Exploring the Spectral Variability of Estonian Lakes Using Spaceborne Imaging Spectroscopy
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. In Situ Data
2.3. Satellite Data
Lake Peipsi | |||
Appl. ID | Appl. goal | Sensor | Date(s) |
1 | Rrs validation | PRISMA | 19 September 2020, 8 June 2021, 18 July 2021, 21 May 2022 |
2 | OWT classification | PRISMA | 19 September 2020 |
3 | Velikaja River influence | PRISMA | 24 June 2020, 9 May 2021 |
4 | Emajõgi River influence | EnMAP | 16 May 2024 |
5 | PC conc. map + S2 | PRISMA | 16 August 2022 |
Lake Võrtsjärv | |||
Appl. ID | Appl. goal | Sensor | Date(s) |
6 | Rrs validation | EnMAP | 20 June 2024, 21 July 2024 |
7 | PC conc. map + S3 | PRISMA | 4 April 2020 |
8 | Aquatic vegetation | EnMAP | 21 July 2024 |
9 | Ice coverage | PRISMA | 18 March 2022 |
2.4. Data Processing
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rinke, K.; Keller, P.S.; Kong, X.; Borchardt, D.; Weitere, M. Ecosystem Services from Inland Waters and Their Aquatic Ecosystems. In Atlas of Ecosystem Services; Springer International Publishing: Cham, Switzerland, 2019; pp. 191–195. [Google Scholar]
- Grizzetti, B.; Poikane, S. The Importance of Inland Waters. In Wetzel’s Limnology; Elsevier: Amsterdam, The Netherlands, 2024; pp. 7–13. [Google Scholar]
- Cole, J.J.; Prairie, Y.T.; Caraco, N.F.; McDowell, W.H.; Tranvik, L.J.; Striegl, R.G.; Duarte, C.M.; Kortelainen, P.; Downing, J.A.; Middelburg, J.J.; et al. Plumbing the Global Carbon Cycle: Integrating Inland Waters into the Terrestrial Carbon Budget. Ecosystems 2007, 10, 172–185. [Google Scholar] [CrossRef]
- Minaudo, C.; Odermatt, D.; Bouffard, D.; Rahaghi, A.I.; Lavanchy, S.; Wüest, A. The Imprint of Primary Production on High-Frequency Profiles of Lake Optical Properties. Environ. Sci. Technol. 2021, 55, 14234–14244. [Google Scholar] [CrossRef]
- Lehmann, M.K.; Gurlin, D.; Pahlevan, N.; Alikas, K.; Conroy, T.; Anstee, J.; Balasubramanian, S.V.; Barbosa, C.C.F.; Binding, C.; Bracher, A.; et al. GLORIA—A Globally Representative Hyperspectral in Situ Dataset for Optical Sensing of Water Quality. Sci. Data 2023, 10, 100. [Google Scholar] [CrossRef]
- Ruddick, K.G.; Bialek, A.; Brando, V.E.; Dogliotti, A.I.; Doxaran, D.; Goyens, C. Editorial: Optical Radiometry and Satellite Validation. Front. Remote Sens. 2025, 6, 1585494. [Google Scholar] [CrossRef]
- Palmer, S.C.J.; Kutser, T.; Hunter, P.D. Remote Sensing of Inland Waters: Challenges, Progress and Future Directions. Remote Sens. Environ. 2015, 157, 1–8. [Google Scholar] [CrossRef]
- Kutser, T.; Soomets, T. Satellite Data Is Revealing Long Time Changes in the World Largest Lakes. Sci. Rep. 2024, 14, 14391. [Google Scholar] [CrossRef]
- Crétaux, J.-F.; Arsen, A.; Calmant, S.; Kouraev, A.; Vuglinski, V.; Bergé-Nguyen, M.; Gennero, M.-C.; Nino, F.; Abarca Del Rio, R.; Cazenave, A.; et al. SOLS: A Lake Database to Monitor in the Near Real Time Water Level and Storage Variations from Remote Sensing Data. Adv. Space Res. 2011, 47, 1497–1507. [Google Scholar] [CrossRef]
- Yang, H.; Kong, J.; Hu, H.; Du, Y.; Gao, M.; Chen, F. A Review of Remote Sensing for Water Quality Retrieval: Progress and Challenges. Remote Sens. 2022, 14, 1770. [Google Scholar] [CrossRef]
- Cao, Q.; Yu, G.; Qiao, Z. Application and Recent Progress of Inland Water Monitoring Using Remote Sensing Techniques. Environ. Monit. Assess. 2023, 195, 125. [Google Scholar] [CrossRef]
