Formation of Esseneite and Kushiroite in Tschermakite-Bearing Calc-Silicate Xenoliths Ejected in Alkali Basalt
Abstract
:1. Introduction
2. Geological Setting
3. Materials and Methods
4. Results
4.1. Petrography and Textures
4.2. Mineral Assemblages
4.3. Mineral Compositions
4.3.1. Plagioclase
4.3.2. Pyroxene
4.3.3. Olivine
4.3.4. Amphibole
(AlIV1.80–1.86Si6.14–6.20)O22(OH)2
EPMA (wt% Oxide) | Formula Based on 24 (O, OH, F, Cl) | |||||
---|---|---|---|---|---|---|
Analysis | 9 | 14 | 9 | 14 | ||
SiO2 | 44.96 | 45.45 | T (8 apfu) | Si | 6.144 | 6.204 |
TiO2 | 0.01 | 0.01 | Al | 1.856 | 1.796 | |
Al2O3 | 23.62 | 24.21 | C (5 apfu) | Ti | 0.001 | 0.001 |
Cr2O3 | b.d.l. | b.d.l. | Al | 1.948 | 2.100 | |
NiO | 0.01 | 0.01 | Fe3+ | 0.187 | ||
Fe2O3 * | 1.82 | 0.00 | Mn2+ | 0.009 | ||
FeO | 2.22 | 3.65 | Fe2+ | 0.208 | 0.417 | |
MnO | 0.07 | 0.08 | Mg | 2.656 | 2.464 | |
MgO | 13.04 | 12.11 | C subtotal | 5.000 | 4.991 | |
CaO | 10.78 | 11.01 | B (2 apfu) | Mn2+ | 0.008 | |
Na2O | 1.65 | 1.80 | Fe2+ | 0.046 | ||
K2O | 0.10 | 0.10 | Ca | 1.579 | 1.611 | |
Cl | b.d.l. | b.d.l. | Na | 0.368 | 0.389 | |
F | b.d.l. | b.d.l. | A (1 apfu) | Na | 0.070 | 0.088 |
H2O+ | 1.69 | 1.69 | K | 0.017 | 0.017 | |
Total | 99.96 | 100.10 | ▯ | 0.913 | 0.895 | |
W (2 apfu) | OH | 2.000 | 2.000 |
4.3.5. Carbonates
4.3.6. Spinel-Group Minerals
4.3.7. Rhombohedral Fe,Ti-Oxides
4.3.8. Melilite
Sample | Ca-14 | Ca-14 | Ca-14 | Ca-14 | Ca-14 | Cam-14 |
---|---|---|---|---|---|---|
Analysis # | 49 | 56 | 57 | 61 | 86 | 10 |
SiO2 (wt%) | 41.40 | 40.91 | 36.34 | 32.69 | 37.25 | 35.73 |
TiO2 | 0.01 | b.d.l. | 0.02 | 0.02 | 0.02 | 0.04 |
Al2O3 | 6.70 | 6.13 | 13.42 | 19.07 | 11.37 | 14.78 |
Cr2O3 | 0.02 | 0.05 | 0.02 | 0.05 | 0.02 | 0.01 |
FeO | 7.10 | 7.33 | 6.47 | 3.98 | 5.28 | 5.44 |
NiO | 0.01 | b.d.l. | b.d.l. | 0.01 | b.d.l. | 0.01 |
MnO | 0.15 | 0.21 | 0.26 | 0.09 | 0.14 | 0.11 |
MgO | 6.61 | 6.55 | 3.85 | 3.65 | 5.43 | 4.13 |
CaO | 36.39 | 37.04 | 37.56 | 38.03 | 36.55 | 36.77 |
K2O | 0.03 | 0.03 | b.d.l. | 0.02 | 0.04 | 0.03 |
Na2O | 1.89 | 1.87 | 1.72 | 1.51 | 2.17 | 2.14 |
Total | 100.30 | 100.12 | 99.66 | 99.12 | 98.26 | 99.20 |
Si (apfu) | 1.918 | 1.901 | 1.696 | 1.517 | 1.745 | 1.660 |
Ti | 0.000 | 0.000 | 0.001 | 0.001 | 0.001 | 0.001 |
AlIV | 0.082 | 0.099 | 0.304 | 0.483 | 0.255 | 0.340 |
AlVI | 0.284 | 0.237 | 0.434 | 0.560 | 0.373 | 0.470 |
Cr | 0.001 | 0.002 | 0.001 | 0.002 | 0.001 | 0.000 |
Fe3+ * | 0.000 | 0.030 | 0.025 | 0.058 | 0.079 | 0.062 |
Fe2+ | 0.275 | 0.255 | 0.228 | 0.096 | 0.128 | 0.150 |
Ni | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.001 |
Mn | 0.006 | 0.008 | 0.010 | 0.004 | 0.005 | 0.004 |
Mg | 0.456 | 0.454 | 0.268 | 0.252 | 0.379 | 0.286 |
Ca | 1.806 | 1.844 | 1.878 | 1.890 | 1.844 | 1.831 |
K | 0.002 | 0.002 | 0.000 | 0.001 | 0.002 | 0.002 |
Na | 0.169 | 0.168 | 0.156 | 0.136 | 0.197 | 0.193 |
Na-melilite ** (mol%) | 17.4 | 16.6 | 15.1 | 13.2 | 19.1 | 18.8 |
Gehlenite | 1.5 | 0.0 | 24.7 | 42.2 | 13.5 | 24.2 |
Åkermanite | 50.6 | 51.2 | 31.0 | 27.6 | 43.6 | 32.7 |
Fe-åkermanite | 30.5 | 32.2 | 29.2 | 16.9 | 23.8 | 24.2 |
4.4. Thermobarometry
5. Discussion
5.1. Protolith
5.2. P-T Constraints on the Stability of Tschermakite, Kushiroite and Esseneite
Ca2Mg3Al4Si6O22(OH)2 + CaCO3 = 2CaMgSi2O6 + CaAl2Si2O8 + MgAl2O4 + H2O + CO2
Ca2Mg3Al4Si6O22(OH)2 + MgCO3 = Mg3Al2Si3O12 + CaMgSi2O6 + CaAl2Si2O8 + H2O + CO2
6. Conclusions
- The presence of Al,Fe3+-rich pyroxenes with melilite inclusions testifies a thermo-metamorphic interaction of xenoliths with strongly oxidizing carbonate-aluminosilicate melt with decreased aSiO2. Concentrations of the kushiroite endmember in some pyroxenes, up to 47.5 mol% (31 wt% Al2O3), are substantially higher than the highest natural terrestrial values known to the authors, i.e., 24 wt% in gehlenite-rich skarns from the Carpathians [7] and 22.3 wt% in exoskarn xenoliths ejected by the Merapi volcano, Indonesia [46].
