Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (259)

Search Parameters:
Keywords = ride-through

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 2586 KB  
Article
Design and Multi-Mode Operational Analysis of a Hybrid Wind Energy Storage System Integrated with CVT and Electromechanical Flywheel
by Tao Liu, Sung-Ki Lyu, Zhen Qin, Dongseok Oh and Yu-Ting Wu
Machines 2026, 14(1), 81; https://doi.org/10.3390/machines14010081 - 9 Jan 2026
Abstract
To address the lack of inertia in full-power converter wind turbines and the inability of existing mechanical speed regulation technologies to achieve power smoothing without converters, this paper proposes a novel hybrid wind energy storage system integrating a Continuously Variable Transmission (CVT) and [...] Read more.
To address the lack of inertia in full-power converter wind turbines and the inability of existing mechanical speed regulation technologies to achieve power smoothing without converters, this paper proposes a novel hybrid wind energy storage system integrating a Continuously Variable Transmission (CVT) and an electromechanical flywheel. This system establishes a cascaded topology featuring “CVT-based source-side speed regulation and electromechanical flywheel-based terminal power stabilization.” By utilizing the CVT for speed decoupling and introducing the flywheel via a planetary differential branch, the system retains physical inertia by eliminating large-capacity converters and overcomes the bottleneck of traditional mechanical transmissions, which struggle to balance constant frequency with stable power output. Simulation results demonstrate that the proposed system reduces the active power fluctuation range by 47.60% compared to the raw wind power capture. Moreover, the required capacity of the auxiliary motor is only about 15% of the rated power, reducing the reliance on power electronic converters by approximately 85% compared to full-power converter systems. Furthermore, during a grid voltage dip of 0.6 p.u., the system restricts rotor speed fluctuations to within 0.5%, significantly enhancing Low Voltage Ride-Through (LVRT) capability. Full article
(This article belongs to the Section Electromechanical Energy Conversion Systems)
Show Figures

Figure 1

27 pages, 3190 KB  
Article
A Dynamic Asymmetric Overcurrent-Limiting Strategy for Grid-Forming Modular Multilevel Converters Considering Multiple Physical Constraints
by Qian Chen, Yi Lu, Feng Xu, Fan Zhang, Mingyue Han and Guoteng Wang
Symmetry 2026, 18(1), 53; https://doi.org/10.3390/sym18010053 - 27 Dec 2025
Viewed by 179
Abstract
Grid-forming (GFM) converters are promising for renewable energy integration, but their overcurrent limitation during grid faults remains a critical challenge. Existing overcurrent-limiting strategies were primarily developed for two-level converters and are often inadequate for Modular Multilevel Converters (MMCs). By overlooking the MMC’s unique [...] Read more.
Grid-forming (GFM) converters are promising for renewable energy integration, but their overcurrent limitation during grid faults remains a critical challenge. Existing overcurrent-limiting strategies were primarily developed for two-level converters and are often inadequate for Modular Multilevel Converters (MMCs). By overlooking the MMC’s unique topology and internal physical constraints, these conventional methods compromise both operational safety and grid support capabilities. Thus, this paper proposes a dynamic asymmetric overcurrent-limiting strategy for grid-forming MMCs that considers multiple physical constraints. The proposed strategy establishes a dynamic asymmetric overcurrent boundary based on three core physical constraints: capacitor voltage ripple, capacitor voltage peak, and the modulation signal. This boundary accurately defines the converter’s true safe operating area under arbitrary operating conditions. To address the complexity of the boundary’s analytical form for real-time application, an offline-trained neural network is introduced as a high-precision function approximator to efficiently and accurately reproduce this dynamic asymmetric boundary. The effectiveness of the proposed strategy is verified by hardware-in-the-loop experiments. Experimental results demonstrate that the proposed strategy reduces the capacitor voltage ripple by 30.7% and maintains the modulation signal safely within the linear range, significantly enhancing both system safety and fault ride-through performance. Full article
Show Figures

