Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (21)

Search Parameters:
Keywords = sanidine

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 12244 KiB  
Article
The Petrology of Tuffisite in a Trachytic Diatreme from the Kızılcaören Alkaline Silicate–Carbonatite Complex, NW Anatolia
by Yalçın E. Ersoy, Hikmet Yavuz, İbrahim Uysal, Martin R. Palmer and Dirk Müller
Minerals 2025, 15(8), 867; https://doi.org/10.3390/min15080867 - 17 Aug 2025
Viewed by 307
Abstract
The Kızılcaören alkaline silicate–carbonatite complex, located in the Sivrihisar (Eskişehir, NW Anatolia) region, includes phonolite, trachyte, carbonatite, pyroclastics, and REE mineralization (bastnäsite as a critical REE mineral). The emplacement and origin of this complex are poorly constrained, as previous studies mostly concentrated on [...] Read more.
The Kızılcaören alkaline silicate–carbonatite complex, located in the Sivrihisar (Eskişehir, NW Anatolia) region, includes phonolite, trachyte, carbonatite, pyroclastics, and REE mineralization (bastnäsite as a critical REE mineral). The emplacement and origin of this complex are poorly constrained, as previous studies mostly concentrated on the petrology of the alkaline rocks, carbonatite, and REE-mineralization, and little attention has been paid to the texture, composition, and origin of the pyroclastic rocks. The pyroclastic rocks in the region contain both rounded and angular-shaped cognate and wall-rock xenoliths derived from syenitic/trachytic hypabyssal rocks and carbonatites, as well as juvenile components such as carbonatite droplets and pelletal lapilli. The syenitic/trachytic hypabyssal rock fragments contain sanidine with high BaO (up to 3.3 wt.%) contents, amphibole (magnesio-fluoro-arfvedsonite), and apatite. Some clasts seem to have reacted with carbonatitic material, including high-SrO (up to 0.6 wt.%) calcite, dolomite, baryte, benstonite, fluorapatite. The carbonatite rock fragments are composed of calcite, baryte, fluorite, and bastnäsite. The carbonatite droplets have a spinifex-like texture and contain rhombohedral Mg-Fe-Ca carbonate admixtures, baryte, potassic-richterite, and parisite embedded in larger crystals of high-SrO (up to 0.7 wt.%) calcite. The spherical–elliptical pelletal lapilli (2–3 mm) contain a lithic center mantled by flow-aligned prismatic sanidine (with BaO up to 3.5 wt.%) microphenocrysts settled in a high-SrO (up to 0.7 wt.%) cryptocrystalline CaCO3 matrix. All these components are embedded in an ultra-fine-grained matrix. The EPMA results from the matrix reveal that, chemically, it consists largely of BaO-rich sanidine, with minor carbonate, baryte and Fe-Ti oxide. The presence of pelletal lapilli, which is one of the most common and characteristic features of diatreme fillings in alkaline silicate–carbonatite complexes, reveals that the pyroclastic rocks in the region represent a tuffisite formed by intrusive fragmentation and fluidization processes in the presence of excess volatile components consisting mainly of CO2 and F. Full article
(This article belongs to the Special Issue Critical Metal Minerals, 2nd Edition)
Show Figures

