Mineralogy of the Mudeungsan Tuff (Republic of Korea) Using Synchrotron X-ray Powder Diffraction and Rietveld Quantitative Analysis
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kim, S.W.; Kwon, S.; Park, S.-I.; Lee, C.; Cho, D.-L.; Lee, H.-J.; Ko, K.; Kim, S.J. SHRIMP U–Pb dating and geochemistry of the Cretaceous plutonic rocks in the Korean Peninsula: A new tectonic model of the Cretaceous Korean Peninsula. Lithos 2016, 262, 88–106. [Google Scholar] [CrossRef]
- Ahn, K.S. Geology and landscape of Mt. Mudeung Province Park, Korea. J. Petrol. Soc. Korea 2010, 19, 109–121. [Google Scholar]
- Kim, Y.J.; Park, J.B.; Park, B.K. Petrochemistry on igneous rocks in the Mt. Mudeung area. J. Petrol. Soc. Korea 2002, 11, 214–233. [Google Scholar]
- Jung, W.; Kil, Y.; Huh, M. A petrological study of the Mudeungsan Tuff focused on Cheonwangbong and Anyangsan. J. Petrol. Soc. Korea 2014, 23, 325–336. [Google Scholar] [CrossRef][Green Version]
- Lim, C.; Huh, M.; Yi, K.; Lee, C. Genesis of the columnar joints from welded tuff in Mount Mudeung National Geopark, Republic of Korea. Earth Planets Space 2015, 67, 1–19. [Google Scholar] [CrossRef]
- Rietveld, H.M. A profile refinement method for nuclear and magnetic structures. J. Appl. Crystallogr. 1969, 2, 65–71. [Google Scholar] [CrossRef]
- Bish, D.L.; Howard, S.A. Quantitative phase analysis using the Rietveld method. J. Appl. Crystallogr. 1988, 21, 86–91. [Google Scholar] [CrossRef]
- Schreiner, W.T.; Jenkins, R. A second derivative algorithm for identification of peaks in powder diffraction patterns. Adv. X-Ray Anal. 1979, 23, 287–293. [Google Scholar] [CrossRef]
- Tompson, P.; Cox, D.E.; Hastings, J.B. Rietveld Refinement of Debye-Scherrer Synchrotron X-ray Data from Al2O3. J. Appl. Crystallogr. 1987, 20, 79–83. [Google Scholar] [CrossRef]
- Bas, M.J.L.; Maitre, R.W.L.; Streckeisen, A.; Zanettin, B.; IUGS Subcommission on the Systematics of Igneous Rocks. A Chemical Classification of Volcanic Rocks Based on the Total Alkali-Silica Diagram. J. Petrol. 1986, 27, 745–750. [Google Scholar] [CrossRef]
- Schipper, C.I.; Castro, J.M.; Tuffen, H.; Wadsworth, F.B.; Chappell, D.; Pantoja, A.E.; Simpson, M.P.; Le Ru, E.C. Cristobalite in the 2011–2012 Cordón Caulle eruption (Chile). Bull. Volcanol. 2015, 77, 34. [Google Scholar] [CrossRef]
- Baxter, P.J.; Bonadonna, C.; Dupree, R.; Hards, V.L.; Kohn, S.C.; Murphy, M.D.; Nichols, A.; Nicholson, R.A.; Norton, G.; Searl, A.; et al. Cristobalite in volcanic ash of the soufriere hills volcano, montserrat, british west indies. Science 1999, 283, 1142–1145. [Google Scholar] [CrossRef] [PubMed]
- Damby, D.E.; Llewellin, E.W.; Horwell, C.J.; Williamson, B.J.; Najorka, J.; Cressey, G.; Carpenter, M. The [alpha]-[beta] phase transition in volcanic cristobalite. J. Appl. Crystallogr. 2014, 47, 1205–1215. [Google Scholar] [CrossRef] [PubMed]
- Reich, M.; Zúñiga, A.; Amigo, Á.; Vargas, G.; Morata, D.; Palacios, C.; Parada, M.Á.; Garreaud, R.D. Formation of cristobalite nanofibers during explosive volcanic eruptions. Geology 2009, 37, 435–438. [Google Scholar] [CrossRef]
- Horwell, C.J.; Williamson, B.J.; Llewellin, E.W.; Damby, D.E.; Le Blond, J.S. The nature and formation of cristobalite at the Soufrière Hills volcano, Montserrat: Implications for the petrology and stability of silicic lava domes. Bull. Volcanol. 2013, 75, 696. [Google Scholar] [CrossRef]
- Duffy, C.J. Kinetics of Silica-Phase Transitions; Report Number LA-12564-MS; Los Alamos National Lab. (LANL): Los Alamos, NM, USA, 1993; p. 22. [Google Scholar]