Figure 1

19 pages, 3038 KB  
Article
Enhancement of Fault Ride-Through Capability in Wind Turbine Based on a Permanent Magnet Synchronous Generator Using Machine Learning
by Altan Gencer
Electronics 2026, 15(1), 50; https://doi.org/10.3390/electronics15010050 - 23 Dec 2025
Viewed by 142
Abstract
All grid faults can cause significant problems within the power grid, including disconnection or malfunctions of wind energy conversion systems (WECSs) connected to the power grid. This study proposes a comparative analysis of the fault ride-through capability of a WECS-based permanent magnet synchronous [...] Read more.
All grid faults can cause significant problems within the power grid, including disconnection or malfunctions of wind energy conversion systems (WECSs) connected to the power grid. This study proposes a comparative analysis of the fault ride-through capability of a WECS-based permanent magnet synchronous generator (PMSG) system. To overcome these issues, active crowbar and capacitive bridge fault current limiter-based machine learning algorithm protection methods are implemented within the WECS system, both separately and in a hybrid. The regression approach is applied for the machine-side converter (MSC) and the grid side converter (GSC) controllers, which involve numerical data. The classification method is employed for protection system controllers, which work with data in distinct classes. These approaches are trained on historical data to predict the optimal control characteristics of the wind turbine system in real time, taking into account both fault and normal operating conditions. The neural network trilayered model has the lowest root mean squared error and mean squared error values, and it has the highest R-squared values. Therefore, the neural network trilayered model can accurately model the nonlinear relationships between its variables and demonstrates the best performance. The neural network trilayered model is selected for the MSC control system in this study. On the other hand, support vector machine regression is selected for the GSC controller due to its superior results. The simulation results demonstrate that the proposed machine learning algorithm performance for WECS based on a PMSG is robustly utilized under different operating conditions during all grid faults. Full article
Show Figures

Figure 1

30 pages, 9834 KB  
Article
Wind–Storage Coordinated Control Strategy for Suppressing Repeated Voltage Ride-Through of Units Under Extreme Weather Conditions
by Yunpeng Wang, Ke Shang, Zhen Xu, Chen Hu, Benzhi Gao and Jianhui Meng
Energies 2026, 19(1), 65; https://doi.org/10.3390/en19010065 - 22 Dec 2025
Viewed by 277
Abstract
In practical engineering, large-scale wind power integration typically requires long-distance transmission lines to deliver power to load centers. The resulting weak sending-end systems lack support from synchronous power sources. Under extreme weather conditions, the rapid increase in active power output caused by high [...] Read more.
In practical engineering, large-scale wind power integration typically requires long-distance transmission lines to deliver power to load centers. The resulting weak sending-end systems lack support from synchronous power sources. Under extreme weather conditions, the rapid increase in active power output caused by high wind power generation may lead to voltage instability. In existing projects, a phenomenon of repeated voltage fluctuations has been observed under fault-free system conditions. This phenomenon is induced by the coupling of the characteristics of weak sending-end systems and low-voltage ride-through (LVRT) discrimination mechanisms, posing a serious threat to the safe and stable operation of power grids. However, most existing studies focus on the analysis of voltage instability mechanisms and the optimization of control strategies for single devices, with insufficient consideration given to voltage fluctuation suppression methods under the coordinated operation of wind power and energy storage systems. Based on the actual scenario of energy storage configuration in wind farms, this paper improves the traditional LVRT discrimination mechanism and develops a coordinated voltage ride-through control strategy for permanent magnet synchronous generator (PMSG) wind turbines and energy storage batteries. It can effectively cope with unconventional operating conditions, such as repeated voltage ride-through and deep voltage ride-through that may occur under extreme meteorological conditions, and improve the safe and stable operation capability of wind farms. Using a hardware-in-the-loop (HIL) test platform, the coordinated voltage ride-through control strategy is verified. The test results indicate that it effectively enhances the wind–storage system’s voltage ride-through reliability and suppresses repeated voltage fluctuations. Full article
(This article belongs to the Special Issue Control Technologies for Wind and Photovoltaic Power Generation)
Show Figures