Figure 1

17 pages, 7952 KiB  
Article
Achyrophanite, (K,Na)3(Fe3+,Ti,Al,Mg)5O2(AsO4)5, a New Mineral with the Novel Structure Type from Fumarolic Exhalations of the Tolbachik Volcano, Kamchatka, Russia
by Igor V. Pekov, Natalia V. Zubkova, Natalia N. Koshlyakova, Dmitry I. Belakovskiy, Marina F. Vigasina, Atali A. Agakhanov, Sergey N. Britvin, Anna G. Turchkova, Evgeny G. Sidorov, Pavel S. Zhegunov and Dmitry Yu. Pushcharovsky
Minerals 2025, 15(7), 706; https://doi.org/10.3390/min15070706 - 2 Jul 2025
Viewed by 351
Abstract
The new mineral achyrophanite (K,Na)3(Fe3+,Ti,Al,Mg)5O2(AsO4)5 was found in high-temperature sublimates of the Arsenatnaya fumarole at the Second scoria cone of the Northern Breakthrough of the Great Tolbachik Fissure Eruption, Tolbachik volcano, Kamchatka, [...] Read more.
The new mineral achyrophanite (K,Na)3(Fe3+,Ti,Al,Mg)5O2(AsO4)5 was found in high-temperature sublimates of the Arsenatnaya fumarole at the Second scoria cone of the Northern Breakthrough of the Great Tolbachik Fissure Eruption, Tolbachik volcano, Kamchatka, Russia. It is associated with aphthitalite-group sulfates, hematite, alluaudite-group arsenates (badalovite, calciojohillerite, johillerite, nickenichite, hatertite, and khrenovite), ozerovaite, pansnerite, arsenatrotitanite, yurmarinite, svabite, tilasite, katiarsite, yurgensonite, As-bearing sanidine, anhydrite, rutile, cassiterite, and pseudobrookite. Achyrophanite occurs as long-prismatic to acicular or, rarer, tabular crystals up to 0.02 × 0.2 × 1.5 mm, which form parallel, radiating, bush-like, or chaotic aggregates up to 3 mm across. It is transparent, straw-yellow to golden yellow, with strong vitreous luster. The mineral is brittle, with (001) perfect cleavage. Dcalc is 3.814 g cm–3. Achyrophanite is optically biaxial (+), α = 1.823(7), β = 1.840(7), γ = 1.895(7) (589 nm), 2V (meas.) = 60(10)°. Chemical composition (wt.%, electron microprobe) is: Na2O 3.68, K2O 9.32, CaO 0.38, MgO 1.37, MnO 0.08, CuO 0.82, ZnO 0.48, Al2O3 2.09, Fe2O3 20.42, SiO2 0.12, TiO2 7.35, P2O5 0.14, V2O5 0.33, As2O5 51.88, SO3 1.04, and total 99.40. The empirical formula calculated based on 22 O apfu is Na1.29K2.15Ca0.07Mg0.34Mn0.01Cu0.11Zn0.06Al0.44Fe3+2.77Ti1.00Si0.02P0.02S0.14V0.04As4.90O22. Achyrophanite is orthorhombic, space group P2221, a = 6.5824(2), b = 13.2488(4), c = 10.7613(3) Å, V = 938.48(5) Å3 and Z = 2. The strongest reflections of the PXRD pattern [d,Å(I)(hkl)] are 5.615(59)(101), 4.174(42)(022), 3.669(31)(130), 3.148(33)(103), 2.852(43)(141), 2.814(100)(042, 202), 2.689(29)(004), and 2.237(28)(152). The crystal structure of achyrophanite (solved from single-crystal XRD data, R = 4.47%) is unique. It is based on the octahedral-tetrahedral M-T-O pseudo-framework (M = Fe3+ with admixed Ti, Al, Mg, Na; T = As5+). Large-cation A sites (A = K, Na) are located in the channels of the pseudo-framework. The achyrophanite structure can be described as stuffed, with the defect heteropolyhedral pseudo-framework derivative of the orthorhombic Fe3+AsO4 archetype. The mineral is named from the Greek άχυρον, straw, and φαίνομαι, to appear, in allusion to its typical straw-yellow color and long prismatic habit of crystals. Full article
Show Figures

Figure 1

16 pages, 2249 KiB  
Article
Challenges in Interpreting 40Ar/39Ar Age Spectra: Clues from Hydrothermally Altered Alkali Feldspars
by Yinzhi Wang, Liekun Yang, Wenbei Shi, Lin Wu and Fei Wang
Geosciences 2025, 15(5), 188; https://doi.org/10.3390/geosciences15050188 - 21 May 2025
Viewed by 371
Abstract
Integrated 40Ar/39Ar and U-Pb geochronology, combined with microstructural analysis of Early Cretaceous volcanics from eastern China, challenge conventional interpretations of flat 40Ar/39Ar age spectra. K-feldspar sample JD-1K (122.12 ± 0.81 Ma) preserves magmatic sanidine characteristics (homogeneous composition, [...] Read more.
Integrated 40Ar/39Ar and U-Pb geochronology, combined with microstructural analysis of Early Cretaceous volcanics from eastern China, challenge conventional interpretations of flat 40Ar/39Ar age spectra. K-feldspar sample JD-1K (122.12 ± 0.81 Ma) preserves magmatic sanidine characteristics (homogeneous composition, disordered monoclinic structure), while hydrothermally altered perthite JD-2K yields a flat plateau age of 99.83 ± 0.73 Ma (~20 Ma younger than coeval K-feldspar, biotite, and zircon samples). Microstructural analyses using energy dispersive spectroscopy (SEM−EDS), Fourier transform infrared spectroscopy (FTIR), and transmission electron microscopy (TEM) methods unequivocally demonstrate that the concordant 40Ar/39Ar age spectrum of sample JD-2K is a result of isotopic resetting during fluid-mediated recrystallization processes, rather than primary post-crystallization thermal stability. In step-heating experiments, contrasting argon release patterns correlate with microstructural heterogeneities. This study challenges the paradigm that flat 40Ar/39Ar spectra uniquely signify post-crystallization thermal histories, demonstrating that hydrothermal alteration can fully reset argon systems to produce misleadingly concordant ages. This study highlights the complexity of interpreting isotopic data in hydrothermally altered rocks, emphasizing the necessity of integrated petrological-geochemical analyses to differentiate primary magmatic signals from secondary overprints. Full article
(This article belongs to the Section Geochemistry)
Show Figures