- Werther, M.; Burggraaff, O.; Gurlin, D.; Saranathan, A.M.; Balasubramanian, S.V.; Giardino, C.; Braga, F.; Bresciani, M.; Pellegrino, A.; Pinardi, M.; et al. On the Generalization Ability of Probabilistic Neural Networks for Hyperspectral Remote Sensing of Absorption Properties across Optically Complex Waters. Remote Sens. Environ. 2025, 328, 114820. [Google Scholar] [CrossRef]
- Mobley, C.D. Estimation of the Remote-Sensing Reflectance from above-Surface Measurements. Appl. Opt. 1999, 38, 7442. [Google Scholar] [CrossRef]
- Papa, F.; Crétaux, J.-F.; Grippa, M.; Robert, E.; Trigg, M.; Tshimanga, R.M.; Kitambo, B.; Paris, A.; Carr, A.; Fleischmann, A.S.; et al. Water Resources in Africa under Global Change: Monitoring Surface Waters from Space. Surv. Geophys. 2023, 44, 43–93. [Google Scholar] [CrossRef]
- Chawla, I.; Karthikeyan, L.; Mishra, A.K. A Review of Remote Sensing Applications for Water Security: Quantity, Quality, and Extremes. J. Hydrol. 2020, 585, 124826. [Google Scholar] [CrossRef]
- Kutser, T.; Paavel, B.; Verpoorter, C.; Ligi, M.; Soomets, T.; Toming, K.; Casal, G. Remote Sensing of Black Lakes and Using 810 Nm Reflectance Peak for Retrieving Water Quality Parameters of Optically Complex Waters. Remote Sens. 2016, 8, 497. [Google Scholar] [CrossRef]
- Toming, K.; Kutser, T.; Laas, A.; Sepp, M.; Paavel, B.; Nõges, T. First Experiences in Mapping Lake Water Quality Parameters with Sentinel-2 MSI Imagery. Remote Sens. 2016, 8, 640. [Google Scholar] [CrossRef]
- Caballero, I.; Navarro, G. Monitoring CyanoHABs and Water Quality in Laguna Lake (Philippines) with Sentinel-2 Satellites during the 2020 Pacific Typhoon Season. Sci. Total Environ. 2021, 788, 147700. [Google Scholar] [CrossRef]
- Ustin, S.L.; Middleton, E.M. Current and Near-Term Advances in Earth Observation for Ecological Applications. Ecol. Process. 2021, 10, 1. [Google Scholar] [CrossRef]
- Pahlevan, N.; Lee, Z.; Wei, J.; Schaaf, C.B.; Schott, J.R.; Berk, A. On-Orbit Radiometric Characterization of OLI (Landsat-8) for Applications in Aquatic Remote Sensing. Remote Sens. Environ. 2014, 154, 272–284. [Google Scholar] [CrossRef]
- Dierssen, H.M.; Ackleson, S.G.; Joyce, K.E.; Hestir, E.L.; Castagna, A.; Lavender, S.; McManus, M.A. Living up to the Hype of Hyperspectral Aquatic Remote Sensing: Science, Resources and Outlook. Front. Environ. Sci. 2021, 9, 649528. [Google Scholar] [CrossRef]
- Rowan, G.S.L.; Kalacska, M. A Review of Remote Sensing of Submerged Aquatic Vegetation for Non-Specialists. Remote Sens. 2021, 13, 623. [Google Scholar] [CrossRef]
- Wei, J.; Wang, M.; Mikelsons, K.; Jiang, L.; Kratzer, S.; Lee, Z.; Moore, T.; Sosik, H.M.; Van der Zande, D. Global Satellite Water Classification Data Products over Oceanic, Coastal, and Inland Waters. Remote Sens. Environ. 2022, 282, 113233. [Google Scholar] [CrossRef]
- Dierssen, H.M. Realizing the Potential of Hyperspectral Remote Sensing in Coastal and Inland Waters. In Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 11–16 July 2021; pp. 1226–1229. [Google Scholar]
- Chen, L.; Liu, L.; Liu, S.; Shi, Z.; Shi, C. The Application of Remote Sensing Technology in Inland Water Quality Monitoring and Water Environment Science: Recent Progress and Perspectives. Remote Sens. 2025, 17, 667. [Google Scholar] [CrossRef]
- Goyens, C.; Lavigne, H.; Dille, A.; Vervaeren, H. Using Hyperspectral Remote Sensing to Monitor Water Quality in Drinking Water Reservoirs. Remote Sens. 2022, 14, 5607. [Google Scholar] [CrossRef]
- Ali, S.M.; Gupta, A.; Raman, M.; Sahay, A.; Motwani, G.; Muduli, P.R.; Krishna, A.V.; Tirkey, A. Improved Estimates of Bio-Optical Parameters in Optically Complex Water Using Hyperspectral Remote Sensing Data. Int. J. Remote Sens. 2021, 42, 3056–3073. [Google Scholar] [CrossRef]
