. PhenoRice: A method for automatic extraction of spatio-temporal information on rice crops using satellite data time series. Remote Sens. Environ. 2017, 194, 347–365. [Google Scholar] [CrossRef]
- Adeluyi, O.; Harris, A.; Foster, T.; Clay, G.D. Exploiting Centimetre Resolution of Drone-Mounted Sensors for Estimating Mid-Late Season above Ground Biomass in Rice. Eur. J. Agron. 2022, 132, 126411. [Google Scholar] [CrossRef]
- Hatfield, J.L.; Gitelson, A.A.; Schepers, J.S.; Walthall, C.L. Application of Spectral Remote Sensing for Agronomic Decisions. Agron. J. 2008, 100, S117–S131. [Google Scholar] [CrossRef]
- Belgiu, M.; Csillik, O. Sentinel-2 cropland mapping using pixel-based and object-based time-weighted dynamic time warping analysis. Remote Sens. Environ. 2018, 204, 509–523. [Google Scholar] [CrossRef]
- Nazir, A.; Ullah, S.; Saqib, Z.A.; Abbas, A.; Ali, A.; Iqbal, M.S.; Hussain, K.; Shakir, M.; Shah, M.; Butt, M.U. Estimation and Forecasting of Rice Yield Using Phenology-Based Algorithm and Linear Regression Model on Sentinel-II Satellite Data. Agriculture 2021, 11, 1026. [Google Scholar] [CrossRef]
- Soriano-González, J.; Angelats, E.; Martínez-Eixarch, M.; Alcaraz, C. Monitoring rice crop and yield estimation with Sentinel-2 data. Field Crops Res. 2022, 281, 108507. [Google Scholar] [CrossRef]
- Talpur, M.A.; Changying, J.; Junejo, S.A.; Tagar, A.A.; Ram, B.K. Effect of different water depths on growth and yield of rice crop. Afr. J. Agric. Res. 2013, 8, 4654–4659. [Google Scholar] [CrossRef]
- Juraimi, A.; Ahmad Hamdani, M.S.; Begum, M.; Anuar, A.R.; Azmi, M. Influence of Flooding Intensity and Duration on Rice Growth and Yield. Pertanika J. Trop. Agric. Sci. 2009, 32, 195–208. [Google Scholar]
- Chiba, M.; Terao, T.; Watanabe, H.; Matsumura, O.; Takahashi, Y. Improvement in rice grain quality by deep-flood irrigation and its underlying mechanisms. Jpn. Agric. Res. Q. JARQ 2017, 51, 107–116. [Google Scholar] [CrossRef]
- Anbumozhi, V.; Yamaji, E.; Tabuchi, T. Rice Crop Growth and Yield as Influenced by Changes in Ponding Water Depth, Water Regime and Fertigation Level. Agric. Water Manag. 1998, 37, 241–253. [Google Scholar] [CrossRef]
- Fan, Y.; Amgain, N.R.; Rabbany, A.; Manirakiza, N.; Bai, X.; VanWeelden, M.; Bhadha, J.H. Water Quality and Yield Assessment of Rice Cultivated on Histosol under Different Flood Depths. SSRN Electron. J. 2022. [Google Scholar] [CrossRef]
Period of DAS | 0–30 | 30–60 | 60–90 | 90–120 | 120–140 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Year | 2022 | 2023 | Desv (%) | 2022 | 2023 | Desv (%) | 2022 | 2023 | Desv (%) | 2022 | 2023 | Desv (%) | 2022 | 2023 | Desv (%) |
T mean (°C) | 22.74 | 20.06 | −11.79 | 25.94 | 25.68 | −1.02 | 28.49 | 27.73 | −2.66 | 26.96 | 25.83 | −4.21 | 22.61 | 22.65 | 0.17 |
T max (°C) | 29.44 | 25.56 | −13.18 | 32.15 | 30.88 | −3.95 | 34.38 | 33.13 | −3.65 | 33.67 | 31.19 | −7.37 | 28.59 | 28.71 | 0.41 |
T min (°C) | 15.67 | 14.96 | −4.55 | 19.52 | 20.05 | 2.72 | 22.36 | 22.71 | 1.53 | 20.49 | 20.49 | 0.01 | 17.02 | 17.06 | 0.22 |
RH mean (%) | 68.17 | 73.03 | 7.13 | 65.62 | 73.11 | 11.42 | 67.48 | 71.73 | 6.31 | 66.47 | 72.94 | 9.73 | 66.61 | 72.93 | 9.49 |
Radiation (MJ·m−2) | 27.67 | 22.14 | −19.97 | 26.15 | 25.31 | −3.22 | 25.31 | 24.82 | −1.96 | 21.42 | 20.47 | −4.42 | 15.26 | 17.20 | 12.69 |
Sunshine hours (h) | 12.51 | 11.21 | −10.34 | 12.52 | 12.01 | −4.08 | 12.16 | 12.01 | −1.19 | 11.03 | 10.84 | −1.71 | 9.65 | 9.97 | 3.35 |
ETo (mm) | 167.68 | 130.59 | −22.12 | 168.54 | 157.84 | −6.35 | 170.46 | 164.68 | −3.39 | 147.22 | 133.65 | −9.22 | 66.36 | 69.13 | 4.17 |
DAS | AGDD | VPD (kPa) | ||||
---|---|---|---|---|---|---|
2022 | 2023 | Desv % | 2022 | 2023 | Desv % | |
0–30 | 476 | 462 | −2.96 | 1.53 | 1.24 | −18.89 |
30–60 | 556 | 529 | −4.90 | 1.69 | 1.13 | −32.89 |