Figure 1

17 pages, 7993 KiB  
Article
Advanced Solid Geopolymer Formulations for Refractory Applications
by Shaik Hussain, Sudhir Amritphale, John Matthews, Niloy Paul, Elizabeth Matthews and Richard Edwards
Materials 2024, 17(6), 1386; https://doi.org/10.3390/ma17061386 - 18 Mar 2024
Cited by 5 | Viewed by 2157
Abstract
Cement, as a construction material, has low thermal resistance, inherent fire resistance, and is incombustible up to a certain degree. However, the loss of its mechanical performance and spalling are its primary issues, and it thus cannot retain its performance in refractory applications. [...] Read more.
Cement, as a construction material, has low thermal resistance, inherent fire resistance, and is incombustible up to a certain degree. However, the loss of its mechanical performance and spalling are its primary issues, and it thus cannot retain its performance in refractory applications. The present study explores the performance of geopolymer formulations that have excellent fire resistance properties for potential refractory applications. This study is unique, as it investigates advanced solid geopolymer formulations that need only water to activate and bind. Various solid geopolymer formulations with fly ash as a precursor; potassium hydroxide and potassium silicate as activators; and mullite and alumina as refractory aggregates were studied for their compressive strength at up to 1100 °C and compared with their two-part conventional liquid alkaline geopolymer counterparts. Advanced solid geopolymer formulations with mullite and alumina as refractory aggregates had mechanical strength values of 84 MPa and 64 MPa post-1100 °C exposure and were further exposed to ten thermal cycles of 1100 °C to study their fatigue resistance and post-exposure compressive strengths. The geopolymer sample with mullite as a refractory aggregate yielded 115.2 MPa compressive strength after the fourth cycle of exposure. This sample was also studied for its temperature distribution upon direct flame exposure. All the geopolymer formulations displayed a drop in compressive strength at 600 °C due to viscous sintering and then a rise in strength at 1100 °C due to phase transformation. X-ray diffraction studies revealed that the formation of crystalline phases such as leucite, sanidine, and annite were responsible for the superior strengths at 1100 °C for the alumina- and mullite-based geopolymer formulations. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

20 pages, 51780 KiB  
Article
Treatment of Waters Having Different Ionic Composition and pH with Natural Zeolites from Bulgaria
by Mariana Yossifova, Dimitrina Dimitrova, Elena Tacheva, Ivanina Sergeeva and Rositsa Ivanova
Minerals 2024, 14(3), 245; https://doi.org/10.3390/min14030245 - 27 Feb 2024
Cited by 3 | Viewed by 2446
Abstract
The migration of 32 elements from natural zeolitized tuffs from the Beli Plast and Golobradovo deposits (Bulgaria) was determined in ultrapure, tap, mineral, and coal mine waters in order to evaluate their desorption and adsorption properties. The tuffs are Ca-K-Na and contain clinoptilolite [...] Read more.
The migration of 32 elements from natural zeolitized tuffs from the Beli Plast and Golobradovo deposits (Bulgaria) was determined in ultrapure, tap, mineral, and coal mine waters in order to evaluate their desorption and adsorption properties. The tuffs are Ca-K-Na and contain clinoptilolite (90 and 78wt.%, respectively), plagioclase, sanidine, opal-CT, mica, quartz, montmorillonite, goethite, calcite, ankerite, apatite, and monazite. The desorption properties are best revealed during the treatment of ultrapure, tap, and mineral water, whereas the adsorption properties are best manifested in coal mine water treatment. The concentrations of Al, Si, Fe, Na, Mn, F, K, Pb, and U increase in the treated ultrapure, tap, and mineral water, while the content of K, Be, Pb, and F increase in the treated mine water. The tuffs show selective partial or complete adsorption of Na, Mg, Sr, Li, Be, Mn, Fe, Co, Ni, Cu, Zn, Al, Pb, U, and SO42−. They demonstrate the ability to neutralize acidic and alkaline pH. Sources of F are presumed to be clinoptilolite and montmorillonite. The usage of zeolitized tuffs for at-home drinking water treatment has to be performed with caution due to the migration of potentially toxic and toxic elements. Full article
Show Figures