- Tschermakite with high VIAl content (1.9–2.1 apfu) and very low occupancy of the A-site (<0.1 apfu), together with aragonite and calcite coexisting in carbonate pockets indicate high-pressure metamorphic conditions contradictory with other skarn xenoliths found in pyroclastic deposits [46,85,86] or layered intrusions [87] formed at pressures below 0.1 GPa. The olivine-ilmenite-aragonite-calcite and plagioclase-amphibole thermobarometers returned temperatures within the 770–860 °C range and pressures between 1.8 and 2.1 GPa, corresponding to depths of 60–70 km assuming lithostatic load. The presence of Al,Fe3+ pyroxenes, forsterite and Mg,Al-spinel at the expense of garnet is a consequence of the high Al content of the parental rock, low SiO2 activity, high CO2 partial pressure and strongly oxidizing conditions.
- The finding of relict tschermakite in spinel-plagioclase-forsterite pseudomorphs suggest a metamorphosed calc-silicate marble originating from a sedimentary protolith. On the other hand, a magmatic protolith, similar to layered gabbro-anorthosite complexes contaminated by calcic carbonatite melt [87] cannot be ruled out considering high Cr contents in spinels and pyroxenes, abundant Cu-sulfides, and high CaO contents, 0.3–1.0 wt% CaO, in forsterite.
- Interactions between xenoliths and basalt host were dimension-dependent, showing smaller xenoliths to undergo more intense alkalic metasomatic alteration recorded by the crystallization of interstitial biotite, sanidine, sodalite, nepheline, Mg-poor ilmenite and Fe-Ti magnetite. The thermal overprint of smaller xenoliths resulted in local exsolution of corundum from basic plagioclase.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cosca, M.; Peacor, D. Chemistry and structure of esseneite (CaFe3+AlSiO6), a new pyroxene produced by pyrometamorphism. Am. Mineral. 1987, 72, 148–156. [Google Scholar]
- Foit, F.; Hooper, R.; Rosenberg, P. An unusual pyroxene, melilite, and iron oxide mineral assemblage in a coal-fire buchite from Buffalo, Wyoming. Am. Mineral. 1987, 72, 137–147. [Google Scholar]
- Kruszewski, L.; Gatel, P.; Thiéry, V.; Moszumanska, I.; Kusy, D. Crystallochemical behavior of slag minerals and the occurrence of potentially new mineral species from Lapanouse-de-Sévérac, France. In Coal and Peat Fires: A Global Perspective; Stracher, G., Ed.; Elsevier: Amsterdam, The Netherlands, 2018; Volume 5, pp. 243–300. [Google Scholar]
- Chesnokov, B.V.; Shcherbakova, E.P. Mineralogiya gorelykh Otvalov Chelyabinskogo Ugolnogo Basseina (Opyt Mineralogii Tekhnogeneza) (Mineralogy of Burnt Dumps of the Chelyabinsk Coal Basin—Experience of Mineralogy of Technogenesis); Nauka: Moscow, Russia, 1991. [Google Scholar]
- Vapnik, Y.; Sharygin, V.; Sokol, E.V. Paralavas in a combustion metamorphic complex: Hatrurim Basin, Israel. Geol. Soc. Am. Rev. Eng. Geol. 2007, 18, 1–21. [Google Scholar]
- Yakubovich, O.V.; Zayakina, N.V.; Oleinikov, O.B.; Kostin, A.V. Esseneite from xenoliths in dacite lavas: Crystal structure and genesis. Geol. Ore Dep. 2019, 61, 689–695. [Google Scholar] [CrossRef]
- Pascal, M.; Katona, I.; Fonteilles, M.; Verkaeren, J. Relics of high-temperature clinopyroxene on the join Di–CaTs with up to 72 mol. % Ca(Al,Fe3+)AlSiO6 in the skarns of Ciclova and Magureaua Vatei, Carpathians, Romania. Can. Mineral. 2005, 43, 857–881. [Google Scholar] [CrossRef] [Green Version]
- Kimura, M.; El Goresy, A.; Palme, H.; Zinner, E. Ca-, Al-rich inclusions in the unique chondrite ALH85085: Petrology, chemistry, and isotopic compositions. Geochim. Cosmochim. Acta 1993, 57, 2329–2359. [Google Scholar] [CrossRef]
- Kimura, M.; Mikouchi, T.; Suzuki, A.; Miyahara, M.; Ohtani, E.; Goresy, A. Kushiroite, CaAlAlSiO6: A new mineral of the pyroxene group from the ALH 85085 CH chondrite, and its genetic significance in refractory inclusions. Am. Mineral. 2009, 94, 1479–1482. [Google Scholar] [CrossRef]
- Ma, C.; Simon, S.; Rossman, G.; Grossman, L. Calcium Tschermak’s pyroxene, CaAlAlSiO6, from the Allende and Murray meteorites: EBSD and micro-Raman characterizations. Am. Mineral. 2009, 94, 1483–1486. [Google Scholar] [CrossRef]
- Hays, J.F. Stability and properties of the synthetic pyroxene CaAl2SiO6. Am. Mineral. 1966, 51, 1524–1529. [Google Scholar]
- Kimura, M.; El Goresy, A.; Mikouchi, T.; Suzuki, A.; Miyahara, M.; Ohtani, E. Kushiroite, CaAl2SiO6, a new mineral in carbonaceous chondrites: Its formation conditions and genetic significance in Ca-Al rich refractory inclusions. Meteor. Planet. Sci. 2009, 44, A110. [Google Scholar]
- Konečný, V.; Kováč, M.; Lexa, J.; Šefara, J. Neogene evolution of the Carpatho-Pannonian region: An interplay of subduction and back-arc diapiric uprise in the mantle. EGU Stephan Mueller Spec. Pub. Ser. 2002, 1, 105–123. [Google Scholar] [CrossRef]
