Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (821)

Search Parameters:
Keywords = rice antioxidant

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
34 pages, 9516 KiB  
Article
Proteus sp. Strain JHY1 Synergizes with Exogenous Dopamine to Enhance Rice Growth Performance Under Salt Stress
by Jing Ji, Baoying Ma, Runzhong Wang and Tiange Li
Microorganisms 2025, 13(8), 1820; https://doi.org/10.3390/microorganisms13081820 - 4 Aug 2025
Abstract
Soil salinization severely restricts crop growth and presents a major challenge to global agriculture. In this study, a plant-growth-promoting rhizobacterium (PGPR) was isolated and identified as Proteus sp. through 16S rDNA analysis and was subsequently named Proteus sp. JHY1. Under salt stress, exogenous [...] Read more.
Soil salinization severely restricts crop growth and presents a major challenge to global agriculture. In this study, a plant-growth-promoting rhizobacterium (PGPR) was isolated and identified as Proteus sp. through 16S rDNA analysis and was subsequently named Proteus sp. JHY1. Under salt stress, exogenous dopamine (DA) significantly enhanced the production of indole-3-acetic acid and ammonia by strain JHY1. Pot experiments revealed that both DA and JHY1 treatments effectively alleviated the adverse effects of 225 mM NaCl on rice, promoting biomass, plant height, and root length. More importantly, the combined application of DA-JHY1 showed a significant synergistic effect in mitigating salt stress. The treatment increased the chlorophyll content, net photosynthetic rate, osmotic regulators (proline, soluble sugars, and protein), and reduced lipid peroxidation. The treatment also increased soil nutrients (ammoniacal nitrogen and available phosphorus), enhanced soil enzyme activities (sucrase and alkaline phosphatase), stabilized the ion balance (K+/Na+), and modulated the soil rhizosphere microbial community by increasing beneficial bacteria, such as Actinobacteria and Firmicutes. This study provides the first evidence that the synergistic effect of DA and PGPR contributes to enhanced salt tolerance in rice, offering a novel strategy for alleviating the adverse effects of salt stress on plant growth. Full article
(This article belongs to the Section Plant Microbe Interactions)
Show Figures

Figure 1

18 pages, 1685 KiB  
Article
Influence of Isolation Source on the Probiotic Properties and Health Benefits of Yeasts: Insights from Metabarcoding and Cultivation Approaches
by Kanyarat Kanyakam and Cheunjit Prakitchaiwattana
Appl. Microbiol. 2025, 5(3), 76; https://doi.org/10.3390/applmicrobiol5030076 - 30 Jul 2025
Viewed by 147
Abstract
The study aimed to identify potential sources of novel probiotic yeasts exhibiting health-promoting properties. A combination of metabarcoding analysis and cultural methods was employed to investigate and isolate yeasts from various sources, including rice wine, palm wine, fermented shrimp paste at different stages [...] Read more.
The study aimed to identify potential sources of novel probiotic yeasts exhibiting health-promoting properties. A combination of metabarcoding analysis and cultural methods was employed to investigate and isolate yeasts from various sources, including rice wine, palm wine, fermented shrimp paste at different stages of natural fermentation, and lychee peels. The two analytical methods revealed distinct yeast profiles, and each source exhibited a unique composition of yeast species. Through metabarcoding and cultural methods, it was demonstrated that lychee peels harbored a greater diversity of genera compared to other sources. The evaluation of the probiotic properties of yeasts revealed that lychee peel yielded the highest proportion of isolates with potential probiotic activity (53.33%), followed by palm wine (25%), fermented shrimp paste (10%), and rice wine (9.09%). Moreover, yeast isolates with health-promoting properties as evaluated in this study, including Starmerella meliponinorum L12 and Pichia terricola L9 from lychee peels, demonstrated notable antioxidant activity and cholesterol-reducing properties, respectively. These findings represent the first report providing initial insights into the influence of yeast sources and serve as a guideline for the targeted selection of yeasts with specific probiotic and health-promoting attributes. Full article
Show Figures