Figure 1

16 pages, 24086 KiB  
Article
Crystallization Kinetics: Relationship between Crystal Morphology and the Cooling Rate—Applications for Different Geological Materials
by Namık Aysal, Yiğit Kurt, Hüseyin Öztürk, Gulce Ogruc Ildiz, Mehmet Yesiltas, Davut Laçin, Sinan Öngen, Timur Nikitin and Rui Fausto
Crystals 2023, 13(7), 1130; https://doi.org/10.3390/cryst13071130 - 19 Jul 2023
Cited by 9 | Viewed by 4981
Abstract
Crystal morphology is controlled by several physicochemical parameters such as the temperature, pressure, cooling rate, nucleation, diffusion, volatile composition, and viscosity. The development of different crystal morphologies is observed as a function of the cooling rate in many different rock types (i.e., glassy [...] Read more.
Crystal morphology is controlled by several physicochemical parameters such as the temperature, pressure, cooling rate, nucleation, diffusion, volatile composition, and viscosity. The development of different crystal morphologies is observed as a function of the cooling rate in many different rock types (i.e., glassy volcanic rocks, and archeometallurgical slags). Crystallization is a two-stage kinetic process that begins with the formation of a nucleus and then continues with the accumulation of ions on it. The shapes of the crystals depend on the degree of undercooling (ΔT), and euhedral crystals, having characteristic forms that reflect their crystallographic internal structure, that grow just below their liquidus temperature. In this study, crystal morphologies in different minerals (e.g., quartz, sanidine, olivine, pyroxene, magnetite, etc.) that had developed in silicic volcanic rocks (spherulites) and slags from ancient mining were investigated and characterized using optical microscopy, X-ray diffraction, and Fourier-transform infrared (FTIR), Raman, and scanning electron microscope-energy dispersive X-ray fluorescence (SEM-EDX) spectroscopic techniques. Depending on the increase in the cooling rate, quartz, feldspar, olivine, pyroxene, and magnetite minerals were found to crystallize in subhedral, skeletal, dendritic, spherical, bow-tie and fibrous forms in glassy volcanic rocks and archeometallurgical slags. Full article
(This article belongs to the Special Issue Raman Spectroscopy of Crystalline Materials and Nanostructures)
Show Figures

Figure 1

18 pages, 9363 KiB  
Article
Characterization of Volcano-Sedimentary Rocks and Related Scraps for Design of Sustainable Materials
by Luisa Barbieri, Fabiana Altimari, Fernanda Andreola, Bruno Maggi and Isabella Lancellotti
Materials 2023, 16(9), 3408; https://doi.org/10.3390/ma16093408 - 27 Apr 2023
Cited by 13 | Viewed by 2259
Abstract
This work started as a joint academia and company research project with the aim of finding new applications for domestically sourced volcanic products and related waste (pumice, lapillus, zeolitic tuff and volcanic debris from Tessennano and Arlena quarry) by creating a database of [...] Read more.
This work started as a joint academia and company research project with the aim of finding new applications for domestically sourced volcanic products and related waste (pumice, lapillus, zeolitic tuff and volcanic debris from Tessennano and Arlena quarry) by creating a database of secondary volcanic raw materials and their intrinsic characteristics to help industry replace virgin materials and enhance circularity. In this context, accurate chemical, mineralogical, morphological, granulometric and thermal characterizations were performed. Based on the results presented, it can be concluded that due to their lightness, these materials can be used in the design and preparation of lightweight aggregates for agronomic purposes or in the construction field. Furthermore, due to their aluminosilicate nature and amorphous fraction, pumice and lapillus can play the role of precursor or activator for geopolymer preparation. With its porous nature, zeolitic tuff can be exploited for flue gas treatment. Due to the presence of feldspathic phase (sanidine), these materials can be used in tile production as a fluxing component, and with their pozzolanic activity and calcium content, they have application in the binder field as supplementary cementitious material or as aggregates. Full article
(This article belongs to the Special Issue Sustainable Materials from Industrial Waste)
Show Figures

Figure 1

12 pages, 4265 KiB  
Article
Characterization of the Tunisian Phosphate Rock from Metlaoui-Gafsa Basin and Bio-Leaching Assays
by Boutheina Messai, Ines Taieb, Sonia Ben Younes, Bruno Lartiges, Ezzedine Ben Salem and Ali Ellafi
Sustainability 2023, 15(9), 7204; https://doi.org/10.3390/su15097204 - 26 Apr 2023
Cited by 6 | Viewed by 3179
Abstract
Soil contamination by heavy metals through the application of a phosphate fertilizer is a key issue for sustainable agriculture. Among contaminants, cadmium (Cd) is considered the most hazardous to human beings’ health and the surrounding environment. X-ray diffraction (XRD), combined with binocular mineralogical [...] Read more.
Soil contamination by heavy metals through the application of a phosphate fertilizer is a key issue for sustainable agriculture. Among contaminants, cadmium (Cd) is considered the most hazardous to human beings’ health and the surrounding environment. X-ray diffraction (XRD), combined with binocular mineralogical analysis and chemical analysis, was used to determine the C(I) and C(II) layers’ composition. In the C(II) (+71 µm)-size fraction, the presence of carbonate-fluorapatite, illite, and montmorillonite was revealed, whereas in the C(I) (−71 µm)-size fraction, carbonate-fluorapatite, calcite, quartz, sanidine, clinoptilolite, and taramovite were identified. The P2O5 and CaO contents were greater in the C(II) layer than that in the C(I) layer, whereas SiO2, MgO, CO2, Cd, Zn, and COrg were higher in the C(I) layer than that in the C(II) layer. The bioleaching of Cd from phosphate rock samples from the Kef Eddour deposit was investigated using three bacterial strains isolated from the local phosphate environment. A decrease in cell viability was noticed when the phosphate C(I) and C(II) samples showed toxicity in the samples. In addition, the isolated bacteria, which were initially moderately hydrophobic, changed to strongly hydrophobic. The use of the consortium (S1 + S2 + S3) was the most powerful combination to reduce the Cd content, which increased from 13.31% to 29.07% using S3 and the consortium (S1 + S2 + S3), respectively, when the C(II) (+71 µm)-size fraction sample was added to the medium. The same result was shown when the C(I) (−71 µm)-size fraction sample was used. The isolated strains could be used as a biological tool for bioleaching. Full article
(This article belongs to the Special Issue Resilience to Environmental Risks)
Show Figures