- Downes, H.; Pantó, G.; Póka, T.; Mattey, D.; Greenwood, P. Calc-alkaline volcanics of the Inner Carpathian arc, Northern Hungary: New geochemical and oxygen isotopic results. Acta Vulcanol. 1995, 7, 29–41. [Google Scholar]
- Dobosi, G. Late-Cenozoic alkalic basalt magmatism in northern Hungary and Slovakia: Petrology, source compositions and relationship to tectonics. Acta Vulcanol. 1995, 7, 199–207. [Google Scholar]
- Konečný, V.; Lexa, J.; Balogh, K.; Konečný, P. Alkali basalt volcanism in Southern Slovakia: Volcanic forms and time evolution. Acta Vulcanol. 1995, 7, 167–172. [Google Scholar]
- Vass, D.; Elečko, M. (Eds.) Vysvetlivky ku Geologickej Mape Lučenskej Kotliny a Cerovej vrchoviny (Explanatory Notes to the Geological Map of Lučenská Kotlina Depression and Cerová Vrchovina Upland 1:50 000); Štátny Geologicky Ústav D. Štúra: Bratislava, Slovakia, 1992; 196p. (In Slovak) [Google Scholar]
- Huraiová, M.; Konečný, P.; Konečný, V.; Simon, K.; Hurai, V. Mafic and salic igneous xenoliths in late Tertiary alkaline basalts: Fluid inclusion and mineralogical evidence for a deep-crustal magmatic reservoir in the Western Carpathians. Eur. J. Mineral. 1996, 8, 901–916. [Google Scholar] [CrossRef] [Green Version]
- Huraiová, M.; Paquette, J.L.; Konečný, P.; Gannoun, A.M.; Hurai, V. Geochemistry, mineralogy, and zircon U–Pb–Hf isotopes in peraluminous A-type granite xenoliths in Pliocene–Pleistocene basalts of northern Pannonian Basin (Slovakia). Contrib. Mineral. Petrol. 2017, 172, 59. [Google Scholar] [CrossRef]
- Huraiová, M.; Konečný, P.; Hurai, V. Niobium Mineralogy of Pliocene A1-Type Granite of the Carpathian Back-Arc Basin, Central Europe. Minerals 2019, 9, 488. [Google Scholar] [CrossRef] [Green Version]
- Hurai, V.; Simon, K.; Wiechert, U.; Hoefs, J.; Konečný, P.; Huraiová, M.; Pironon, J.; Lipka, J. Immiscible separation of metalliferous Fe/Ti-oxide melts from fractionating alkali basalt: P-T-f O2 conditions and two-liquid elemental partitioning. Contrib. Mineral. Petrol. 1998, 133, 12–29. [Google Scholar] [CrossRef]
- Hurai, V.; Huraiová, M.; Konečny, P. REE minerals as geochemical proxies of Late-Tertiary alkalic silicate±carbonatite intrusions beneath Carpathian back-arc basin. Minerals 2021, 11, 369. [Google Scholar] [CrossRef]
- Konečný, V.; Lexa, J.; Konečný, P.; Balogh, K.; Elečko, M.; Hurai, V.; Huraiová, M.; Pristaš, J.; Sabol, M.; Vass, D. Guidebook to the Southern Slovakia Alkali Basalt Volcanic Field; Štátny Geologicky Ústav D. Štúra: Bratislava, Slovakia, 2004; 143p. [Google Scholar]
- Konečný, V. Paleogeografická Rekonštrukcia, Vulkanológia a Časová Evolúcia Cerovej Bazaltovej Formácie. In Geológia Lučenskej kotliny a Cerovej Vrchoviny; Vass, D., Elečko, M., Konečný, V., Eds.; Štátny Geologický Ústav D. Štúra: Bratislava, Slovakia, 2007; pp. 196–202. [Google Scholar]
- Merlet, C. An accurate computer correction program for quantitative electron probe microanalysis. Microchim. Acta 1994, 114, 363–376. [Google Scholar] [CrossRef]
- Åmli, R.; Griffin, W. Standards and correction factors for microprobe analysis of REE minerals. Am. Mineral. 1975, 60, 599–606. [Google Scholar]
- Konečný, P.; Siman, P.; Holický, I.; Janák, M.; Kollárová, V. Method of monazite dating by means of the microprobe. Miner. Slov. 2004, 36, 225–235. [Google Scholar]
- Schneider, C.; Rasband, W.; Eliceiri, K. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 2012, 9, 671–675. [Google Scholar] [CrossRef] [PubMed]
- Ziberna, L.; Nimis, P.; Kuzmin, D.; Malkovets, V. Error sources in single-clinopyroxene thermobarometry and a mantle geotherm for the Novinka kimberlite, Yakutia. Am. Mineral. 2016, 101, 2222–2232. [Google Scholar] [CrossRef]
- Warr, L. IMA–CNMNC approved mineral symbols. Mineral. Mag. 2021, 85, 291–320. [Google Scholar] [CrossRef]
- Benisek, A.; Dachs, E.; Kroll, H. A ternary feldspar-mixing model based on calorimetric data: Development and application. Contrib. Mineral. Petrol. 2010, 160, 327–337. [Google Scholar] [CrossRef]
- Morimoto, N. Nomenclature of pyroxenes. Mineral. Petrol. 1988, 39, 55–76. [Google Scholar] [CrossRef]
- Tzvetanova, Y.; Tarassov, M.; Ganev, V.; Piroeva, I. Crystal chemistry of clinopyroxene with a high content of the Ca-Tschermak and esseneite components, Eastern Rhodopes, Bulgaria. In Proceedings of the Geonauki National Conference, Bulgarian Geological Society, Sofia, Bulgaria, 7–8 December 2016; pp. 35–36. [Google Scholar]
- Droop, G.A. general equation for estimating Fe3+ concentrations in ferromagnesian silicates and oxides from microprobe analyses, using stoichiometric criteria. Mineral. Mag. 1987, 51, 431–435. [Google Scholar] [CrossRef] [Green Version]
- Hattert, F.; Burke, E.A.J. The IMA-CNMNC dominant-constituent rule revisited and extended. Can. Mineral. 2008, 46, 717–728. [Google Scholar] [CrossRef] [Green Version]