Figure 1

18 pages, 5051 KB  
Article
Synchronization Instability Suppression of Renewable Energy Converters Under DC-Side Commutation Disturbances
by Xiaolong Xiao, Wenqiang Xie, Ziran Guo, Xiaoxing Lu and Shukang Lv
Electronics 2026, 15(1), 3; https://doi.org/10.3390/electronics15010003 - 19 Dec 2025
Viewed by 182
Abstract
With the ongoing energy transition, large-scale integration of inverter-based renewable generation at DC sending ends has significantly weakened grid strength and increased vulnerability to disturbances from the DC receiving end. These disturbances may trigger severe transient voltage variations and synchronization instability of renewable [...] Read more.
With the ongoing energy transition, large-scale integration of inverter-based renewable generation at DC sending ends has significantly weakened grid strength and increased vulnerability to disturbances from the DC receiving end. These disturbances may trigger severe transient voltage variations and synchronization instability of renewable energy converters, especially under weak-grid conditions where conventional fault ride-through schemes become ineffective. To address this challenge, this paper establishes a mathematical model of a high-renewable-penetrated sending-end system with DC transmission and analytically derives the converter stability boundaries under different grid strengths and fault severities. Based on the identified stability region, a virtual power-angle increment feedback control strategy is proposed to suppress transient instability and mitigate voltage impacts. The effectiveness and practical feasibility of the proposed method are validated through Simulink simulations and RT-LAB hardware-in-the-loop experiments. The results demonstrate that the proposed approach enhances synchronization robustness and provides an effective solution for secure power delivery in future renewable-dominated systems. Full article
Show Figures

Figure 1

17 pages, 10360 KB  
Article
Optimization of Crowbar Resistance for Enhanced LVRT Capability in Wind Turbine Doubly Fed Induction Generator
by Mahmoud M. Elkholy and M. Abdelateef Mostafa
Appl. Syst. Innov. 2025, 8(6), 191; https://doi.org/10.3390/asi8060191 - 16 Dec 2025
Viewed by 416
Abstract
Recently, the installed generation capacity of wind energy has expanded significantly, and the doubly fed induction generator (DFIG) has gained a prominent position amongst wind generators owing to its superior performance. It is extremely vital to enhance the low-voltage ride-through (LVRT) capability for [...] Read more.
Recently, the installed generation capacity of wind energy has expanded significantly, and the doubly fed induction generator (DFIG) has gained a prominent position amongst wind generators owing to its superior performance. It is extremely vital to enhance the low-voltage ride-through (LVRT) capability for the wind turbine DFIG system because the DFIG is very sensitive to faults in the electrical grid. The major concept of LVRT is to keep the DFIG connected to the electrical grid in the case of an occurrence of grid voltage sags. The currents of rotor and DC-bus voltage rise during voltage dips, resulting in damage to the power electronic converters and the windings of the rotor. There are many protection approaches that deal with LVRT capability for the wind turbine DFIG system. A popular approach for DFIG protection is the crowbar technique. The resistance of the crowbar must be precisely chosen owing to its impact on both the currents of the rotor and DC-bus voltage, while also ensuring that the rotor speed does not exceed its maximum limit. Therefore, this paper aims to obtain the optimal values of crowbar resistance to minimize the crowbar energy losses and ensure stable DFIG operation during grid voltage dips. A recent optimization technique, the Starfish Optimization (SFO) algorithm, was used for cropping the optimal crowbar resistance for improving LVRT capability. To validate the accuracy of the results, the SFO results were compared to the well-known optimization algorithm, particle swarm optimizer (PSO). The performance of the wind turbine DFIG system was investigated by using Matlab/Simulink at a rated wind speed of 13 m/s. The results demonstrated that the increases in DC-link voltage and rotor speed were reduced by 42.5% and 45.8%, respectively. Full article
Show Figures