Figure 1

16 pages, 4622 KiB  
Article
Heat Treatment of Geopolymer Samples Obtained by Varying Concentration of Sodium Hydroxide as Constituent of Alkali Activator
by Ljiljana Kljajević, Miloš Nenadović, Marija Ivanović, Dušan Bučevac, Miljana Mirković, Nataša Mladenović Nikolić and Snežana Nenadović
Gels 2022, 8(6), 333; https://doi.org/10.3390/gels8060333 - 26 May 2022
Cited by 21 | Viewed by 3376
Abstract
In this paper, raw natural metakaolin (MK, Serbia) clay was used as a starting material for the synthesis of geopolymers for thermal treatment. Metakaolin was obtained by calcination of kaolin at 750 °C for 1 h while geopolymer samples were calcined at 900 [...] Read more.
In this paper, raw natural metakaolin (MK, Serbia) clay was used as a starting material for the synthesis of geopolymers for thermal treatment. Metakaolin was obtained by calcination of kaolin at 750 °C for 1 h while geopolymer samples were calcined at 900 °C, which is the key transition temperature. Metakaolin was activated by a solution of NaOH of various concentrations and sodium silicate. During the controlled heat treatment, the geopolymer samples began to melt slightly and coagulate locally. The high-temperature exposure of geopolymer samples (900 °C) caused a significant reduction in oxygen, and even more sodium, which led to the formation of a complex porous structure. As the concentration of NaOH (6 mol dm−3 and 8 mol dm−3) increased, new semi-crystalline phases of nepheline and sanidine were formed. Thermal properties were increasingly used to better understand and improve the properties of geopolymers at high temperatures. Temperature changes were monitored by simultaneous use of thermogravimetric analysis (TGA) and differential thermal analysis (DTA). The loss of mass of the investigated samples at 900 °C was in the range of 8–16%. Thermal treatment of geopolymers at 900 °C did not have much effect on the change in compressive strength of investigated samples. The results of thermal treatment of geopolymers at 900 °C showed that this is approximately the temperature at which the structure of the geopolymer turns into a ceramic-like structure. All investigated properties of the geopolymers are closely connected to the precursors and the constituents of the geopolymers. Full article
(This article belongs to the Special Issue Geopolymer Gels for Next-Generation Construction)
Show Figures

Figure 1

15 pages, 3598 KiB  
Article
Thermal Properties of Geopolymer Based on Fayalite Waste from Copper Production and Metakaolin
by Aleksandar Nikolov and Alexandar Karamanov
Materials 2022, 15(7), 2666; https://doi.org/10.3390/ma15072666 - 5 Apr 2022
Cited by 12 | Viewed by 3374
Abstract
In the present study, thermal properties of geopolymer paste, based on fayalite waste from copper producing plants and metakaolin, were analyzed. The used activator solution was a mixture of sodium water glass, potassium hydroxide and water with the following molar ratio: SiO2 [...] Read more.
In the present study, thermal properties of geopolymer paste, based on fayalite waste from copper producing plants and metakaolin, were analyzed. The used activator solution was a mixture of sodium water glass, potassium hydroxide and water with the following molar ratio: SiO2/M2O = 1.08, H2O/M2O = 15.0 and K2O/Na2O = 1.75. High strength geopolymers pastes were evaluated after exposure to 400, 800 and 1150 °C. The physical properties (absolute and apparent density, water absorption) and compressive strength were determined on the initial and the heat treated samples. The phase composition, microstructure and spectroscopic characteristics were examined by XRD, SEM-EDS, FTIR and Mössbauer spectroscopy, respectively. The structure of the heat-treated geopolymers differs in the outer and inner layers of the specimens due to variation in the phase composition. The outer layer was characterized by a reddish color and more rigidity, while the inner core was black and less viscous at elevated temperatures. The results showed that geopolymer pastes based on fayalite are fire-resistant up to 1150 °C. Moreover, after heat treatment at this temperature, the compressive strength increased by 75% to 139 MPa, while water absorption reduced by about 9 times to 1.2%. These improvements are explained with the crystallization of the geopolymer gel to leucite and K,Na-sanidine, and substitutions of Al/Fe in the geopolymer gel and iron phases. Full article
(This article belongs to the Topic Geopolymers: Synthesis, Characterization and Applications)
Show Figures