- Ejima, T.; Osanai, Y.; Akasaka, M.; Adachi, T.; Nakano, N.; Kon, Y.; Ohfuji, H.; Sereenen, J. Oxidation states of Fe in constituent minerals of a spinel lherzolite xenolith from Tariat Depression, Mongolia: The significance or Fe3+ in olivine. Minerals 2018, 8, 204. [Google Scholar] [CrossRef] [Green Version]
- Locock, A.J. An Excel spreadsheet to classify chemical analyses of amphiboles following the IMA 2012 recommendations. Comput. Geosci. 2014, 62, 1–11. [Google Scholar] [CrossRef]
- Bunch, T.E.; Okrusch, M. Al-rich pargasite. Am. Mineral. 1973, 58, 721–726. [Google Scholar]
- Leake, B.E.; Woolley, A.R.; Arps, C.E.S.; Birch, W.D.; Gilbert, M.C.; Grice, J.D.; Hawthorne, F.; Kato, A.; Kisch, H.J.; Krivovichev, V.G.; et al. Nomenclature of amphiboles: Report of the subcommittee on amphiboles of the International Mineralogical Association, Commission on New Minerals and Mineral Names. Can. Mineral. 1997, 35, 219–246. [Google Scholar]
- Stevens, R.E. Composition of some chromites of the western hemisphere. Am. Mineral. 1944, 29, 1–34. [Google Scholar]
- Haggerty, S.E. Oxide mineralogy of the upper mantle. Spinel mineral group. In Oxide Minerals: Petrologic and Magnetic Significance; Lindsley, D.H., Ed.; Mineralogical Society of America: Chantilly, VA, USA, 1991; Volume 25, pp. 355–416. [Google Scholar]
- Deer, W.A.; Howie, R.A.; Zussman, J. An Introduction to the Rock-Forming Minerals, 2nd ed.; Longman: London, UK, 1992; 696p. [Google Scholar]
- Buddington, A.F.; Lindsley, D.H. Iron-titanium oxide minerals and synthetic equivalents. J. Petrol. 1964, 5, 310–357. [Google Scholar] [CrossRef]
- Katona, I.; Pascal, M.L.; Fonteilles, M.; Verkaeren, J. The melilite (Gh50) skarns of Oravita, Banat, Romania: Transition to gehlenite (Gh85) and to vesuvianite. Can. Mineral. 2003, 41, 1255–1270. [Google Scholar] [CrossRef]
- Melluso, L.; Conticelli, S.; D’Antonio, M.; Mirco, N.P.; Saccani, E. Petrology and mineralogy of wollastonite-and melilite-bearing paralavas from the Central Apennines, Italy. Am. Mineral. 2003, 88, 1287–1299. [Google Scholar] [CrossRef]
- Whitley, S.; Halama, R.; Gertisser, R.; Preece, K.; Deegan, F.M.; Troll, V.R. Magmatic and metasomatic effects of magma-carbonate interaction recorded in calc-silicate xenoliths from Merapi volcano (Indonesia). J. Petrol. 2020, 61, egaa048. [Google Scholar] [CrossRef]
- Pascal, M.; Fonteilles, M.; Verkaeren, J.; Piret, R.; Marincea, S. The melilite-bearing high-temperature skarns of the Apuseni Mountains, Carpathians, Romania. Can. Mineral. 2001, 39, 1405–1434. [Google Scholar] [CrossRef] [Green Version]
- De Hoog, J.C.M.; Gall, L.; Cornell, D.H. Trace-element geochemistry if mantle olivine and application to mantle petrogenesis and geothermobarometry. Chem. Geol. 2010, 270, 196–215. [Google Scholar] [CrossRef] [Green Version]
- Bussweiler, Y.; Brey, G.P.; Pearson, D.G.; Stachel, T.; Stern, R.A.; Hardman, M.F.; Kjarsgaard, B.A.; Jackson, S.E. The aluminium-in-olivine thermometer for mantle peridotites—Experimental versus empirical calibration and potential applications. Lithos 2017, 272–273, 301–314. [Google Scholar] [CrossRef]
- Wan, Z.; Coogan, L.A.; Canil, D. Experimental calibration of aluminium partitioning between olivine and spinel as a geothermometer. Am. Mineral. 2008, 93, 1142–1147. [Google Scholar] [CrossRef]
- Coogan, L.A.; Saunders, A.D.; Wilson, R.N. Aluminium-in-olivine thermometry of primitive basalts: Evidence of an anomalously hot mantle source for large igneous provinces. Chem. Geol. 2014, 368, 1–10. [Google Scholar] [CrossRef]
- Köhler, T.P.; Brey, G.P. Calcium exchange between olivine and clinopyroxene calibrated as a geothermobarometer for natural peridotites from 2 to 60 kb with applications. Geochim. Cosmochim. Acta 1990, 54, 2375–2388. [Google Scholar] [CrossRef]
- Andersen, D.J.; Lindsley, D.H. The olivine-ilmenite thermometer. Lunar Planet. Sci. Conf. Proc. 1979, 10, 493–507. [Google Scholar]
- Andersen, D.J.; Lindsley, D.H. A valid Margules formulation for an asymmetric ternary solution: Revision of the olivine-ilmenite thermometer, with applications. Geochim. Cosmochim. Acta 1981, 45, 847–853. [Google Scholar] [CrossRef]
- Blundy, J.D.; Holland, T.J.B. Calcic amphibole equilibria and a new amphibole-plagioclase geothermometer. Contrib. Mineral. Petrol. 1990, 104, 208–224. [Google Scholar] [CrossRef]
- Holland, T.; Blundy, J. Non-ideal interactions in calcic amphiboles and their bearing on amphibole-plagioclase thermometry. Contrib. Mineral. Petrol. 1994, 116, 433–447. [Google Scholar] [CrossRef]
- Molina, J.F.; Cambeses, A.; Moreno, J.A.; Morales, I.; Montero, P.; Bea, F. A reassessment of the amphibole-plagioclase NaSi-CaAl Exchange thermometer with applications to igneous and high-grade metamorphic rocks. Am. Mineral. 2021, 106, 782–800. [Google Scholar] [CrossRef]
- Molina, J.F.; Moreno, J.A.; Castro, A.; Rodriguez, C.; Fershtater, G.B. Calcic amphibole thermobarometry in metamorphic and igneous rocks: New calibrations based on plagioclase/amphiboleAl-Si partitioning and amphibole-liquid Mg partitioning. Lithos 2015, 232, 286–305. [Google Scholar] [CrossRef]