Figure 1

18 pages, 14612 KiB  
Article
Integrated Proteomic and Transcriptomic Analysis Reveals the Mechanism of Selenium-Mediated Cell Wall Polysaccharide in Rice (Oryza sativa L.) Cadmium Detoxification
by Sixi Zhu, Xianwang Du, Wei Zhao, Xiuqin Yang, Luying Sheng, Huan Mao and Suxia Su
Toxics 2025, 13(8), 642; https://doi.org/10.3390/toxics13080642 - 30 Jul 2025
Viewed by 240
Abstract
Cadmium (Cd) toxicity destroys plant cells and affects plant growth and development. Due to its unique metallic properties, selenium (Se) has been shown to be effective in antioxidants, cellular immunity, and heavy metal detoxification. When Se and Cd are present together in plants, [...] Read more.
Cadmium (Cd) toxicity destroys plant cells and affects plant growth and development. Due to its unique metallic properties, selenium (Se) has been shown to be effective in antioxidants, cellular immunity, and heavy metal detoxification. When Se and Cd are present together in plants, they antagonize. However, the mechanism of action of the two in the rice cell wall remains to be clarified. In this study, we analyzed the mechanism of Cd detoxification by rice (Oryza sativa L.) cellular polysaccharides mediated by Se, using the cell wall as an entry point. Proteomic and transcriptomic analyses revealed that “Glycosyl hydrolases family 17”, “O-methyltransferase”, and “Polygalacturonase” protein pathways were significantly expressed in the cell wall. The most abundant enzymes involved in polysaccharide biosynthesis were found, including bglB, otsB, HK, PFP, ADH1, and ALDH, which resulted in the synthetic pathway of polysaccharide formation in the rice cell wall. Finally, the essential genes/proteins, such as protein Os03g0170500, were identified. The study showed that Se inhibits Cd uptake and transport when Se (1 mg/kg) is low relative to Cd (3 mg/kg), has little inhibitory effect, and even promotes Cd (3 mg/kg) uptake when Se (5 mg/kg) is relatively high. Full article
Show Figures

Graphical abstract

27 pages, 4348 KiB  
Article
Valorization of Riceberry Broken Rice and Soybean Meal for Optimized Production of Multifunctional Exopolysaccharide by Bacillus tequilensis PS21 with Potent Bioactivities Using Response Surface Methodology
by Thipphiya Karirat, Worachot Saengha, Nantaporn Sutthi, Pheeraya Chottanom, Sirirat Deeseenthum, Nyuk Ling Ma and Vijitra Luang-In
Polymers 2025, 17(15), 2029; https://doi.org/10.3390/polym17152029 - 25 Jul 2025
Viewed by 341
Abstract
This study explores the valorization of agro-industrial by-products—riceberry broken rice (RBR) and soybean meal (SBM)—as cost-effective substrates for enhancing exopolysaccharide (EPS) production by Bacillus tequilensis PS21. Eight Bacillus strains were screened, and B. tequilensis PS21 demonstrated the highest EPS yield (2.54 g/100 mL [...] Read more.
This study explores the valorization of agro-industrial by-products—riceberry broken rice (RBR) and soybean meal (SBM)—as cost-effective substrates for enhancing exopolysaccharide (EPS) production by Bacillus tequilensis PS21. Eight Bacillus strains were screened, and B. tequilensis PS21 demonstrated the highest EPS yield (2.54 g/100 mL DW). The EPS displayed a strong antioxidant capacity with 65.5% DPPH and 80.5% hydroxyl radical scavenging, and a FRAP value of 6.51 mg Fe2+/g DW. Antimicrobial testing showed inhibition zones up to 10.07 mm against Streptococcus agalactiae and 7.83 mm against Staphylococcus aureus. Optimization using central composite design (CCD) and the response surface methodology (RSM) revealed the best production at 5% (w/v) RBR, 3% (w/v) SBM, pH 6.66, and 39.51 °C, yielding 39.82 g/L EPS. This EPS is a moderate-molecular-weight (11,282 Da) homopolysaccharide with glucose monomers. X-ray diffraction (XRD) showed an amorphous pattern, favorable for solubility in biological applications. Thermogravimetric analysis (TGA) demonstrated thermal stability up to ~250 °C, supporting its suitability for high-temperature processing. EPS also exhibited anticancer activity with IC50 values of 226.60 µg/mL (MCF-7) and 224.30 µg/mL (HeLa) at 72 h, reduced colony formation, inhibited cell migration, and demonstrated anti-tyrosinase, anti-collagenase, and anti-elastase effects. This study demonstrates the successful valorization of agro-industrial by-products—RBR and SBM—for the high-yield production of multifunctional EPS with potent antioxidant, antimicrobial, and anticancer properties. The findings highlight the sustainable potential of these low-cost substrates in supporting the development of green and value-added bioproducts, with promising utilizations across the food, pharmaceutical, and cosmetic sectors. Full article
(This article belongs to the Topic Microbes and Their Products for Sustainable Human Life)
Show Figures