Graphical abstract

31 pages, 12520 KiB  
Article
Formation of Esseneite and Kushiroite in Tschermakite-Bearing Calc-Silicate Xenoliths Ejected in Alkali Basalt
by Luca Reato, Monika Huraiová, Patrik Konečný, František Marko and Vratislav Hurai
Minerals 2022, 12(2), 156; https://doi.org/10.3390/min12020156 - 27 Jan 2022
Cited by 7 | Viewed by 4467
Abstract
Skarnoid calc-silicate xenoliths composed of anorthite, clinopyroxene and Mg-Al spinel occur in alkali basalts of the Pliocene-Pleistocene intra-plate magmatic province in the northern part of the Pannonian Basin. Randomly oriented and elongated pseudomorphs are tschermakite crystals replaced by olivine, spinel and plagioclase. The [...] Read more.
Skarnoid calc-silicate xenoliths composed of anorthite, clinopyroxene and Mg-Al spinel occur in alkali basalts of the Pliocene-Pleistocene intra-plate magmatic province in the northern part of the Pannonian Basin. Randomly oriented and elongated pseudomorphs are tschermakite crystals replaced by olivine, spinel and plagioclase. The relict amphibole within the pseudomorphs is characterized by high VIAl, between 1.95 and 2.1, and very low occupancy of the A-site (<0.1 apfu)—these features are rarely found in nature and are thought to be diagnostic of high-pressure metamorphic rocks. Pyroxene compositions plot along continuous mixing line extending from nearly pure diopside-augite towards a Ca(Fe3+Al)AlSiO6 endmember with an equal proportion of VIAl3+ and Fe3+. Concentrations of kushiroite CaAlAlSiO6 endmember, up to 47.5 mol%, are the highest recorded in terrestrial samples. The AlFe3+-rich pyroxenes originated at the expense of diopside-augite during the interaction with carbonate-aluminosilicate melt. Forsterite (Fo72–83) and hemoilmenite with up to 32 mol% geikielite (9.3 wt% MgO) also crystallized from the melt, leaving behind the residual calcic carbonate with minor MgO (1–3 wt%). Columnar habit of neoformed olivine growing across diopside-augite layers indicates rapid crystallization from eutectic liquid. Euhedral aragonite and apatite embedded in fine-grained calcite or aragonite groundmass indicate slow crystallization of the residual carbonatite around the calcite-aragonite stability boundary. Corundum exsolutions in rock-forming anorthite are products of superimposed low-pressure pyrometamorphic reworking during transport in alkali basalt. Concomitant alkali metasomatism produced neoformed interstitial sodalite, nepheline, sanidine, albite, biotite, Mg-poor ilmenite (10–18 mol% MgTiO3), Ti-magnetite and fluorapatite. Olivine-ilmenite-aragonite-calcite thermobarometry returned temperatures of 770–860 °C and pressures of 1.8–2.1 GPa, whereas plagioclase-amphibole thermobarometer yielded 781 ± 13 °C and 2.05 ± 0.03 GPa. The calculated pressures correspond to depths of 60–70 km. The calc-silicate xenoliths are most likely metamorphosed marbles; however, a magmatic protolith (metagabbro, metaanorthosite) cannot be ruled out owing to high Cr contents in spinels (up to 30 mol% chromite) and abundant Cu-sulfides. Full article
Show Figures

Figure 1

7 pages, 2634 KiB  
Communication
Mineralogy of the Mudeungsan Tuff (Republic of Korea) Using Synchrotron X-ray Powder Diffraction and Rietveld Quantitative Analysis
by Donghoon Seoung, Pyosang Kim, Hyeonsu Kim, Hyunseung Lee, Min Huh, Hyunwoo Lee and Yongmoon Lee
Appl. Sci. 2021, 11(22), 10796; https://doi.org/10.3390/app112210796 - 15 Nov 2021
Cited by 1 | Viewed by 2338
Abstract
Mudeungsan (Mount Mudeung) is an extinct volcano located in the southwestern part of South Korea that was formed in the Late Cretaceous period. This mountain, 1187 m above sea level, is adjacent to Gwangju Metropolitan City, which has a large population (about 1.4 [...] Read more.
Mudeungsan (Mount Mudeung) is an extinct volcano located in the southwestern part of South Korea that was formed in the Late Cretaceous period. This mountain, 1187 m above sea level, is adjacent to Gwangju Metropolitan City, which has a large population (about 1.4 million) and volcanic rocks, including columnar joints, which form various types of outcrops. Although this mountain was listed as a national geopark in 2014 and a UNESCO Global Geopark in 2018, much basic research has yet to be carried out. In particular, there are no mineralogical studies of volcanic rock samples despite the well-preserved variety of volcanic rocks. For this study, X-ray diffraction analysis was conducted using rock samples from Mudeungsan columnar joints known as tuff. We report that the rocks are mostly dacite, mainly composed of quartz, plagioclase, and sanidine through Rietveld quantitative analysis. In particular, α-cristobalite, a crystalline polymorph of silica, appears in the columnar joint rocks, indicating that Mudeungsan experienced an explosive eruption during the formation of the mountain. Full article
(This article belongs to the Section Earth Sciences)
Show Figures