- Hammarstrom, J.M.; Zen, E. Aluminium in hornblende: An empirical igneous geobarometer. Am. Mineral. 1986, 71, 1297–1313. [Google Scholar]
- Hollister, L.S.; Grissom, G.C.; Peters, E.K.; Stowell, H.H.; Sisson, V.B. Confirmation of the empirical correlation of Al in hornblende with pressure of solidication of calc-alkaline plutons. Am. Mineral. 1987, 72, 231–239. [Google Scholar]
- Schmidt, M.W. Amphibole composition in tonalite as a function of pressure: An experimental calibration of the Al-in-hornblende barometer. Contrib. Mineral. Petrol. 1992, 110, 304–310. [Google Scholar] [CrossRef]
- Johnson, M.C.; Rutherford, M.J. Experimental calibration of an aluminium-in-hornblende geobarometer applicable to Long Valley caldera (California) volcanic rocks. Geology 1989, 17, 837–841. [Google Scholar] [CrossRef]
- Ridolfi, F.; Renzulli, A. Calcic amphiboles in calc-alkaline and alkaline magmas: Thermobarometric and chemometric empirical equations valid up to 1,130 °C and 2.2 GPa. Contrib. Mineral. Petrol. 2012, 163, 877–895. [Google Scholar] [CrossRef]
- Prinz, M.; Dowty, E.; Keil, K.; Bunch, T.E. Spinel troctolite and anorthosite in Apollo 16 samples. Science 1973, 179, 74–76. [Google Scholar] [CrossRef]
- Bhandari, N.; Srivastava, N. Active Moon: Evidences from Chandrayaan-1 and the proposed Indian missions. Geosci. Lett. 2014, 1, 11. [Google Scholar] [CrossRef] [Green Version]
- Ashwal, L.D. Anorthosites; Springer: Berlin/Heidelberg, Germany, 1993; 422p. [Google Scholar]
- Kaufmann, F.E.D.; O’Driscoll, B.; Hecht, L. Lateral variations in the Unit 7-8 boundary zone of the Rum Eastern Layered Intrusion, NW Scotland: Implications for the origin and timing of Cr-spinel seam formation. Contrib. Mineral. Petrol. 2020, 175, 90. [Google Scholar] [CrossRef]
- Léger, A.; Ferry, J.M. Highly aluminous hornblende from low-pressure metacarbonates and a preliminary thermodynamic model for the Al content of calcic amphibole. Am. Mineral. 1991, 76, 1002–1017. [Google Scholar]
- Abdu, Y.A.; Hawthorne, F.C. Crystal structure and Mössbauer spectroscopy of tschermakite from the ruby locality at Fiskenaesset, Greenland. Can. Mineral. 2009, 47, 917–926. [Google Scholar] [CrossRef]
- Leake, B.E. On aluminous and edenitic hornblendes. Mineral. Mag. 1971, 38, 389–407. [Google Scholar] [CrossRef]
- Kemp, A.J.; Leake, B.E. Two hydrous-rich aluminous hornblendes. Mineral. Mag. 1975, 40, 308–311. [Google Scholar] [CrossRef]
- Dupuis, C.; Beaudoin, G. Discriminant diagrams for iron oxide trace element fingerprinting of mineral deposit types. Mineral. Depos. 2011, 46, 319–335. [Google Scholar] [CrossRef]
- Oba, T. Phase relationship of Ca2Mg3Al2Si6Al2O22(OH)2—Ca2Mg3Fe3+2Si6Al2O22(OH)2 join at high pressure—The stability of tschermakite. J. Fac. Sci. Hokkaido Univ. 1978, 18, 339–350. [Google Scholar]
- Connolly, J. Multivariable phase diagrams; an algorithm based on generalized thermodynamics. Am. J. Sci. 1990, 290, 666–718. [Google Scholar] [CrossRef]
- Connolly, J.A.D.; Kerrick, D.M. An algorithm and computer program for calculating composition phase diagrams. CALPHAD 1987, 11, 1–55. [Google Scholar] [CrossRef]
- Holland, T.J.B.; Powell, R.A. An internally consistent thermodynamic data set for phases of petrological interest. J. Metamorph. Petrol. 1998, 16, 309–343. [Google Scholar] [CrossRef]
- Holland, T.J.B.; Powell, R.A. Compensated-Redlich-Kwong (CORK) equation for volumes and fugacities of CO2 and H2O in the range 1 bar to 50 kbar and 100–1600 °C. Contrib. Mineral. Petrol. 1991, 109, 265–273. [Google Scholar] [CrossRef]
- Evans, B.; Trommsdorff, V. On elongate olivine of metamorphic origin. Geology 1974, 2, 131–132. [Google Scholar] [CrossRef]
- Ohasi, H.; Hariya, Y. Decomposition of CaFe3+AlSiO6 pyroxene at high pressure and low oxygen partial pressure. J. Jap. Assoc. Mineral. Petrol. Econ. Geol. 1975, 70, 347–351. [Google Scholar] [CrossRef]
- Ohasi, H.; Hariya, Y. Phase relation of CaFeAlSiO6 pyroxene at high pressures and temperatures. J. Jap. Assoc. Mineral. Petrol. Econ. Geol. 1975, 70, 93–95. [Google Scholar] [CrossRef]
- Onuma, K. Effect of oxygen fugacity on fassaitic pyroxene. J. Fac. Sci. Hokkaido Univ. 1983, 20, 185–194. [Google Scholar]
- Onuma, K.; Akasaka, M.; Yagi, K. The bearing of the system CaMgSi2O6-CaAl2SiO6-CaFeAlSiO6 on fassaitic pyroxene. Lithos 1981, 14, 173–182. [Google Scholar] [CrossRef]
- Lesnov, F.P.; Korolyuk, V.N. Pervye dannye o razpredelenii izomorfnoi primesi zheleza v plagioklazach bazit-giperbazitovych plutonov skladchatych oblastei SSSR (First results of the distribution of isomorphic admixtures of iron in plagioclases of basic-hyperbasic plutons in folded areas of USSR). Dokl. Akad Nauk SSSR 1977, 234, 922–924. [Google Scholar]