Figure 1

18 pages, 2659 KiB  
Article
Salt Stress Responses of Different Rice Varieties at Panicle Initiation: Agronomic Traits, Photosynthesis, and Antioxidants
by Yusheng Li, Yuxiang Xue, Zhuangzhuang Guan, Zhenhang Wang, Daijie Hou, Tingcheng Zhao, Xutong Lu, Yucheng Qi, Yanbo Hao, Jinqi Liu, Lin Li, Haider Sultan, Xiayu Guo, Zhiyong Ai and Aibin He
Plants 2025, 14(15), 2278; https://doi.org/10.3390/plants14152278 - 24 Jul 2025
Viewed by 331
Abstract
The utilization of saline–alkali land for rice cultivation is critical for global food security. However, most existing studies on rice salt tolerance focus on the seedling stage, with limited insights into tolerance mechanisms during reproductive growth, particularly at the panicle initiation stage (PI). [...] Read more.
The utilization of saline–alkali land for rice cultivation is critical for global food security. However, most existing studies on rice salt tolerance focus on the seedling stage, with limited insights into tolerance mechanisms during reproductive growth, particularly at the panicle initiation stage (PI). Leveraging precision salinity-control facilities, this study imposed four salt stress gradients (0, 3, 5, and 7‰) to dissect the differential response mechanisms of six rice varieties (YXYZ: Yuxiangyouzhan, JLY3261: Jingliangyou3261, SLY91: Shuangliangyou91, SLY138: Shuangliangyou138, HLYYHSM: Hualiangyouyuehesimiao, and SLY11:Shuangliangyou111) during PI. The results revealed that increasing salinity significantly reduced tiller number (13.14–68.04%), leaf area index (18.58–57.99%), canopy light interception rate (11.91–44.08%), and net photosynthetic rate (2.63–52.42%) (p < 0.001), accompanied by reactive oxygen species (ROS)-induced membrane lipid peroxidation. Integrative analysis of field phenotypic and physiological indices revealed distinct adaptation strategies: JLY3261 rapidly activated antioxidant enzymes under 3‰ salinity, alleviating lipid peroxidation (no significant difference in H2O2 or malondialdehyde content compared to 0‰ salinity) and maintaining tillering and aboveground biomass. SLY91 tolerated 7‰ salinity via CAT/POD-mediated lipid peroxide degradation, with H2O2 and malondialdehyde contents increasing initially but decreasing with escalating stress. These findings highlight genotype-specific antioxidant strategies underlying salt-tolerance mechanisms and the critical need for integrating phenomics–physiological assessments at reproductive stages into salt-tolerance breeding pipelines. Full article
Show Figures