Figure 1

7 pages, 1066 KiB  
Proceeding Paper
Mineralogical and Geochemical Properties of Greek Evaporites, Associated with Their Prospects of Industrial Use
by Ioanna Badouna, Spiros Neokosmidis, Michael Stamatakis, Christos Karkalis, Nikolaos Koukouzas and Petros Koutsovitis
Mater. Proc. 2021, 5(1), 3; https://doi.org/10.3390/materproc2021005003 - 22 Oct 2021
Viewed by 2861
Abstract
Greece is considered as one of the most common producers of gypsum-anhydrite in Europe. The low content of impurities of these evaporite minerals, their big reserves and the low cost of logistics costs makes them exploitable and applicable for a range of industrial [...] Read more.
Greece is considered as one of the most common producers of gypsum-anhydrite in Europe. The low content of impurities of these evaporite minerals, their big reserves and the low cost of logistics costs makes them exploitable and applicable for a range of industrial uses. The current study endeavors to present the petrographic, mineralogical, geochemical and qualitative features of evaporite samples from seven selected localities of western Greece (Zakynthos Island, Filiates-Thesprotia, Etoloakarnania and Kyllini region) and Crete Island. The studied evaporitic rocks are classified as a mixture of gypsum and anhydrite, where gypsum predominates. Other minerals present in minor amounts include celestite ± calcite ± dolomite ± magnesite ± sanidine and quartz. Celestite (SrSO4) was detected in all studied samples. The highest celestite value (13.5%) corresponds to the region of Filiates, indicating that this deposit is prosperous for further research and potential Sr exploitation. Significant focus is also given on the assessment of the evaporite whiteness with respect to their mineralogical and geochemical composition. The aforementioned data aim to serve the dynamic Greek calcium sulphate industry by enhancing the evaporites’ prospects of industrial use, providing potential applications for those not already exploited. Full article
(This article belongs to the Proceedings of International Conference on Raw Materials and Circular Economy)
Show Figures

Figure 1

18 pages, 5169 KiB  
Article
Petrography and Mineral Chemistry of Monte Epomeo Green Tuff, Ischia Island, South Italy: Constraints for Identification of the Y-7 Tephrostratigraphic Marker in Distal Sequences of the Central Mediterranean
by Massimo D'Antonio, Ilenia Arienzo, Richard J. Brown, Paola Petrosino, Carlo Pelullo and Biagio Giaccio
Minerals 2021, 11(9), 955; https://doi.org/10.3390/min11090955 - 31 Aug 2021
Cited by 9 | Viewed by 4066
Abstract
The 56 ka Monte Epomeo Green Tuff (MEGT) resulted from the largest volume explosive eruption from Ischia island (south Italy). Its tephra is one of the main stratigraphic markers of the central Mediterranean area. Despite its importance, a detailed characterisation of the petrography [...] Read more.
The 56 ka Monte Epomeo Green Tuff (MEGT) resulted from the largest volume explosive eruption from Ischia island (south Italy). Its tephra is one of the main stratigraphic markers of the central Mediterranean area. Despite its importance, a detailed characterisation of the petrography and mineral chemistry of MEGT is lacking. To fill this gap, we present detailed petrographic description and electron microprobe mineral chemistry data on samples collected on-land from the MEGT. Juvenile clasts include pumice, scoria, and obsidian fragments with porphyritic/glomeroporphyritic, vitrophyric, and fragmental textures. The porphyritic index is 13–40 vol.%, and phenocryst phases include alkali-feldspar, plagioclase, clinopyroxene, ferrian phlogopite, and titano-magnetite, in order of decreasing abundance; accessory phases include sphene, hydroxy-fluor-apatite, and rare edenite. Plagioclase varies from predominant andesine to subordinate oligoclase, whereas alkali-feldspar is more variable from sanidine to anorthoclase; quasi-pure sanidine commonly occurs as either rim or recrystallisation overgrowth of large phenocrysts due to hydrothermal alteration. Secondary minerals include veins and patches of carbonate minerals, Fe-Mn oxyhydroxides, clay minerals, and zeolites. Clinopyroxene is ferroan diopside (En45–29Fs7–27) and never reaches Na-rich compositions. This feature allows the discrimination of MEGT from aegirine-bearing, distal tephra layers erroneously attributed to MEGT, with implications for the areal distribution of Ischia explosive deposits. Full article
Show Figures