- Tegner, C.; Cawthorn, R.G. Iron in plagioclase in the Bushveld and Skaergaard intrusions: Implications for iron contents in evolving basic magmas. Contrib. Mineral. Petrol. 2010, 159, 719–730. [Google Scholar] [CrossRef]
- Jolis, E.M.; Troll, V.R.; Harris, C.; Freda, C.; Gaeta, M.; Orsi, G.; Siebe, C. Skarn xenolith record crustal CO2 liberation during Pompeii and Pollena eruptions, Vesuvius volcanic system, central Italy. Chem. Geol. 2015, 415, 17–36. [Google Scholar] [CrossRef]
- Matthews, S.J.; Marquillas, R.A.; Kemp, A.J.; Grange, F.K.; Gardeweg, M.C. Active skarn formation beneath Lascar Volcano, northern Chile: A petrographic and geochemical study of xenoliths in eruption products. J. Metamorph. Geol. 1996, 14, 509–530. [Google Scholar] [CrossRef]
- Wenzel, T.; Baumgartner, L.P.; Brügmann, G.E.; Konnikov, E.G.; Kislov, E.V. Partial melting and assimilation of dolomitic xenoliths by mafic magma: The Ioko-Dovyren intrusion (North Baikal region, Russia). J. Petrol. 2002, 43, 2049–2074. [Google Scholar] [CrossRef]
Sample | Cam-14 | Ca-14 | Ca-14 ◊ | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Analysis # | 15 | 20 | 22 | 23 | 21 | 30 | 32 | 69 | 11 | 52 | 64 | 90 | 1 | 10 | 18 |
SiO2 (wt%) | 32.95 | 35.06 | 37.76 | 44.03 | 27.44 | 27.77 | 38.20 | 28.02 | 27.55 | 36.06 | 33.07 | 28.79 | 36.54 | 50.49 | 38.78 |
TiO2 | 2.76 | 0.47 | 0.39 | 0.32 | 0.36 | 0.22 | 2.21 | 0.21 | 0.30 | 0.28 | 0.36 | b.d.l. | 0.65 | 0.12 | 0.31 |
Al2O3 | 17.60 | 20.64 | 18.42 | 11.83 | 31.01 | 31.41 | 11.94 | 27.35 | 31.12 | 21.48 | 21.47 | 27.06 | 17.28 | 4.66 | 18.83 |
Fe2O3 * | 14.58 | 11.44 | 9.49 | 8.95 | 15.31 | 14.75 | 10.49 | 16.04 | 14.41 | 10.89 | 13.73 | 15.41 | 12.55 | 4.78 | 10.37 |
Cr2O3 | b.d.l. | 0.99 | 1.14 | b.d.l. | 0.63 | 0.22 | b.d.l. | 0.19 | 0.32 | 0.23 | 0.71 | 0.19 | 0.18 | 0.06 | 0.02 |
V2O3 | 2.09 | 0.02 | 0.01 | 0.09 | b.d.l. | b.d.l. | 1.28 | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. |
FeO | 2.98 | 1.62 | 0.53 | 0.38 | 0.05 | 0.00 | 7.98 | 1.31 | 1.14 | 0.71 | 1.28 | 2.51 | 2.92 | 1.41 | 0.00 |
NiO | b.d.l. | b.d.l. | b.d.l. | b.d.l. | 0.02 | 0.03 | b.d.l. | 0.01 | 0.01 | b.d.l. | 0.02 | 0.02 | 0.01 | b.d.l. | 0.01 |
MnO | 0.27 | 0.05 | 0.01 | 0.10 | 0.03 | b.d.l. | 0.53 | 0.06 | 0.01 | 0.04 | 0.05 | 0.09 | 0.18 | 0.18 | 0.05 |
MgO | 3.19 | 5.15 | 7.43 | 10.60 | 0.85 | 0.78 | 4.03 | 0.58 | 0.55 | 6.13 | 3.90 | 0.61 | 5.32 | 17.48 | 8.03 |
CaO | 23.74 | 24.46 | 24.75 | 24.95 | 24.60 | 24.97 | 24.16 | 24.89 | 24.63 | 24.95 | 24.97 | 24.38 | 24.48 | 20.96 | 25.37 |
K2O | b.d.l. | 0.01 | b.d.l. | b.d.l. | b.d.l. | b.d.l. | b.d.l. | b.d.l. | b.d.l. | b.d.l. | b.d.l. | b.d.l. | b.d.l. | 0.01 | b.d.l. |
Na2O | 0.11 | 0.03 | b.d.l. | 0.32 | b.d.l. | b.d.l. | 0.08 | b.d.l. | b.d.l. | b.d.l. | b.d.l. | b.d.l. | 0.06 | 0.18 | 0.02 |
Total | 100.28 | 99.94 | 99.94 | 101.58 | 100.29 | 100.15 | 100.89 | 98.69 | 100.04 | 100.78 | 99.57 | 99.06 | 100.18 | 100.32 | 101.79 |
Si (apfu) | 1.298 | 1.342 | 1.427 | 1.622 | 1.056 | 1.066 | 1.498 | 1.108 | 1.064 | 1.356 | 1.283 | 1.135 | 1.407 | 1.837 | 1.433 |
AlIV | 0.702 | 0.658 | 0.573 | 0.378 | 0.944 | 0.934 | 0.502 | 0.892 | 0.938 | 0.646 | 0.718 | 0.866 | 0.593 | 0.163 | 0.567 |
AlVI | 0.115 | 0.274 | 0.247 | 0.136 | 0.462 | 0.488 | 0.050 | 0.383 | 0.477 | 0.304 | 0.263 | 0.391 | 0.191 | 0.037 | 0.253 |
Ti | 0.082 | 0.013 | 0.011 | 0.009 | 0.011 | 0.006 | 0.065 | 0.006 | 0.009 | 0.008 | 0.010 | 0.000 | 0.019 | 0.003 | 0.009 |
Fe3+ | 0.432 | 0.330 | 0.270 | 0.248 | 0.443 | 0.426 | 0.328 | 0.477 | 0.419 | 0.308 | 0.401 | 0.457 | 0.364 | 0.131 | 0.288 |
Cr | 0.000 | 0.030 | 0.034 | 0.000 | 0.019 | 0.007 | 0.000 | 0.006 | 0.010 | 0.007 | 0.022 | 0.006 | 0.005 | 0.002 | 0.001 |
V | 0.066 | 0.001 | 0.000 | 0.003 | 0.040 | ||||||||||
Fe2+ | 0.098 | 0.052 | 0.017 | 0.012 | 0.002 | 0.000 | 0.244 | 0.043 | 0.037 | 0.022 | 0.042 | 0.083 | 0.094 | 0.043 | 0.000 |
Ni | 0.001 | 0.001 | 0.001 | 0.001 | 0.000 | ||||||||||
Mn | 0.009 | 0.002 | 0.000 | 0.003 | 0.001 | 0.000 | 0.018 | 0.002 | 0.001 | 0.006 | 0.006 | 0.002 | |||
Mg | 0.187 | 0.294 | 0.418 | 0.582 | 0.049 | 0.045 | 0.235 | 0.034 | 0.032 | 0.343 | 0.226 | 0.036 | 0.305 | 0.948 | 0.442 |
CaM1 | 0.076 | 0.005 | 0.002 | 0.008 | 0.014 | 0.027 | 0.021 | 0.054 | 0.019 | 0.005 | 0.038 | 0.029 | 0.015 | 0.000 | 0.006 |
CaM2 | 0.926 | 0.998 | 1.000 | 0.977 | 1.000 | 1.000 | 0.994 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.995 | 0.817 | 0.998 |
K | 0.000 | 0.000 | 0.000 | ||||||||||||
Na | 0.008 | 0.002 | 0.000 | 0.023 | 0.000 | 0.000 | 0.000 | 0.005 | 0.013 | 0.002 | |||||
Total | 3.999 | 4.001 | 3.999 | 4.001 | 4.002 | 4.000 | 3.995 | 4.007 | 4.005 | 4.003 | 4.005 | 4.006 | 3.999 | 4.000 | 4.001 |
Q | 1.29 | 1.35 | 1.44 | 1.58 | 1.06 | 1.07 | 1.49 | 1.13 | 1.09 | 1.37 | 1.31 | 1.15 | 1.41 | 1.81 | 1.45 |
J | 0.02 | 0.00 | 0.00 | 0.05 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.03 | 0.0 |
Jd | 0.9 | 0.2 | 0.0 | 2.3 | 0.0 | 0.0 | 0.6 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2 | 0.5 | 1.3 | 0.2 |