Figure 1

15 pages, 1259 KB  
Article
Quantification of Transient Voltage Rise in UHVDC Sending End Power Grid Under Commutation Failure
by Haoran Ge, Tao Xu, Jianan Mu, Lin Cheng, Ning Chen, Luming Ge and Xiong Du
Electronics 2025, 14(24), 4855; https://doi.org/10.3390/electronics14244855 - 10 Dec 2025
Viewed by 245
Abstract
Ultra-high-voltage direct current (UHVDC) transmission serves as a vital method for long-distance transmission of renewable energy in China. Commutation failure represents a common fault type in UHVDC transmission systems, causing the sending-end bus voltage to exhibit a “low-to-high” characteristic. This phenomenon poses a [...] Read more.
Ultra-high-voltage direct current (UHVDC) transmission serves as a vital method for long-distance transmission of renewable energy in China. Commutation failure represents a common fault type in UHVDC transmission systems, causing the sending-end bus voltage to exhibit a “low-to-high” characteristic. This phenomenon poses a high-voltage disconnection risk for renewable energy units at the sending end. The high-voltage ride-through criteria for renewable energy incorporate both time and voltage peak factors. However, existing research relies solely on the voltage peak metric to assess disconnection risks for renewable units, failing to determine the specific stability level of the voltage. Therefore, this paper considers the cumulative effect of voltage transients over time, constructing a mathematical model of transient voltage during the entire fault process of a UHVDC transmission system at the sending end under commutation failure. Subsequently, a transient voltage rise stability margin metric based on a multi-binary table is proposed to evaluate the system’s transient voltage rise stability margin from both time and voltage peak dimensions. Finally, the accuracy of the proposed mathematical model and evaluation metric is validated using the PSCAD/EMTDC simulation platform. Results indicate that following a commutation failure in a UHVDC system, under the scenario of overvoltage instability alone, a higher short-circuit ratio (SCR) correlates with a lower system rated voltage. This configuration enhances the voltage stability margin of the sending end grid, improves its transient voltage stability, and helps mitigate the risk of renewable energy units disconnecting from the sending end grid. Full article
Show Figures

Figure 1

40 pages, 1885 KB  
Review
Advancing Hybrid AC/DC Microgrid Converters: Modeling, Control Strategies, and Fault Behavior Analysis
by Mostafa Jabari, Mohammad Ghoreishi, Tommaso Bragatto, Francesca Santori, Massimo Cresta, Alberto Geri and Marco Maccioni
Energies 2025, 18(23), 6302; https://doi.org/10.3390/en18236302 - 30 Nov 2025
Viewed by 630
Abstract
Hybrid AC/DC microgrids (HMGs) are pivotal for integrating renewable resources, yet their stability and resilience are fundamentally constrained by the power electronic converters that interface them. This paper provides a critical review and synthesis of the co-dependent advancements in HMG converter topologies, control [...] Read more.
Hybrid AC/DC microgrids (HMGs) are pivotal for integrating renewable resources, yet their stability and resilience are fundamentally constrained by the power electronic converters that interface them. This paper provides a critical review and synthesis of the co-dependent advancements in HMG converter topologies, control strategies, and fault management. Through a systematic analysis of the state of the art, this review examines the evolution from classical control to intelligent, software-defined converter functions. The analysis reveals a fundamental bifurcation in design philosophy between low-voltage (LV) and medium-voltage (MV) systems, driven by a trade-off between power density Gallium Nitride (GaN) and systemic reliability silicon carbide (SiC). Furthermore, it highlights the rise of virtualization, namely virtual Inertia control (VIC) and adaptive virtual impedance control (AVIDC), as a dominant paradigm to compensate for the physical limitations of low-inertia, resistive grids. Finally, this review identifies a critical, synergistic dependency in fault management, where ultra-fast solid-state circuit breakers (SSCBs) guarantee the survivability of vulnerable voltage source converters (VSCs), which in turn enables software-based resilience via fault ride-through (FRT). This synthesis concludes that the converter has become the intelligent nexus of the HMG and identifies the primary barriers to widespread adoption as the computational, economic, and standardization gaps in this new cyber–physical domain. Full article
Show Figures