- Castagna, A.; Dierssen, H.M.; Devriese, L.I.; Everaert, G.; Knaeps, E.; Sterckx, S. Evaluation of Historic and New Detection Algorithms for Different Types of Plastics over Land and Water from Hyperspectral Data and Imagery. Remote Sens. Environ. 2023, 298, 113834. [Google Scholar] [CrossRef]
- Kramer, S.J.; Siegel, D.A.; Maritorena, S.; Catlett, D. Modeling Surface Ocean Phytoplankton Pigments from Hyperspectral Remote Sensing Reflectance on Global Scales. Remote Sens. Environ. 2022, 270, 112879. [Google Scholar] [CrossRef]
- Garcia, R.A.; Lee, Z.; Hochberg, E.J. Hyperspectral Shallow-Water Remote Sensing with an Enhanced Benthic Classifier. Remote Sens. 2018, 10, 147. [Google Scholar] [CrossRef]
- Hill, V.J.; Zimmerman, R.C.; Bissett, W.P.; Dierssen, H.; Kohler, D.D.R. Evaluating Light Availability, Seagrass Biomass, and Productivity Using Hyperspectral Airborne Remote Sensing in Saint Joseph’s Bay, Florida. Estuaries Coasts 2014, 37, 1467–1489. [Google Scholar] [CrossRef]
- Dev, P.J.; Sukenik, A.; Mishra, D.R.; Ostrovsky, I. Cyanobacterial Pigment Concentrations in Inland Waters: Novel Semi-Analytical Algorithms for Multi- and Hyperspectral Remote Sensing Data. Sci. Total Environ. 2022, 805, 150423. [Google Scholar] [CrossRef]
- Yan, Y.; Bao, Z.; Shao, J. Phycocyanin Concentration Retrieval in Inland Waters: A Comparative Review of the Remote Sensing Techniques and Algorithms. J. Great Lakes Res. 2018, 44, 748–755. [Google Scholar] [CrossRef]
- O’Shea, R.E.; Pahlevan, N.; Smith, B.; Bresciani, M.; Egerton, T.; Giardino, C.; Li, L.; Moore, T.; Ruiz-Verdu, A.; Ruberg, S.; et al. Advancing Cyanobacteria Biomass Estimation from Hyperspectral Observations: Demonstrations with HICO and PRISMA Imagery. Remote Sens. Environ. 2021, 266, 112693. [Google Scholar] [CrossRef]
- Cazzaniga, I.; Zibordi, G.; Mélin, F. Spectral Features of Ocean Colour Radiometric Products in the Presence of Cyanobacteria Blooms in the Baltic Sea. Remote Sens. Environ. 2023, 287, 113464. [Google Scholar] [CrossRef]
- Muller-Karger, F.E.; Hestir, E.; Ade, C.; Turpie, K.; Roberts, D.A.; Siegel, D.; Miller, R.J.; Humm, D.; Izenberg, N.; Keller, M.; et al. Satellite Sensor Requirements for Monitoring Essential Biodiversity Variables of Coastal Ecosystems. Ecol. Appl. 2018, 28, 749–760. [Google Scholar] [CrossRef]
- Hernando, A.M.; Piano, A.M.; Blanco, A.C.; Medina, J.M.; Manuel, A.Y. Comparative Analysis of Prisma Hyperspectral and Sentinel-2 Multispectral Images for Chlorophyll-A and Turbidity Mapping of Taal Lake. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2024, XLVIII-4/W8-2023, 293–299. [Google Scholar] [CrossRef]
- Minghelli, A.; Vadakke-Chanat, S.; Chami, M.; Guillaume, M.; Migne, E.; Grillas, P.; Boutron, O. Estimation of Bathymetry and Benthic Habitat Composition from Hyperspectral Remote Sensing Data (BIODIVERSITY) Using a Semi-Analytical Approach. Remote Sens. 2021, 13, 1999. [Google Scholar] [CrossRef]
- Chen, J.; Chen, S.; Fu, R.; Li, D.; Jiang, H.; Wang, C.; Peng, Y.; Jia, K.; Hicks, B.J. Remote Sensing Big Data for Water Environment Monitoring: Current Status, Challenges, and Future Prospects. Earths Future 2022, 10, e2021EF002289. [Google Scholar] [CrossRef]
- Cetinić, I.; Rousseaux, C.S.; Carroll, I.T.; Chase, A.P.; Kramer, S.J.; Werdell, P.J.; Siegel, D.A.; Dierssen, H.M.; Catlett, D.; Neeley, A.; et al. Phytoplankton Composition from SPACE: Requirements, Opportunities, and Challenges. Remote Sens. Environ. 2024, 302, 113964. [Google Scholar] [CrossRef]