Figure 1

19 pages, 7473 KiB  
Article
Dioskouriite, CaCu4Cl6(OH)4∙4H2O: A New Mineral Description, Crystal Chemistry and Polytypism
by Igor V. Pekov, Natalia V. Zubkova, Andrey A. Zolotarev, Vasiliy O. Yapaskurt, Sergey V. Krivovichev, Dmitry I. Belakovskiy, Inna Lykova, Marina F. Vigasina, Anatoly V. Kasatkin, Evgeny G. Sidorov and Dmitry Yu. Pushcharovsky
Minerals 2021, 11(1), 90; https://doi.org/10.3390/min11010090 - 18 Jan 2021
Cited by 4 | Viewed by 4051
Abstract
A new mineral, dioskouriite, CaCu4Cl6(OH)4∙4H2O, represented by two polytypes, monoclinic (2M) and orthorhombic (2O), which occur together, was found in moderately hot zones of two active fumaroles, Glavnaya Tenoritovaya and Arsenatnaya, [...] Read more.
A new mineral, dioskouriite, CaCu4Cl6(OH)4∙4H2O, represented by two polytypes, monoclinic (2M) and orthorhombic (2O), which occur together, was found in moderately hot zones of two active fumaroles, Glavnaya Tenoritovaya and Arsenatnaya, at the Second scoria cone of the Northern Breakthrough of the Great Tolbachik Fissure Eruption, Tolbachik volcano, Kamchatka, Russia. Dioskouriite seems to be a product of the interactions involving high-temperature sublimate minerals, fumarolic gas and atmospheric water vapor at temperatures not higher than 150 °C. It is associated with avdoninite, belloite, chlorothionite, eriochalcite, sylvite, halite, carnallite, mitscherlichite, chrysothallite, sanguite, romanorlovite, feodosiyite, mellizinkalite, flinteite, kainite, gypsum, sellaite and earlier hematite, tenorite and chalcocyanite in Glavnaya Tenoritovaya and with avdoninite and earlier hematite, tenorite, fluorophlogopite, diopside, clinoenstatite, sanidine, halite, aphthitalite-group sulfates, anhydrite, pseudobrookite, powellite and baryte in Arsenatnaya. Dioskouriite forms tabular, lamellar or flattened prismatic, typically sword-like crystals up to 0.01 mm × 0.04 mm × 0.1 mm combined in groups or crusts up to 1 × 2 mm2 in area. The mineral is transparent, bright green with vitreous luster. It is brittle; cleavage is distinct. The Mohs hardness is ca. 3. Dmeas is 2.75(1) and Dcalc is 2.765 for dioskouriite-2O and 2.820 g cm−3 for dioskouriite-2M. Dioskouriite-2O is optically biaxial (+), α = 1.695(4), β = 1.715(8), γ = 1.750(6) and 2Vmeas. = 70(10)°. The Raman spectrum is reported. The chemical composition (wt%, electron microprobe data, H2O calculated by total difference; dioskouriite-2O/dioskouriite-2M) is: K2O 0.03/0.21; MgO 0.08/0.47; CaO 8.99/8.60; CuO 49.24/49.06; Cl 32.53/32.66; H2O(calc.) 16.48/16.38; -O=Cl −7.35/−7.38; total 100/100. The empirical formulae based on 14 O + Cl apfu are: dioskouriite-2O: Ca1.04(Cu4.02Mg0.01)Σ4.03[Cl5.96(OH)3.90O0.14]Σ10∙4H2O; dioskouriite-2M: (Ca1.00K0.03)Σ4.03(Cu4.01Mg0.08)Σ4.09[Cl5.99(OH)3.83O0.18]Σ10∙4H2O. Dioskouriite-2M has the space group P21/c, a = 7.2792(8), b = 10.3000(7), c = 20.758(2) Å, β = 100.238(11)°, V = 1531.6(2) Å3 and Z = 4; dioskouriite-2O: P212121, a = 7.3193(7), b = 10.3710(10), c = 20.560(3) Å, V = 1560.6(3) Å3 and Z = 4. The crystal structure (solved from single-crystal XRD data, R = 0.104 and 0.081 for dioskouriite-2M and -2O, respectively) is unique. The structures of both polytypes are based upon identical BAB layers parallel to (001) and composed from Cu2+-centered polyhedra. The core of each layer is formed by a sheet A of edge-sharing mixed-ligand octahedra centered by Cu(1), Cu(2), Cu(3), Cu(5) and Cu(6) atoms, whereas distorted Cu(4)(OH)2Cl3 tetragonal pyramids are attached to the A sheet on both sides, along with the Ca(OH)2(H2O)4Cl2 eight-cornered polyhedra, which provide the linkage of the two adjacent layers via long Ca−Cl bonds. The Cu(4) and Ca polyhedra form the B sheet. The difference between the 2M and 2O polytypes arises as a result of different stacking of layers along the c axis. The cation array of the layer corresponds to the capped kagomé lattice that is also observed in several other natural Cu hydroxychlorides: atacamite, clinoatacamite, bobkingite and avdoninite. The mineral is named after Dioskouri, the famous inseparable twin brothers of ancient Greek mythology, Castor and Polydeuces, the same in face but different in exercises and achievements; the name is given in allusion to the existence of two polytypes that are indistinguishable in appearance but different in symmetry, unit cell configuration and XRD pattern. Full article
(This article belongs to the Collection New Minerals)
Show Figures

Figure 1

Back to TopTop