Figure 1

19 pages, 7104 KB  
Article
Proactive Power Compensation Strategy of Pulsed Load for Transient Ride-Through of Ship Microgrid
by Yue Ding, Ke Zhao, Jiandong Duan and Li Sun
Electronics 2025, 14(23), 4665; https://doi.org/10.3390/electronics14234665 - 27 Nov 2025
Viewed by 215
Abstract
A proactive power compensation strategy applicable to achieving transient ride-through of ship microgrid (SM) under pulsed load is presented in this paper. The essence of this strategy can be summarized as the generator enters a transient process when a large portion of the [...] Read more.
A proactive power compensation strategy applicable to achieving transient ride-through of ship microgrid (SM) under pulsed load is presented in this paper. The essence of this strategy can be summarized as the generator enters a transient process when a large portion of the pulsed load is connected to the islanded microgrid. Next, the pulsed load power is calculated and predicted over a 20 ms time scale based on the changes in stator current, stator voltage, excitation current and excitation voltage during the process. As a result, the predicted power is used as the control desired value of the compensation device to ensure that the microgrid recovers the power balance and achieves transient ride-through. Finally, the proposed control strategy not only replaces the one machine infinite bus (OMIB) with the transient model of the SG but also utilizes the energy storage device to actively guide the generator to output the differential power in the microgrid. The power response time of the compensation system is in the range of 6–20 ms, which is able to realize the transient ride-through of the SG within one cycle. Full article
(This article belongs to the Special Issue Cyber-Physical System Applications in Smart Power and Microgrids)
Show Figures

Figure 1

19 pages, 3005 KB  
Article
Coordinated FRT Control for Paralleled Grid-Following and Grid-Forming Generators Connected to Weak Grid
by Tao Tan, Shengli He, Yuqin Gao, Hao Xiao and Xia Shen
Processes 2025, 13(12), 3816; https://doi.org/10.3390/pr13123816 - 26 Nov 2025
Viewed by 365
Abstract
The combination of grid-forming (GFM) and grid-following (GFL) distributed renewable resources (DERs) can leverage their complementary functionalities to achieve superior resilience, reliability, and power quality compared to systems employing a single control strategy. Several studies have focused on the steady-state power coordinated control [...] Read more.
The combination of grid-forming (GFM) and grid-following (GFL) distributed renewable resources (DERs) can leverage their complementary functionalities to achieve superior resilience, reliability, and power quality compared to systems employing a single control strategy. Several studies have focused on the steady-state power coordinated control under stiff power grids, while the transient interaction and coordinated fault ride-through (FRT) issue between the parallel GMF and GFL DERs under weak power grids remains underexplored. To fill this gap, the transient interaction model of the hybrid system under weak grids is developed to guide the stability enhancement-oriented controller design. It is revealed that the GFM DER should help to enhance the GFL DER under transient state since the latter’s PLL has a high probability of lose lock under a weak grid. Moreover, a coordinated FRT control is proposed according to the coupling mechanism. The GMF DER has no need to switch the operation modes, while the system frequency deviation and voltage inrush could be reduced by 0.2% and 40% compared with conventional methods. Finally, simulation verifications based on PSCAD/EMTDC are provided to validate the correctness of the theoretical analysis and the effectiveness of the proposed method. Full article
Show Figures

Figure 1

26 pages, 4462 KB  
Article
Adaptive Determination of Damping Coefficient for Torsional Vibration Mitigation in Type-4 Wind Turbines Under LVRT Conditions
by Min-Jun Jo, Ye-Chan Kim and Seung-Ho Song
Energies 2025, 18(23), 6154; https://doi.org/10.3390/en18236154 - 24 Nov 2025
Viewed by 419
Abstract
With the increasing grid integration of wind turbines, mechanical reliability issues have become more critical. In particular, two-mass drivetrains undergo severe torsional vibrations due to abrupt torque fluctuations during low-voltage ride-through (LVRT) events. To address this, this paper proposes an adaptive damping coefficient [...] Read more.
With the increasing grid integration of wind turbines, mechanical reliability issues have become more critical. In particular, two-mass drivetrains undergo severe torsional vibrations due to abrupt torque fluctuations during low-voltage ride-through (LVRT) events. To address this, this paper proposes an adaptive damping coefficient determination method that differs from conventional pole-based approaches. The generator speed is decomposed into steady-state and transient components, and the maximum torsional angle is directly computed by integrating the transient component to derive the optimal damping coefficient. An adaptive algorithm adjusts this coefficient in real time according to operating conditions. The proposed approach is verified through PSCAD simulations of a 4.5 MW Type-4 permanent magnet synchronous generator (PMSG) wind turbine with a fully grid-decoupled back-to-back converter. Simulation cases combining active power levels (100% and 20%) with fault durations (20 ms and 400 ms) demonstrate that, compared with the conventional pole-based approach, applying the optimal damping coefficient reduces the maximum torsional angle by 30–37%, accelerates transient damping, and stabilizes speed and torque responses. The proposed method effectively mitigates drivetrain stress during LVRT, providing practical guidelines to enhance drivetrain reliability in Type-4 wind turbines. Full article
Show Figures