Figure 1

19 pages, 1388 KiB  
Article
Lipid Oxidation of Stored Brown Rice Changes Ileum Digestive and Metabolic Characteristics of Broiler Chickens
by Beibei He, Xueyi Zhang, Weiwei Wang, Li Wang, Jingjing Shi, Kuanbo Liu, Junlin Cheng, Yongwei Wang and Aike Li
Int. J. Mol. Sci. 2025, 26(14), 7025; https://doi.org/10.3390/ijms26147025 - 21 Jul 2025
Viewed by 251
Abstract
Long-term storage may induce lipid oxidation in brown rice and impact its utilization in animal diets. One-day-old male Ross 308 broiler chickens (with an initial body weight of 20 g) were randomly divided into three groups: corn-based diet (Corn), fresh brown rice-based diet [...] Read more.
Long-term storage may induce lipid oxidation in brown rice and impact its utilization in animal diets. One-day-old male Ross 308 broiler chickens (with an initial body weight of 20 g) were randomly divided into three groups: corn-based diet (Corn), fresh brown rice-based diet (BR1) and stored brown rice-based diet (BR6), with 8 replicates of 10 birds per pen, in a 42-day feeding trial. The results showed that lipid oxidation indexes increased and fatty acid composition changed significantly in BR6 (p < 0.05). The dietary replacement of corn with brown rice showed no effects on growth performance of broilers (p > 0.05). However, palmitic acid and oleic acid increased, and stearic acid, linoleic acid and docosadienoic acid decreased in the broiler breast muscle of the BR1 and BR6 groups (p < 0.05). Ileum antioxidant enzyme activities increased in the BR1 and BR6 groups compared to the Corn group (p < 0.05), and the activities of α-amylase, trypsin, chymotrypsin and lipase decreased in the BR6 group compared to the BR1 and Corn groups (p < 0.05). Also, compared to the BR1 group, the overall expression of metabolites involved in drug metabolism—cytochrome P450, GnRH secretion and the estrogen signaling pathway in broiler ileum were down-regulated in the BR6 group (p < 0.05). In conclusion, the lipid oxidation of stored brown rice decreased digestive enzyme activities and changed metabolic characteristics in the ileum of broilers. While replacing corn with brown rice did not affect broiler growth performance, it reduced the contents of unsaturated and essential fatty acids in breast muscle and enhanced the ileal antioxidant functions of broilers. Full article
(This article belongs to the Section Molecular Endocrinology and Metabolism)
Show Figures

Figure 1

23 pages, 1984 KiB  
Article
Rice Peroxygenase-9 Negatively Regulates Production of Reactive Oxygen Species and Increases Cellular Resistance to Abiotic Stress
by Anh Duc Tran, Kyoungwon Cho, Manh An Vu, Jeong-Il Kim, Hanh Thi Thuy Nguyen and Oksoo Han
Int. J. Mol. Sci. 2025, 26(14), 6918; https://doi.org/10.3390/ijms26146918 - 18 Jul 2025
Viewed by 204
Abstract
Caleosin/peroxygenases (CLO/PXGs) play critical functional roles during plant development, oxylipin metabolism, and the response to abiotic/biotic stressors and environmental toxins. In Oryza sativa, peroxygenase-9 (OsPXG9) catabolizes intermediates in oxylipin biosynthesis produced by lipoxygenase-9 (9-LOX) and scavenges HOOH and CuOOH by transferring oxygen [...] Read more.
Caleosin/peroxygenases (CLO/PXGs) play critical functional roles during plant development, oxylipin metabolism, and the response to abiotic/biotic stressors and environmental toxins. In Oryza sativa, peroxygenase-9 (OsPXG9) catabolizes intermediates in oxylipin biosynthesis produced by lipoxygenase-9 (9-LOX) and scavenges HOOH and CuOOH by transferring oxygen to hydroxy fatty acids (HFAs) but not to the free fatty acids. The resulting epoxide derivatives of HFAs are then enzymatically or non-enzymatically hydrolyzed into the corresponding trihydroxy derivatives. Results presented here demonstrate OsPXG9′s specificity for catabolizing products of the 9-LOX (and not for the 13-LOX) pathway of oxylipin biosynthesis. Overexpression of OsPXG9 reduces ROS (reactive oxygen species) abundance and reduces drought- and salt-stress-induced apoptotic cell death. The high expression level of OsPXG9 also stimulates drought- and salt-induced but not basal expression of antioxidant enzymes/pathways in plants, thereby increasing cellular resistance to drought. These results suggest that OsPXG9 decreases ROS abundance and is essential to increase resilience in rice plants exposed to exogenous or endogenous abiotic stress. Full article
Show Figures