- Li, Y.; Fu, Y.; Lang, Z.; Cai, F. A High-Frequency and Real-Time Ground Remote Sensing System for Obtaining Water Quality Based on a Micro Hyper-Spectrometer. Sensors 2024, 24, 1833. [Google Scholar] [CrossRef]
- Niroumand-Jadidi, M.; Bovolo, F.; Bruzzone, L. Water Quality Retrieval from PRISMA Hyperspectral Images: First Experience in a Turbid Lake and Comparison with Sentinel-2. Remote Sens. 2020, 12, 3984. [Google Scholar] [CrossRef]
- Bresciani, M.; Giardino, C.; Fabbretto, A.; Pellegrino, A.; Mangano, S.; Free, G.; Pinardi, M. Application of New Hyperspectral Sensors in the Remote Sensing of Aquatic Ecosystem Health: Exploiting PRISMA and DESIS for Four Italian Lakes. Resources 2022, 11, 8. [Google Scholar] [CrossRef]
- Braga, F.; Fabbretto, A.; Vanhellemont, Q.; Bresciani, M.; Giardino, C.; Scarpa, G.M.; Manfè, G.; Concha, J.A.; Brando, V.E. Assessment of PRISMA Water Reflectance Using Autonomous Hyperspectral Radiometry. ISPRS J. Photogramm. Remote Sens. 2022, 192, 99–114. [Google Scholar] [CrossRef]
- Taggio, N.; Aiello, A.; Ceriola, G.; Kremezi, M.; Kristollari, V.; Kolokoussis, P.; Karathanassi, V.; Barbone, E. A Combination of Machine Learning Algorithms for Marine Plastic Litter Detection Exploiting Hyperspectral PRISMA Data. Remote Sens. 2022, 14, 3606. [Google Scholar] [CrossRef]
- Pellegrino, A.; Fabbretto, A.; Bresciani, M.; de Lima, T.M.A.; Braga, F.; Pahlevan, N.; Brando, V.E.; Kratzer, S.; Gianinetto, M.; Giardino, C. Assessing the Accuracy of PRISMA Standard Reflectance Products in Globally Distributed Aquatic Sites. Remote Sens. 2023, 15, 2163. [Google Scholar] [CrossRef]
- Fabbretto, A.; Bresciani, M.; Pellegrino, A.; Alikas, K.; Pinardi, M.; Mangano, S.; Padula, R.; Giardino, C. Tracking Water Quality and Macrophyte Changes in Lake Trasimeno (Italy) from Spaceborne Hyperspectral Imagery. Remote Sens. 2024, 16, 1704. [Google Scholar] [CrossRef]
- Soppa, M.A.; Brell, M.; Chabrillat, S.; Alvarado, L.M.A.; Gege, P.; Plattner, S.; Somlai-Schweiger, I.; Schroeder, T.; Steinmetz, F.; Scheffler, D.; et al. Full Mission Evaluation of EnMAP Water Leaving Reflectance Products Using Three Atmospheric Correction Processors. Opt. Express 2024, 32, 28215. [Google Scholar] [CrossRef]
- Brell, M.; Guanter, L.; Segl, K.; Chabrillat, S.; Scheffler, D.; Soppa, M.; Bohn, N.; Gorrono, J.; Kokhanovsky, A.; Bracher, A.; et al. Assessment of Enmap Data Quality Through Global Product Validation Activities. Remote Sens. Environ. 2024. [Google Scholar] [CrossRef]
- Chabrillat, S.; Foerster, S.; Segl, K.; Beamish, A.; Brell, M.; Asadzadeh, S.; Milewski, R.; Ward, K.J.; Brosinsky, A.; Koch, K.; et al. The EnMAP Spaceborne Imaging Spectroscopy Mission: Initial Scientific Results Two Years after Launch. Remote Sens. Environ. 2024, 315, 114379. [Google Scholar] [CrossRef]
- Bhattacharjee, R.; Gaur, S.; Chander, S.; Ohri, A.; Srivastava, P.K.; Mishra, A. Stacked Ensemble with Machine Learning Regressors on Optimal Features (SMOF) of Hyperspectral Sensor PRISMA for Inland Water Turbidity Prediction. Environ. Sci. Pollut. Res. 2024, 31, 65464–65480. [Google Scholar] [CrossRef]
- Dogliotti, A.I.; Piegari, E.; Rubinstein, L.; Perna, P.; Ruddick, K.G. Using the Automated HYPERNETS Hyperspectral System for Multi-Mission Satellite Ocean Colour Validation in the Río de La Plata, Accounting for Different Spatial Resolutions. Front. Remote Sens. 2024, 5, 1354662. [Google Scholar] [CrossRef]