Figure 1

18 pages, 3136 KB  
Article
A Deep Learning-Based Method for Inrush Current Identification in Modern Sustainable Power Systems
by Wu Xing, Mingjun Xue, Ziheng Yan, Yang Xiao, Qi Chen and Zongbo Li
Sustainability 2025, 17(23), 10502; https://doi.org/10.3390/su172310502 - 24 Nov 2025
Viewed by 345
Abstract
During system faults, power electronic converters in modern sustainable power systems activate low-voltage ride-through (LVRT) control strategies, which introduce second harmonic current into the power system. For transformer protection, the conventional inrush current identification method based on second harmonic current fails to adapt [...] Read more.
During system faults, power electronic converters in modern sustainable power systems activate low-voltage ride-through (LVRT) control strategies, which introduce second harmonic current into the power system. For transformer protection, the conventional inrush current identification method based on second harmonic current fails to adapt to the high harmonic conditions of electronic power-based sources in renewable energy systems. This paper proposes an identification scheme based on a modified MobileNetV4 (MNv4) architecture and multi-source electrical quantities. The experimental dataset is constructed through PSCAD simulation and engineering field data. The input feature combination including three-phase voltage, current and differential current is designed, which solves the defects of single feature in traditional methods. Experiments show that the MNv4 model delivers competitive performance in terms of accuracy and recall, while featuring a small number of parameters that make it suitable for resource-constrained embedded deployment. This research provides theoretical support and data paradigm for the engineering application of artificial intelligence in the field of relay protection. Full article
Show Figures

Figure 1

33 pages, 11216 KB  
Article
Comparative Performance Evaluation of Wind Energy Systems Using Doubly Fed Induction Generator and Permanent Magnet Synchronous Generator
by Areeg Ebrahiem Elngar, Asmaa Sobhy Sabik, Ahmed Hassan Adel and Adel S. Nada
Wind 2025, 5(4), 31; https://doi.org/10.3390/wind5040031 - 21 Nov 2025
Viewed by 921
Abstract
Wind energy has become a cornerstone of sustainable electricity generation, yet the reliable integration of wind energy conversion systems (WECSs) into modern grids remains challenged by dynamic variations in wind speed and stringent fault ride-through (FRT) requirements. Among the available technologies, the Doubly [...] Read more.
Wind energy has become a cornerstone of sustainable electricity generation, yet the reliable integration of wind energy conversion systems (WECSs) into modern grids remains challenged by dynamic variations in wind speed and stringent fault ride-through (FRT) requirements. Among the available technologies, the Doubly Fed Induction Generator (DFIG) and the Permanent Magnet Synchronous Generator (PMSG) dominate commercial applications; however, a comprehensive comparative assessment under diverse grid and fault scenarios is still limited. This study addresses this gap by systematically evaluating the performance of DFIG- and PMSG-based WECSs across three operating stages: (i) normal operation at constant speed, (ii) variable wind speed operation, and (iii) grid fault conditions including single-line-to-ground, line-to-line, and three-phase faults. To enhance fault resilience, a DC-link Braking Chopper is integrated into both systems, ensuring a fair evaluation of transient stability and compliance with low-voltage ride-through (LVRT) requirements. The analysis, performed using MATLAB/Simulink, focuses on active and reactive power, rotor speed, pitch angle, and DC-link voltage dynamics. The results reveal that PMSG exhibits smoother transient responses and lower overshoot compared to DFIG. Under fault conditions, the DC-link Braking Chopper effectively suppresses voltage spikes in both systems, with DFIG achieving faster reactive power recovery in line with grid code requirements, while PMSG ensures more stable rotor dynamics with lower oscillations. The findings highlight the complementary strengths of both technologies and provide useful insights for selecting appropriate WECS configurations to improve grid integration and fault ride-through capability. Full article
(This article belongs to the Topic Wind Energy in Multi Energy Systems)
Show Figures