- Ernst, W.G.; CALVERT, S.E. An experimental study of the reerystallization of porcelanite and its bearing on the origin of some bedded cherts. Am. J. Sci. 1969, 267, 114–133. [Google Scholar]
- Boudon, G.; Balcone-Boissard, H.; Villemant, B.; Morgan, D.J. What factors control superficial lava dome explosivity? Sci. Rep. 2015, 5, 14551. [Google Scholar] [CrossRef] [PubMed]
- Andrade, F.R.D.d.; Polo, L.A.; Janasi, V.d.A.; Carvalho, F.M.d.S. Volcanic glass in Cretaceous dacites and rhyolites of the Paraná Magmatic Province, southern Brazil: Characterization and quantification by XRD-Rietveld. J. Volcanol. Geotherm. Res. 2018, 355, 219–231. [Google Scholar] [CrossRef]
SiO2 | Al2O3 | TiO2 | Fe2O3 | MgO | CaO | Na2O | K2O | MnO | P2O5 | LOI | |
---|---|---|---|---|---|---|---|---|---|---|---|
ISD-1 | 64.64 | 16.16 | 0.58 | 4.61 | 1.55 | 4.11 | 3.79 | 3.17 | 0.09 | 0.19 | 1.08 |
ISD-2 | 64.53 | 15.91 | 0.56 | 4.41 | 1.51 | 4.09 | 3.83 | 3.22 | 0.09 | 0.19 | 1.61 |
IR-1 | 64.73 | 15.75 | 0.57 | 4.52 | 1.60 | 4.21 | 3.83 | 3.11 | 0.10 | 0.19 | 1.34 |
IR-2 | 64.53 | 15.56 | 0.58 | 4.59 | 1.58 | 4.00 | 3.78 | 3.31 | 0.10 | 0.19 | 1.75 |
BN-1 | 65.09 | 16.07 | 0.58 | 4.44 | 1.44 | 3.86 | 3.75 | 3.34 | 0.08 | 0.19 | 1.06 |
BN-2 | 64.83 | 15.57 | 0.57 | 4.45 | 1.45 | 3.84 | 3.77 | 3.23 | 0.09 | 0.19 | 1.98 |
NT-1 | 64.24 | 15.93 | 0.59 | 4.60 | 1.56 | 4.08 | 3.79 | 3.20 | 0.09 | 0.19 | 1.70 |
Anyang | 64.55 | 15.54 | 0.59 | 4.52 | 1.48 | 3.67 | 3.57 | 3.34 | 0.09 | 0.19 | 2.39 |
Average | 64.64 | 15.81 | 0.58 | 4.52 | 1.52 | 3.98 | 3.76 | 3.24 | 0.09 | 0.19 | 1.61 |
wRp | Quartz | Plagioclase | Sanidine | α-Cristobalite | Chlorite | Biotite | Zeolite | Sum | |
---|---|---|---|---|---|---|---|---|---|
ISD-1 | 5.8(1) | 26.8(1) | 62.7(1) | 9.2(1) | 0.6(1) | 0.6(1) | 99.9(1) | ||
ISD-2 | 11.7(1) | 29.0(1) | 58.2(1) | 9.9(1) | 0.7(1) | 0.9(1) | 1.1(1) | 0.2(1) | 100.0(1) |
IR-1 | 5.7(1) | 25.1(1) | 56.9(1) | 15.8(1) | 1.1(1) | 0.5(1) | 0.5(1) | 99.9(1) | |
IR-2 | 5.4(1) | 33.6(1) | 49.3(1) | 14.2(1) | 2.7(1) | 0.1(1) | 99.9(1) | ||
BN-1 | 5.7(1) | 22.3(1) | 61.5(1) | 11.6(1) | 2.6(1) | 2.0(1) | 100(1) | ||
BN-2 | 4.3(1) | 32.5(1) | 47.7(1) | 19.3(1) | 0.4(1) | 0.1(1) | 100(1) | ||
NT-1 | 4.3(1) | 21.9(1) | 64.4(1) | 13.0(1) | 0.6(1) | 0.1(1) | 100(1) | ||
Anyang | 4.8(1) | 29.9(1) | 55.7(1) | 11.7(1) | 0.1(1) | 1.1(1) | 0.4(1) | 1.1(1) | 100(1) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seoung, D.; Kim, P.; Kim, H.; Lee, H.; Huh, M.; Lee, H.; Lee, Y. Mineralogy of the Mudeungsan Tuff (Republic of Korea) Using Synchrotron X-ray Powder Diffraction and Rietveld Quantitative Analysis. Appl. Sci. 2021, 11, 10796. https://doi.org/10.3390/app112210796
Seoung D, Kim P, Kim H, Lee H, Huh M, Lee H, Lee Y. Mineralogy of the Mudeungsan Tuff (Republic of Korea) Using Synchrotron X-ray Powder Diffraction and Rietveld Quantitative Analysis. Applied Sciences. 2021; 11(22):10796. https://doi.org/10.3390/app112210796
Chicago/Turabian StyleSeoung, Donghoon, Pyosang Kim, Hyeonsu Kim, Hyunseung Lee, Min Huh, Hyunwoo Lee, and Yongmoon Lee. 2021. "Mineralogy of the Mudeungsan Tuff (Republic of Korea) Using Synchrotron X-ray Powder Diffraction and Rietveld Quantitative Analysis" Applied Sciences 11, no. 22: 10796. https://doi.org/10.3390/app112210796
APA StyleSeoung, D., Kim, P., Kim, H., Lee, H., Huh, M., Lee, H., & Lee, Y. (2021). Mineralogy of the Mudeungsan Tuff (Republic of Korea) Using Synchrotron X-ray Powder Diffraction and Rietveld Quantitative Analysis. Applied Sciences, 11(22), 10796. https://doi.org/10.3390/app112210796