- Gaur, S.; Bhattacharjee, R.; Chander, S.; Ohri, A.; Srivastava, P.K. Globally Validated Non-Unique Inversion Framework to Estimate Optically Active Water Quality Indicators Using in Situ and Space-Borne Hyperspectral Data Sets. Front. Environ. Sci. Eng. 2025, 19, 10. [Google Scholar] [CrossRef]
- Mäemets, H.; Laugaste, R.; Palmik, K.; Haldna, M. Response of Primary Producers to Water Level Fluctuations of Lake Peipsi. Proc. Est. Acad. Sci. 2018, 67, 231. [Google Scholar] [CrossRef]
- Nõges, T.; Haberman, J.; Jaani, A.; Laugaste, R.; Lokk, S.; Mäemets, A.; Nõges, P.; Pihul, E.; Starast, H.; Timm, T.; et al. General Description of Lake Peipsi-Pihkva. Hydrobiologia 1996, 338, 1–9. [Google Scholar] [CrossRef]
- Kangur, K.; Möls, T. Changes in Spatial Distribution of Phosphorus and Nitrogen in the Large North-Temperate Lowland Lake Peipsi (Estonia/Russia). In European Large Lakes Ecosystem Changes and Their Ecological and Socioeconomic Impacts; Springer: Dordrecht, The Netherlands, 2008; pp. 31–39. [Google Scholar]
- Reinart, A.; Valdmets, K. Variability of Optical Water Types in Lake Peipsi. Est. J. Ecol. 2007, 56, 33. [Google Scholar] [CrossRef]
- Alikas, K.; Ansko, I.; Vabson, V.; Ansper, A.; Kangro, K.; Uudeberg, K.; Ligi, M. Consistency of Radiometric Satellite Data over Lakes and Coastal Waters with Local Field Measurements. Remote Sens. 2020, 12, 616. [Google Scholar] [CrossRef]
- Nõges, T.; Järvet, A.; Kisand, A.; Laugaste, R.; Loigu, E.; Skakalski, B.; Nõges, P. Reaction of Large and Shallow Lakes Peipsi and Võrtsjärv to the Changes of Nutrient Loading. Hydrobiologia 2007, 584, 253–264. [Google Scholar] [CrossRef]
- Paavel, B.; Arst, H.; Reinart, A. Variability of Bio-Optical Parameters in Two North-European Large Lakes. In European Large Lakes Ecosystem Changes and Their Ecological and Socioeconomic Impacts; Springer: Dordrecht, The Netherlands, 2008; pp. 201–211. [Google Scholar]
- Fink, G.; Burke, S.; Simis, S.G.H.; Kangur, K.; Kutser, T.; Mulligan, M. Management Options to Improve Water Quality in Lake Peipsi: Insights from Large Scale Models and Remote Sensing. Water Resour. Manag. 2020, 34, 2241–2254. [Google Scholar] [CrossRef]
- Tammeorg, O.; Tuvikene, L.; Kondratyev, S.; Golosov, S.; Zverev, I.; Zadonskaya, O.; Nõges, P. Opportunities for Combining Data of Estonian and Russian Monitoring to Reflect on Water Quality in Large Transboundary Lake Peipsi. J. Great Lakes Res. 2022, 48, 961–970. [Google Scholar] [CrossRef]
- Sepp, M.; Tamm, M.; Newell, S.E.; Myers, J.A.; Hunt, T.; Palmik-Das, K.; Tuvikene, L.; Nõges, P.; Nõges, T.; McCarthy, M.J. Water Column Ammonium Regeneration Supports Productivity in Two Large, Eutrophic Lakes. Limnol. Ocean. 2025, 70, 1449–1465. [Google Scholar] [CrossRef]
- Nõges, P.; Nõges, T. Võrtsjärv Lake in Estonia. In Encyclopedia of Lakes and Reservoirs; Springer: Berlin/Heidelberg, Germany, 2012; pp. 850–861. [Google Scholar]
- Nõges, P.; Mischke, U.; Laugaste, R.; Solimini, A.G. Analysis of Changes over 44 Years in the Phytoplankton of Lake Võrtsjärv (Estonia): The Effect of Nutrients, Climate and the Investigator on Phytoplankton-Based Water Quality Indices. Hydrobiologia 2010, 646, 33–48. [Google Scholar] [CrossRef]
- Vilbaste, S.; Järvalt, A.; Kalpus, K.; Nõges, T.; Pall, P.; Piirsoo, K.; Tuvikene, L.; Nõges, P. Ecosystem Services of Lake Võrtsjärv under Multiple Stress: A Case Study. Hydrobiologia 2016, 780, 145–159. [Google Scholar] [CrossRef]
- ERA5 Reanalysis Dataset (Copernicus Climate Data Store). Available online: https://cds.climate.copernicus.eu/datasets/reanalysis-era5-single-levels?tab=download (accessed on 4 June 2025).