Ess | 44.7 | 33.5 | 27.5 | 24.6 | 44.8 | 42.8 | 33.6 | 48.7 | 43.3 | 31.8 | 41.4 | 46.7 | 36.5 | 13.1 | 28.9 |
CaTi-Ts | 8.4 | 1.4 | 1.1 | 0.9 | 1.1 | 0.6 | 6.7 | 0.6 | 0.9 | 0.8 | 1.0 | 0.0 | 1.9 | 0.3 | 0.9 |
Ks | 11.9 | 27.8 | 25.2 | 13.4 | 46.6 | 49.0 | 5.1 | 38.1 | 47.5 | 33.0 | 26.4 | 38.8 | 19.2 | 3.7 | 25.3 |
Wo | 19.3 | 19.6 | 24.1 | 29.4 | 5.0 | 5.4 | 29.4 | 8.7 | 4.9 | 17.3 | 17.7 | 8.3 | 21.9 | 32.2 | 22.7 |
En | 9.7 | 14.9 | 21.3 | 28.9 | 2.5 | 2.2 | 12.1 | 1.7 | 1.6 | 17.1 | 11.3 | 1.8 | 15.3 | 47.3 | 22.1 |
Fs | 5.1 | 2.6 | 0.9 | 0.6 | 0.1 | 0.0 | 12.5 | 2.2 | 1.9 | 0.0 | 2.2 | 4.2 | 4.7 | 2.1 | 0.0 |
QUAD | 34.1 | 37.2 | 46.2 | 58.8 | 7.5 | 7.6 | 54.0 | 12.6 | 8.4 | 34.4 | 31.1 | 14.4 | 41.9 | 81.7 | 44.8 |
Name ** | Ess | Ess | Ess | Wo | Ks | Ks | Ess | Ess | Ks | Ks | Ess | Ess | Ess | En | Ess |
Sample | Cam-13 | Cam-15 | Ca-22 | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Analysis | 1 | 12 | 15 | 17 | 19 | 61 | 37 | 39 | 41 | 43 | 45 | 6 | 10 | 2 | 4 | 6 | 10 | 14 |
SiO2 | b.d.l. | 0.33 | 0.08 | 0.08 | b.d.l. | 0.07 | 0.03 | 0.07 | 0.02 | 0.05 | 0.05 | 0.51 | 0.04 | 0.09 | 0.11 | 0.07 | 0.46 | 0.11 |
TiO2 | 53.80 | 55.01 | 55.31 | 54.51 | 54.68 | 53.15 | 54.53 | 54.38 | 55.30 | 55.26 | 54.70 | 53.09 | 53.50 | 53.73 | 53.74 | 51.61 | 51.45 | 52.58 |
Al2O3 | 0.11 | 0.20 | 0.04 | 0.04 | 0.13 | 0.04 | 0.05 | 0.03 | 0.07 | 0.09 | 0.04 | 0.07 | 0.07 | 0.06 | 0.05 | 0.05 | 0.26 | 0.06 |
Cr2O3 | b.d.l. | 0.04 | 0.01 | b.d.l. | b.d.l. | 0.05 | 0.02 | b.d.l. | 0.05 | 0.02 | 0.02 | 0.05 | b.d.l. | 0.39 | 0.07 | 0.03 | 0.01 | 0.00 |
V2O3 | 0.07 | 0.10 | 0.28 | 0.16 | 0.13 | 0.08 | 0.07 | 0.21 | 0.27 | 0.26 | 0.22 | 0.06 | 0.08 | 0.10 | 0.17 | 0.01 | 0.14 | 0.16 |
Fe2O3 | 3.77 | b.d.l. | b.d.l. | 1.73 | 2.55 | 4.07 | 32.56 | 35.49 | 35.66 | 34.62 | 32.79 | 30.81 | 30.81 | 32.53 | 34.71 | 33.60 | 34.55 | 34.63 |
FeO | 33.13 | 34.57 | 35.27 | 34.63 | 34.08 | 34.16 | 2.51 | 1.19 | 0.00 | 0.44 | 2.17 | 5.11 | 4.59 | 3.46 | 1.59 | 6.22 | 4.69 | 4.20 |
NiO | n.a. | n.a. | n.a. | n.a. | n.a. | b.d.l. | n.a. | n.a. | n.a. | n.a. | n.a. | 0.01 | 0.02 | 0.02 | 0.07 | b.d.l. | b.d.l. | 0.02 |
ZnO | b.d.l. | b.d.l. | b.d.l. | b.d.l. | b.d.l. | 0.04 | 0.02 | 0.02 | 0.03 | b.d.l. | 0.01 | b.d.l. | 0.01 | 0.02 | 0.03 | 0.05 | 0.02 | 0.00 |
MnO | 0.54 | 0.53 | 0.69 | 0.55 | 0.60 | 0.72 | 0.57 | 0.59 | 0.49 | 0.60 | 0.49 | 0.52 | 0.63 | 0.76 | 0.74 | 0.73 | 0.64 | 0.73 |
MgO | 7.53 | 7.74 | 7.20 | 7.24 | 7.46 | 6.89 | 8.30 | 6.68 | 7.37 | 7.95 | 8.54 | 9.12 | 9.31 | 8.22 | 7.13 | 6.76 | 6.43 | 6.68 |
CaO | 1.04 | 0.35 | 0.26 | 0.82 | 0.95 | 0.57 | 0.91 | 0.78 | 0.29 | 0.30 | 0.61 | 0.65 | 0.12 | 0.38 | 0.16 | 0.15 | 0.18 | 0.13 |
Total | 100.00 | 98.88 | 99.13 | 99.75 | 100.57 | 99.84 | 99.57 | 99.44 | 99.55 | 99.58 | 99.64 | 100.00 | 99.18 | 99.77 | 98.58 | 99.28 | 98.83 | 99.30 |
Ilmenite Formula Based on 3 O and 2 Cations | ||||||||||||||||||
Si (apfu) | 0.000 | 0.008 | 0.002 | 0.002 | 0.000 | 0.002 | 0.001 | 0.002 | 0.001 | 0.001 | 0.001 | 0.012 | 0.001 | 0.002 | 0.003 | 0.002 | 0.011 | 0.003 |
Ti | 0.964 | 0.993 | 1.002 | 0.980 | 0.974 | 0.959 | 0.975 | 0.985 | 0.996 | 0.991 | 0.976 | 0.940 | 0.956 | 0.961 | 0.980 | 0.939 | 0.940 | 0.956 |
Al | 0.003 | 0.006 | 0.001 | 0.001 | 0.004 | 0.001 | 0.001 | 0.001 | 0.002 | 0.003 | 0.001 | 0.002 | 0.002 | 0.002 | 0.001 | 0.001 | 0.008 | 0.002 |
Cr | 0.000 | 0.001 | 0.000 | 0.000 | 0.000 | 0.001 | 0.000 | 0.000 | 0.001 | 0.000 | 0.000 | 0.001 | 0.000 | 0.007 | 0.001 | 0.001 | 0.000 | 0.000 |
V | 0.001 | 0.002 | 0.005 | 0.003 | 0.002 | 0.001 | 0.001 | 0.004 | 0.005 | 0.005 | 0.004 | 0.001 | 0.001 | 0.002 | 0.003 | 0.000 | 0.003 | 0.003 |
Fe3+ | 0.068 | 0.000 | 0.000 | 0.031 | 0.046 | 0.074 | 0.045 | 0.022 | 0.000 | 0.008 | 0.039 | 0.091 | 0.082 | 0.062 | 0.029 | 0.113 | 0.086 | 0.076 |
Fe2+ | 0.660 | 0.694 | 0.710 | 0.692 | 0.675 | 0.685 | 0.647 | 0.715 | 0.714 | 0.690 | 0.651 | 0.606 | 0.612 | 0.647 | 0.703 | 0.680 | 0.702 | 0.700 |
Ni | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.001 | 0.000 | 0.000 | 0.000 |
Zn | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.001 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.001 | 0.001 | 0.000 | 0.000 |
Mn | 0.011 | 0.011 | 0.014 | 0.011 | 0.012 | 0.015 | 0.011 | 0.012 | 0.010 | 0.012 | 0.010 | 0.010 | 0.013 | 0.015 | 0.015 | 0.015 | 0.013 | 0.015 |
Mg | 0.267 | 0.277 | 0.259 | 0.258 | 0.263 | 0.246 | 0.294 | 0.240 | 0.263 | 0.282 | 0.302 | 0.320 | 0.330 | 0.291 | 0.258 | 0.244 | 0.233 | 0.241 |
Ca | 0.026 | 0.009 | 0.007 | 0.021 | 0.024 | 0.015 | 0.023 | 0.020 | 0.007 | 0.008 | 0.016 | 0.017 | 0.003 | 0.010 | 0.004 | 0.004 | 0.005 | 0.003 |
Ilmenite Endmember Mole Fractions * | ||||||||||||||||||
Ilmenite | 0.663 | 0.715 | 0.733 | 0.706 | 0.686 | 0.682 | 0.656 | 0.732 | 0.731 | 0.704 | 0.656 | 0.596 | 0.598 | 0.647 | 0.710 | 0.656 | 0.688 | 0.688 |