Figure 1

17 pages, 1035 KiB  
Review
Ancient Grains as Functional Foods: Integrating Traditional Knowledge with Contemporary Nutritional Science
by Jude Juventus Aweya, Drupat Sharma, Ravneet Kaur Bajwa, Bliss Earnest, Hajer Krache and Mohammed H. Moghadasian
Foods 2025, 14(14), 2529; https://doi.org/10.3390/foods14142529 - 18 Jul 2025
Viewed by 781
Abstract
Ancient grains, including wild rice, millet, fonio, teff, quinoa, amaranth, and sorghum, are re-emerging as vital components of modern diets due to their dense nutritional profiles and diverse health-promoting bioactive compounds. Rich in high-quality proteins, dietary fiber, essential micronutrients, and a broad spectrum [...] Read more.
Ancient grains, including wild rice, millet, fonio, teff, quinoa, amaranth, and sorghum, are re-emerging as vital components of modern diets due to their dense nutritional profiles and diverse health-promoting bioactive compounds. Rich in high-quality proteins, dietary fiber, essential micronutrients, and a broad spectrum of bioactive compounds such as phenolic acids, flavonoids, carotenoids, phytosterols, and betalains, these grains exhibit antioxidant, anti-inflammatory, antidiabetic, cardioprotective, and immunomodulatory properties. Their health-promoting effects are underpinned by multiple interconnected mechanisms, including the reduction in oxidative stress, modulation of inflammatory pathways, regulation of glucose and lipid metabolism, support for mitochondrial function, and enhancement of gut microbiota composition. This review provides a comprehensive synthesis of the essential nutrients, phytochemicals, and functional properties of ancient grains, with particular emphasis on the nutritional and molecular mechanisms through which they contribute to the prevention and management of chronic diseases such as cardiovascular disease, type 2 diabetes, obesity, and metabolic syndrome. Additionally, it highlights the growing application of ancient grains in functional foods and nutrition-sensitive dietary strategies, alongside the technological, agronomic, and consumer-related challenges limiting their broader adoption. Future research priorities include well-designed human clinical trials, standardization of compositional data, innovations in processing for nutrient retention, and sustainable cultivation to fully harness the health, environmental, and cultural benefits of ancient grains within global food systems. Full article
Show Figures

Figure 1

14 pages, 1091 KiB  
Review
Gamma-Aminobutyric Acid: A Novel Biomolecule to Improve Plant Resistance and Fruit Quality
by Jingrong Wang, Shaokun Sun, Wei Fang, Xin Fu, Fuguo Cao and Shujun Liu
Plants 2025, 14(14), 2162; https://doi.org/10.3390/plants14142162 - 13 Jul 2025
Viewed by 503
Abstract
Gamma-aminobutyric acid (GABA), a ubiquitous non-protein amino acid, plays a vital role in the response of plants to biotic and abiotic stresses. This review summarizes the underlying mechanisms through which GABA contributes to plant stress resistance, including its biosynthetic and metabolic pathways, as [...] Read more.
Gamma-aminobutyric acid (GABA), a ubiquitous non-protein amino acid, plays a vital role in the response of plants to biotic and abiotic stresses. This review summarizes the underlying mechanisms through which GABA contributes to plant stress resistance, including its biosynthetic and metabolic pathways, as well as its regulatory roles in enhancing stress tolerance and improving fruit quality. In plants, GABA is primarily synthesized from glutamate by the enzyme glutamate decarboxylase (GAD) and further metabolized by GABA transaminase (GABA-T) and succinic semialdehyde dehydrogenase (SSADH). The accumulation of GABA regulates various physiological and biochemical processes, including the control of stomatal closure, enhancement of antioxidant capacity, maintenance of ionic homeostasis, and stabilization of cellular pH. Moreover, GABA interacts with phytohormones to regulate plant growth, development, and stress tolerance. Notably, increasing GAD expression through genetic engineering has been shown to enhance tolerance to stresses, such as drought, saline-alkali, cold, and heat, in various plants, including tomato, rice, and creeping bentgrass. Additionally, GABA has effectively improved the storage quality of various fruits, including citrus fruits, apples, and strawberries. In conclusion, GABA holds significant research potential and promising applications in agricultural production and plant science. Full article
Show Figures