Figure 1

22 pages, 2241 KB  
Article
Fault Ride-Through Control and Protection Coordination Analysis of Wind Farms via Flexible DC Transmission Systems
by Hao Wang, Wenyue Zhou and Yiping Luo
Electricity 2025, 6(4), 67; https://doi.org/10.3390/electricity6040067 - 20 Nov 2025
Viewed by 435
Abstract
To address the critical issue of low reliability caused by fault impacts in large-scale wind farms transmitting power over long distances via flexible DC transmission systems, this study proposes a collaborative solution. First, a new protection scheme integrating variable quantity differential protection, steady-state [...] Read more.
To address the critical issue of low reliability caused by fault impacts in large-scale wind farms transmitting power over long distances via flexible DC transmission systems, this study proposes a collaborative solution. First, a new protection scheme integrating variable quantity differential protection, steady-state quantity differential protection and zero-sequence differential protection is proposed. By establishing a refined model of a wind farm with a flexible DC system, the adaptability of the differential protection for the outgoing lines is checked. Simulation results show that the sensitivity of metallic faults within the protection zone is better than 3.0, and the protection reliably remains inactive for faults outside the protection zone. Second, an innovative fault ride-through strategy combining self-regulating resistor circuits with wind farm MPPT load reduction is proposed. During faults on the receiving grid, the DC voltage fluctuation is controlled within 1.05 p.u. through graded switching of resistor modules and dynamic power regulation. This solution offers both rapid response and smooth fault ride-through characteristics, significantly improving the feasibility and economic viability of wind farm integration via flexible DC transmission. Full article
Show Figures

Figure 1

17 pages, 6420 KB  
Article
Virtual Oscillator Control for Grid-Forming Inverters: Recent Advances, Comparative Evaluation, and Small-Signal Analysis
by Hamed Rezazadeh, Mohammad Monfared, Meghdad Fazeli and Saeed Golestan
Energies 2025, 18(22), 5981; https://doi.org/10.3390/en18225981 - 14 Nov 2025
Cited by 2 | Viewed by 1045
Abstract
The increasing penetration of renewable energy and electric vehicles (EVs) has intensified the need for grid-forming (GFM) inverters capable of supporting frequency and voltage stability. Virtual Oscillator Control (VOC) has recently emerged as a promising time-domain GFM strategy due to its fast dynamics [...] Read more.
The increasing penetration of renewable energy and electric vehicles (EVs) has intensified the need for grid-forming (GFM) inverters capable of supporting frequency and voltage stability. Virtual Oscillator Control (VOC) has recently emerged as a promising time-domain GFM strategy due to its fast dynamics and autonomous synchronisation capability. This paper presents a comprehensive analysis of recent VOC developments, focusing on the Andronov–Hopf Oscillator (AHO) and its variants. A comparative overview of different VOC structures highlights their capabilities in providing essential services such as dispatchability, fault ride-through (FRT), virtual inertia, and damping. A generalised small-signal state-space model is developed to assess the influence of virtual inertia, grid impedance, and control parameters on transient performance, which is essential for optimal parameter design and controller tuning in various applications. Experimental validation using a 2.5 kVA single-phase inverter shows excellent agreement with theoretical predictions. The results confirm that while increased virtual inertia enhances frequency stability, it also introduces oscillations that can be effectively mitigated through damping enhancement. Furthermore, the experiments demonstrate that advanced AHO-based strategies successfully deliver vehicle-to-grid (V2G) and vehicle-to-home (V2H) services, confirming their practical applicability in future EV-integrated and renewable-rich power systems. Full article
Show Figures

Figure 1

Back to TopTop