- PRISMA Pre-Feasibility Tool. Available online: https://prisma-prefeasibility.asi.it/ (accessed on 26 June 2025).
- Kuusk, J.; Corizzi, A.; Doxaran, D.; Duong, K.; Flight, K.; Kivastik, J.; Laizans, K.; Leymarie, E.; Muru, S.; Penkerc’h, C.; et al. HYPSTAR: A Hyperspectral Pointable System for Terrestrial and Aquatic Radiometry. Front. Remote Sens. 2024, 5, 1347507. [Google Scholar] [CrossRef]
- Kangro, K.; Pall, A.-M.; Laugaste, R.; Piirsoo, K.; Maileht, K.; Rahn, I.-A.; Alikas, K. Two Decades of Cyanobacterial Bloom Dynamics in a Shallow Eutrophic Lake: Remote Sensing Methods in Combination with Light Microscopy. Hydrobiologia 2025, 852, 425–442. [Google Scholar] [CrossRef]
- Candela, L.; Formaro, R.; Guarini, R.; Loizzo, R.; Longo, F.; Varacalli, G. The PRISMA Mission. In Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 10–15 July 2016; pp. 253–256. [Google Scholar]
- Loizzo, R.; Guarini, R.; Longo, F.; Scopa, T.; Formaro, R.; Facchinetti, C.; Varacalli, G. Prisma: The Italian Hyperspectral Mission. In Proceedings of the IGARSS 2018—2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018; pp. 175–178. [Google Scholar]
- Guanter, L.; Kaufmann, H.; Segl, K.; Foerster, S.; Rogass, C.; Chabrillat, S.; Kuester, T.; Hollstein, A.; Rossner, G.; Chlebek, C.; et al. The EnMAP Spaceborne Imaging Spectroscopy Mission for Earth Observation. Remote Sens 2015, 7, 8830–8857. [Google Scholar] [CrossRef]
- Storch, T.; Honold, H.-P.; Chabrillat, S.; Habermeyer, M.; Tucker, P.; Brell, M.; Ohndorf, A.; Wirth, K.; Betz, M.; Kuchler, M.; et al. The EnMAP Imaging Spectroscopy Mission towards Operations. Remote Sens. Environ. 2023, 294, 113632. [Google Scholar] [CrossRef]
- Odermatt, D.; Gitelson, A.; Brando, V.E.; Schaepman, M. Review of Constituent Retrieval in Optically Deep and Complex Waters from Satellite Imagery. Remote Sens. Environ. 2012, 118, 116–126. [Google Scholar] [CrossRef]
- Cogliati, S.; Sarti, F.; Chiarantini, L.; Cosi, M.; Lorusso, R.; Lopinto, E.; Miglietta, F.; Genesio, L.; Guanter, L.; Damm, A.; et al. The PRISMA Imaging Spectroscopy Mission: Overview and First Performance Analysis. Remote Sens. Environ. 2021, 262, 112499. [Google Scholar] [CrossRef]
- Free, G.; Bresciani, M.; Pinardi, M.; Giardino, C.; Alikas, K.; Kangro, K.; Rõõm, E.-I.; Vaičiūtė, D.; Bučas, M.; Tiškus, E.; et al. Detecting Climate Driven Changes in Chlorophyll-a Using High Frequency Monitoring: The Impact of the 2019 European Heatwave in Three Contrasting Aquatic Systems. Sensors 2021, 21, 6242. [Google Scholar] [CrossRef]
- Soppa, M.A.; Silva, B.; Steinmetz, F.; Keith, D.; Scheffler, D.; Bohn, N.; Bracher, A. Assessment of Polymer Atmospheric Correction Algorithm for Hyperspectral Remote Sensing Imagery over Coastal Waters. Sensors 2021, 21, 4125. [Google Scholar] [CrossRef]
- Kiselev, V.; Bulgarelli, B.; Heege, T. Sensor Independent Adjacency Correction Algorithm for Coastal and Inland Water Systems. Remote Sens. Environ. 2015, 157, 85–95. [Google Scholar] [CrossRef]
- Kutser, T.; Vahtmäe, E.; Paavel, B.; Kauer, T. Removing Glint Effects from Field Radiometry Data Measured in Optically Complex Coastal and Inland Waters. Remote Sens. Environ. 2013, 133, 85–89. [Google Scholar] [CrossRef]