60–90 | 539 | 596 | 10.54 | 1.83 | 1.29 | −29.76 |
90–120 | 410 | 541 | 32.05 | 1.26 | 1.11 | −12.24 |
120–140 | 234 | 317 | 35.48 | 0.82 | 0.99 | 20.80 |
2022 | 2023 | |
---|---|---|
Sowing | 9 June | 15 May |
Harvest | 22 October | 6 October |
Year | First Drying | Second Drying | Final Drying |
---|---|---|---|
2022 | 21 June | 19 June | 20 September |
2023 | 30 May | 15 June | 10 September |
Date
2022 | DAS | BBCH Scale |
Date
2023 | DAS | BBCH Scale |
---|---|---|---|---|---|
9 June | 0 | 0—Germination | 15 May | 0 | 0—Germination |
14 June | 5 | 0 | 20 May | 5 | 0 |
24 June | 15 | 1—Leaf development | 4 June | 20 | 1—Leaf development |
29 June | 20 | 2—Tillering | 14 June | 30 | 2—Tillering |
4 July | 25 | 2 | 24 June | 40 | 2 |
14 July | 35 | 2 | 4 July | 50 | 2 |
19 July | 40 | 2 | 9 July | 55 | 2 |
24 July | 45 | 2 | 14 July | 60 | 3—Stem elongation |
29 July | 50 | 3—Stem elongation | 29 July | 75 | 4—Booting |
3 August | 55 | 3 | 8 August | 85 | 5—Inflorescence emergence |
8 August | 60 | 3 | 13 August | 90 | 6—Flowering |
18 August | 70 | 4—Booting | 23 August | 100 | 6 |
23 August | 75 | 5—Inflorescence emergence | 28 August | 105 | 7—Development of grain |
2 September | 85 | 6—Flowering | 22 September | 130 | 9—Senescence |
7 September | 90 | 6 | |||
27 September | 110 | 7—Development of grain | |||
2 October | 115 | 8—Ripening | |||
12 October | 125 | 9—Senescence |
Spectral Band Name | Wavelength (nm) | Spatial Resolution (m) |
---|---|---|
B02—Blue | 458–523 | 10 |
B03—Green | 543–578 | 10 |
B04—Red | 650–680 | 10 |
B05—Vegetation Red Edge 1 | 698–713 | 20 |
B06—Vegetation Red Edge 2 | 733–748 | 20 |
B07—Vegetation Red Edge 3 | 773–793 | 20 |
B08—NIR | 785–899 | 10 |
B8A—NIR narrow | 855–875 | 20 |
B11—SWIR 1 | 1565–1655 | 20 |
B12—SWIR 2 | 2100–2280 | 20 |
Vegetation Index | Equation | Equation | Reference |
---|---|---|---|
Normalized Difference Vegetation Index (NDVI) | (1) | [19] | |
Green NDVI (GNDVI) | (2) | [20] | |
Normalized Difference Red Edge (NDRE) | (3) | [21] | |
Normalized Difference Water Index (NDWI) | (4) | [22] |
2022 | 2023 | ||||
---|---|---|---|---|---|
Field | Height (cm) | Yield (kg·ha−1) | Field | Height (cm) | Yield (kg·ha−1) |
1 | 11.41 a | 7333.5 a | 1 | 4.34 e | 5988.23 f |
2 | 5.84 d | 6574.04 d | 2 | 5.98 c | 9003.42 a |
3 | 8.24 b | 7244.56 ab | 3 | 5.45 d | 7898.82 c |
4 | 5.78 d | 5425.50 e | 4 | 12.40 a | 6950.02 d |
5 | 7.20 c | 7208.03 b | 5 | 12.22 a | 6623.03 e |
6 | 8.07 b | 7124.09 b | 6 | 9.91 b | 8316.22 b |
7 | 8.12 b | 6772.18 c | |||
p Value | <0.01 | <0.01 | p Value | <0.01 | <0.01 |
Average | 8.31 | 6961.24 | Average | 6.94 | 7325.23 |
Standard deviation | 2.14 | 571.29 | Standard deviation | 3.12 | 1254.32 |
Variation coefficient (%) | 25.77 | 8.21 | Variation coefficient (%) | 44.94 | 17.12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Simeón, R.; Rubio, C.; Uris, A.; Coronado, J.; Agenjos-Moreno, A.; Bautista, A.S. Assessment of Water Depth Variability and Rice Farming Using Remote Sensing. Sensors 2025, 25, 4860. https://doi.org/10.3390/s25154860
Simeón R, Rubio C, Uris A, Coronado J, Agenjos-Moreno A, Bautista AS. Assessment of Water Depth Variability and Rice Farming Using Remote Sensing. Sensors. 2025; 25(15):4860. https://doi.org/10.3390/s25154860
Chicago/Turabian StyleSimeón, Rubén, Constanza Rubio, Antonio Uris, Javier Coronado, Alba Agenjos-Moreno, and Alberto San Bautista. 2025. "Assessment of Water Depth Variability and Rice Farming Using Remote Sensing" Sensors 25, no. 15: 4860. https://doi.org/10.3390/s25154860
APA StyleSimeón, R., Rubio, C., Uris, A., Coronado, J., Agenjos-Moreno, A., & Bautista, A. S. (2025). Assessment of Water Depth Variability and Rice Farming Using Remote Sensing. Sensors, 25(15), 4860. https://doi.org/10.3390/s25154860