Geikielite | 0.269 | 0.285 | 0.267 | 0.263 | 0.268 | 0.245 | 0.298 | 0.246 | 0.269 | 0.288 | 0.305 | 0.315 | 0.322 | 0.291 | 0.260 | 0.235 | 0.228 | 0.237 |
Sample | Cam-13 | Cam-15 | Ca-22 | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Analysis | 2 | 11 | 16 | 18 | 20 | 60 | 38 | 40 | 42 | 44 | 46 | 5 | 9 | 1 | 3 | 5 | 9 | 13 |
SiO2 | 38.37 | 38.56 | 38.77 | 38.21 | 38.67 | 38.51 | 39.36 | 38.75 | 38.88 | 38.74 | 38.85 | 39.04 | 39.40 | 39.11 | 38.78 | 38.32 | 38.77 | 38.02 |
TiO2 | 0.06 | n.a. | n.a. | n.a. | n.a. | 0.07 | 0.01 | 0.06 | 0.11 | 0.04 | 0.11 | 0.06 | 0.02 | 0.02 | 0.02 | 0.02 | 0.06 | 0.01 |
Al2O3 | 0.03 | 0.10 | 0.01 | 0.01 | 0.02 | 0.04 | 0.00 | 0.01 | 0.03 | 0.02 | 0.02 | b.d.l. | 0.02 | 0.02 | 0.08 | 0.10 | 0.08 | 0.03 |
Cr2O3 | b.d.l. | b.d.l. | b.d.l. | b.d.l. | b.d.l. | b.d.l. | 0.01 | b.d.l. | b.d.l. | 0.01 | 0.01 | b.d.l. | b.d.l. | b.d.l. | b.d.l. | 0.02 | b.d.l. | 0.01 |
Fe2O3 | 1.82 | 2.16 | 1.50 | 1.37 | 1.46 | 1.57 | 0.92 | 0.91 | 1.13 | 1.75 | 2.25 | 1.21 | 1.48 | 1.26 | 0.28 | 0.64 | 1.14 | 2.32 |
FeO | 18.43 | 17.91 | 18.10 | 18.91 | 19.09 | 20.23 | 17.91 | 19.08 | 18.22 | 17.66 | 15.99 | 16.95 | 15.92 | 18.05 | 19.31 | 19.10 | 18.81 | 18.75 |
NiO | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.02 | 0.05 | 0.01 | 0.05 | 0.05 | 0.06 | 0.06 | 0.10 | 0.08 | 0.09 | 0.07 | 0.08 |
MnO | 0.34 | 0.30 | 0.33 | 0.32 | 0.35 | 0.47 | 0.29 | 0.32 | 0.27 | 0.28 | 0.25 | 0.30 | 0.29 | 0.34 | 0.33 | 0.33 | 0.29 | 0.31 |
MgO | 41.11 | 41.24 | 41.71 | 40.48 | 40.97 | 40.23 | 42.52 | 41.09 | 41.90 | 42.15 | 43.32 | 42.76 | 43.87 | 42.07 | 40.70 | 40.34 | 41.16 | 40.37 |
CaO | 0.42 | 0.95 | 0.40 | 0.39 | 0.46 | 0.35 | 0.31 | 0.34 | 0.29 | 0.30 | 0.32 | 0.34 | 0.32 | 0.30 | 0.38 | 0.36 | 0.52 | 0.39 |
Total | 100.62 | 101.28 | 100.88 | 99.74 | 101.07 | 101.53 | 101.35 | 100.62 | 100.83 | 101.01 | 101.18 | 100.73 | 101.38 | 101.28 | 99.96 | 99.33 | 100.89 | 100.30 |
Olivine Formula Based on 4 O and 3 Cations | ||||||||||||||||||
Si (apfu) | 0.981 | 0.979 | 0.986 | 0.987 | 0.986 | 0.983 | 0.992 | 0.990 | 0.988 | 0.982 | 0.977 | 0.988 | 0.986 | 0.989 | 0.997 | 0.992 | 0.988 | 0.978 |
Ti | 0.001 | 0.000 | 0.000 | 0.000 | 0.000 | 0.001 | 0.000 | 0.001 | 0.002 | 0.001 | 0.002 | 0.001 | 0.000 | 0.000 | 0.000 | 0.000 | 0.001 | 0.000 |
Al | 0.001 | 0.003 | 0.000 | 0.000 | 0.001 | 0.001 | 0.000 | 0.000 | 0.001 | 0.001 | 0.001 | 0.000 | 0.001 | 0.001 | 0.003 | 0.003 | 0.002 | 0.001 |
Cr | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
Fe3+ | 0.035 | 0.041 | 0.029 | 0.027 | 0.028 | 0.030 | 0.017 | 0.018 | 0.022 | 0.033 | 0.043 | 0.023 | 0.028 | 0.024 | 0.005 | 0.013 | 0.022 | 0.045 |
Fe2+ | 0.394 | 0.380 | 0.385 | 0.408 | 0.407 | 0.432 | 0.377 | 0.408 | 0.387 | 0.374 | 0.336 | 0.359 | 0.333 | 0.382 | 0.415 | 0.414 | 0.401 | 0.404 |
Ni | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.000 | 0.001 | 0.000 | 0.001 | 0.001 | 0.001 | 0.001 | 0.002 | 0.002 | 0.002 | 0.002 | 0.002 |
Mn | 0.007 | 0.007 | 0.007 | 0.007 | 0.008 | 0.010 | 0.006 | 0.007 | 0.006 | 0.006 | 0.005 | 0.006 | 0.006 | 0.007 | 0.007 | 0.007 | 0.006 | 0.007 |
Mg | 1.567 | 1.561 | 1.581 | 1.559 | 1.557 | 1.531 | 1.597 | 1.566 | 1.586 | 1.593 | 1.624 | 1.612 | 1.636 | 1.585 | 1.559 | 1.557 | 1.563 | 1.549 |
Ca | 0.011 | 0.026 | 0.011 | 0.011 | 0.013 | 0.010 | 0.008 | 0.009 | 0.008 | 0.008 | 0.009 | 0.009 | 0.009 | 0.008 | 0.011 | 0.010 | 0.014 | 0.011 |
Olivine Endmember Mole Fraction | ||||||||||||||||||
Fayalite * | 0.215 | 0.213 | 0.207 | 0.218 | 0.218 | 0.232 | 0.198 | 0.214 | 0.205 | 0.204 | 0.189 | 0.191 | 0.181 | 0.204 | 0.212 | 0.215 | 0.213 | 0.225 |
T (°C) at 1 GPa | 780 | 775 | 705 | 754 | 775 | 771 | 785 | 695 | 703 | 757 | 767 | 819 | 798 | 796 | 728 | 724 | 695 | 737 |
T (°C) at 2 GPa | 815 | 822 | 748 | 794 | 813 | 805 | 824 | 733 | 747 | 801 | 807 | 855 | 834 | 833 | 767 | 754 | 725 | 769 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reato, L.; Huraiová, M.; Konečný, P.; Marko, F.; Hurai, V. Formation of Esseneite and Kushiroite in Tschermakite-Bearing Calc-Silicate Xenoliths Ejected in Alkali Basalt. Minerals 2022, 12, 156. https://doi.org/10.3390/min12020156
Reato L, Huraiová M, Konečný P, Marko F, Hurai V. Formation of Esseneite and Kushiroite in Tschermakite-Bearing Calc-Silicate Xenoliths Ejected in Alkali Basalt. Minerals. 2022; 12(2):156. https://doi.org/10.3390/min12020156
Chicago/Turabian StyleReato, Luca, Monika Huraiová, Patrik Konečný, František Marko, and Vratislav Hurai. 2022. "Formation of Esseneite and Kushiroite in Tschermakite-Bearing Calc-Silicate Xenoliths Ejected in Alkali Basalt" Minerals 12, no. 2: 156. https://doi.org/10.3390/min12020156
APA StyleReato, L., Huraiová, M., Konečný, P., Marko, F., & Hurai, V. (2022). Formation of Esseneite and Kushiroite in Tschermakite-Bearing Calc-Silicate Xenoliths Ejected in Alkali Basalt. Minerals, 12(2), 156. https://doi.org/10.3390/min12020156