- Bi, S.; Hieronymi, M. Holistic Optical Water Type Classification for Ocean, Coastal, and Inland Waters. Limnol. Ocean. 2024, 69, 1547–1561. [Google Scholar] [CrossRef]
- Drozdenko, T.; Mikhalap, S.; Mikhaylova, K.; Chernova, A. The modern status of the velikaya river delta on the state of primary producers. ETR 2019, 1, 48–53. [Google Scholar] [CrossRef]
- Piirsoo, K.; Pall, P.; Tuvikene, A.; Viik, M. Temporal and Spatial Patterns of Phytoplankton in a Temperate Lowland River (Emajogi, Estonia). J. Plankton Res. 2008, 30, 1285–1295. [Google Scholar] [CrossRef]
- Vanhellemont, Q.; Ruddick, K. Acolite for Sentinel-2: Aquatic Applications of MSI Imagery. In Proceedings of the 2016 ESA Living Planet Symposium, Prague, Czech Republic, 9–13 May 2016. [Google Scholar]
- Dozier, J.; Painter, T.H. Multispectral and Hyperspectral Remote Sensing of Alpine Snow Properties. Annu. Rev. Earth Planet. Sci. 2004, 32, 465–494. [Google Scholar] [CrossRef]
- Kubryakov, A.A.; Mikaelyan, A.S.; Stanichny, S.V. Extremely Strong Coccolithophore Blooms in the Black Sea: The Decisive Role of Winter Vertical Entrainment of Deep Water. Deep. Sea Res. Part. I Oceanogr. Res. Pap. 2021, 173, 103554. [Google Scholar] [CrossRef]
- Tammeorg, O.; Niemistö, J.; Möls, T.; Laugaste, R.; Panksep, K.; Kangur, K. Wind-Induced Sediment Resuspension as a Potential Factor Sustaining Eutrophication in Large and Shallow Lake Peipsi. Aquat. Sci. 2013, 75, 559–570. [Google Scholar] [CrossRef]
- Leeben, A.; Freiberg, R.; Tõnno, I.; Kõiv, T.; Alliksaar, T.; Heinsalu, A. A Comparison of the Palaeolimnology of Peipsi and Võrtsjärv: Connected Shallow Lakes in North-Eastern Europe for the Twentieth Century, Especially in Relation to Eutrophication Progression and Water-Level Fluctuations. Hydrobiologia 2013, 710, 227–240. [Google Scholar] [CrossRef]
- Bjerklie, D.M.; Birkett, C.M.; Jones, J.W.; Carabajal, C.; Rover, J.A.; Fulton, J.W.; Garambois, P.-A. Satellite Remote Sensing Estimation of River Discharge: Application to the Yukon River Alaska. J. Hydrol. 2018, 561, 1000–1018. [Google Scholar] [CrossRef]
- Del Castillo, C.E.; Miller, R.L. On the Use of Ocean Color Remote Sensing to Measure the Transport of Dissolved Organic Carbon by the Mississippi River Plume. Remote Sens. Environ. 2008, 112, 836–844. [Google Scholar] [CrossRef]
- Hirpa, F.A.; Hopson, T.M.; De Groeve, T.; Brakenridge, G.R.; Gebremichael, M.; Restrepo, P.J. Upstream Satellite Remote Sensing for River Discharge Forecasting: Application to Major Rivers in South Asia. Remote Sens. Environ. 2013, 131, 140–151. [Google Scholar] [CrossRef]
- Beaulieu, M.; Pick, F.; Gregory-Eaves, I. Nutrients and Water Temperature Are Significant Predictors of Cyanobacterial Biomass in a 1147 Lakes Data Set. Limnol. Ocean. 2013, 58, 1736–1746. [Google Scholar] [CrossRef]
- Cha, Y.; Cho, K.H.; Lee, H.; Kang, T.; Kim, J.H. The Relative Importance of Water Temperature and Residence Time in Predicting Cyanobacteria Abundance in Regulated Rivers. Water Res. 2017, 124, 11–19. [Google Scholar] [CrossRef]
- Mullin, C.A.; Kirchhoff, C.J.; Wang, G.; Vlahos, P. Future Projections of Water Temperature and Thermal Stratification in Connecticut Reservoirs and Possible Implications for Cyanobacteria. Water Resour. Res. 2020, 56, e2020WR027185. [Google Scholar] [CrossRef]
- Elliott, J.A. The Seasonal Sensitivity of Cyanobacteria and Other Phytoplankton to Changes in Flushing Rate and Water Temperature. Glob. Chang. Biol. 2010, 16, 864–876. [Google Scholar] [CrossRef]
- Nõges, P.; Tuvikene, L. Spatial and Annual Variability of Environmental and Phytoplankton Indicators in Lake Võrtsjärv: Implications for Water Quality Monitoring. Est. J. Ecol. 2012, 61, 227. [Google Scholar] [CrossRef]
- Mäemets, H. Commented List of Macrophyte Taxa of Lake Võrtsjärv. Proc. Est. Acad. Sci. Biology. Ecol. 2002, 51, 5. [Google Scholar] [CrossRef]
- Feldmann, T.; Nõges, P. Factors Controlling Macrophyte Distribution in Large Shallow Lake Võrtsjärv. Aquat. Bot. 2007, 87, 15–21. [Google Scholar] [CrossRef]
- Reinart, A.; Nõges, P. Light Conditions in Lake Võrtsjärv. In Lake Võrtsjärv; Haberman, J., Pihu, E., Raukas, A., Eds.; Estonian Encyclopaedia Publishers: Tallinn, Estonia, 2004; pp. 141–148. [Google Scholar]
- Kokhanovsky, A.; Lamare, M.; Di Mauro, B.; Picard, G.; Arnaud, L.; Dumont, M.; Tuzet, F.; Brockmann, C.; Box, J.E. On the Reflectance Spectroscopy of Snow. Cryosphere 2018, 12, 2371–2382. [Google Scholar] [CrossRef]
- Mäkynen, M.; Karvonen, J. MODIS Sea Ice Thickness and Open Water–Sea Ice Charts over the Barents and Kara Seas for Development and Validation of Sea Ice Products from Microwave Sensor Data. Remote Sens. 2017, 9, 1324. [Google Scholar] [CrossRef]
- Nieke, J.; Despoisse, L.; Gabriele, A.; Weber, H.; Strese, H.; Ghasemi, N.; Gascon, F.; Alonso, K.; Boccia, V.; Tsonevska, B.; et al. The Copernicus Hyperspectral Imaging Mission for the Environment (CHIME): An Overview of Its Mission, System and Planning Status. In Proceedings of the Sensors, Systems, and Next-Generation Satellites XXVII, Amsterdam, The Netherlands, 3–7 September 2023; Kimura, T., Babu, S.R., Hélière, A., Eds.; SPIE: Bellingham, DC, USA, 2023; p. 7. [Google Scholar]
Study Area | PRISMA | EnMAP |
---|---|---|
Lake Peipsi | L1 + POLYMER | L2A standard product |
Lake Võrtsjärv | L2C standard product | L2A standard product |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fabbretto, A.; Bresciani, M.; Pellegrino, A.; Kangro, K.; Greife, A.J.; Panizza, L.; Steinmetz, F.; Kuusk, J.; Giardino, C.; Alikas, K. Exploring the Spectral Variability of Estonian Lakes Using Spaceborne Imaging Spectroscopy. Appl. Sci. 2025, 15, 8357. https://doi.org/10.3390/app15158357
Fabbretto A, Bresciani M, Pellegrino A, Kangro K, Greife AJ, Panizza L, Steinmetz F, Kuusk J, Giardino C, Alikas K. Exploring the Spectral Variability of Estonian Lakes Using Spaceborne Imaging Spectroscopy. Applied Sciences. 2025; 15(15):8357. https://doi.org/10.3390/app15158357
Chicago/Turabian StyleFabbretto, Alice, Mariano Bresciani, Andrea Pellegrino, Kersti Kangro, Anna Joelle Greife, Lodovica Panizza, François Steinmetz, Joel Kuusk, Claudia Giardino, and Krista Alikas. 2025. "Exploring the Spectral Variability of Estonian Lakes Using Spaceborne Imaging Spectroscopy" Applied Sciences 15, no. 15: 8357. https://doi.org/10.3390/app15158357
APA StyleFabbretto, A., Bresciani, M., Pellegrino, A., Kangro, K., Greife, A. J., Panizza, L., Steinmetz, F., Kuusk, J., Giardino, C., & Alikas, K. (2025). Exploring the Spectral Variability of Estonian Lakes Using Spaceborne Imaging Spectroscopy. Applied Sciences, 15(15), 8357. https://doi.org/10.3390/app15158357