Figure 1

18 pages, 4535 KiB  
Article
Selenium Alleviates Low-Temperature Stress in Rice by Regulating Metabolic Networks and Functional Genes
by Naixin Liu, Qingtao Yu, Baicui Chen, Chengxin Li, Fanshan Bu, Jingrui Li, Xianlong Peng and Yuncai Lu
Agriculture 2025, 15(14), 1489; https://doi.org/10.3390/agriculture15141489 - 11 Jul 2025
Viewed by 295
Abstract
Low temperature is a major abiotic stress affecting rice productivity. Selenium (Se) treatment has been shown to enhance plant resilience to cold stress. In this study, low concentrations of selenium (ColdSe1) alleviated the adverse effects of cold stress on rice seedlings, improving fresh [...] Read more.
Low temperature is a major abiotic stress affecting rice productivity. Selenium (Se) treatment has been shown to enhance plant resilience to cold stress. In this study, low concentrations of selenium (ColdSe1) alleviated the adverse effects of cold stress on rice seedlings, improving fresh weight, plant height, and chlorophyll content by 36.9%, 24.3%, and 8.4%, respectively, while reducing malondialdehyde (MDA) content by 29.1%. Se treatment also increased the activities of antioxidant enzymes, including catalase (CAT), superoxide dismutase (SOD), and peroxidase (POD), by 25.2%, 42.7%, and 33.3%, respectively, and upregulated flavonoids, soluble sugars, cysteine (Cys), glutathione (GSH), and oxidized glutathione (GSSG). Transcriptome analysis revealed that ColdSe1 treatment upregulated genes associated with amino and nucleotide sugar metabolism, glutathione metabolism, and fructose and mannose metabolism. It also alleviated cold stress by modulating the MAPK signaling pathway, phytohormone signaling, and photosynthesis-related pathways, enriching genes and transcription factors linked to antioxidant metabolism and photosynthesis. Metabolomic analyses showed that ColdSe1 positively influenced amino acid glucose metabolism, glycerolipid metabolism, hormonal pathways, and alanine/glutamate pathways under cold stress, while also upregulating metabolites associated with plant secondary metabolites (e.g., flavonoids, phenolic compounds) and antioxidant metabolism (e.g., α-linolenic acid metabolism). In contrast, high selenium concentrations (ColdSe2) disrupted phenylpropanoid biosynthesis, α-linolenic acid metabolism, and ABC transporter function, exacerbating cold-stress injury. This study highlights the critical role of Se in mitigating cold stress in rice, offering a theoretical basis for its application as an agricultural stress reliever. Full article
(This article belongs to the Special Issue Genetic Research and Breeding to Improve Stress Resistance in Rice)
Show Figures

Figure 1

27 pages, 1696 KiB  
Article
Soil–Plant Biochemical Interactions Under Agricultural Byproduct Amendments and Potassium Humate: Enhancing Soil Function and Bioactive Compounds in Sunflower Sprouts
by Thidarat Rupngam, Patchimaporn Udomkun, Thirasant Boonupara and Puangrat Kaewlom
Agronomy 2025, 15(7), 1651; https://doi.org/10.3390/agronomy15071651 - 7 Jul 2025
Viewed by 609
Abstract
This study presents an integrated approach to sustainable soil and crop management by evaluating the individual and combined effects of cow manure (CM), rice husk biochar (RHB), and potassium humate (KH)—three underutilized, low-cost organic amendments derived from agricultural byproducts. Uniquely, it investigates how [...] Read more.
This study presents an integrated approach to sustainable soil and crop management by evaluating the individual and combined effects of cow manure (CM), rice husk biochar (RHB), and potassium humate (KH)—three underutilized, low-cost organic amendments derived from agricultural byproducts. Uniquely, it investigates how these amendments simultaneously affect soil physical and chemical properties, plant growth, and the accumulation of bioactive compounds in sunflower sprouts, thereby linking soil health to crop nutritional quality. The application of 2% w/w KH alone resulted in the greatest increases in macroaggregation (+0.51), soil pH (from 6.8 to 8.6), and electrical conductivity (+298%). The combination of 1% w/w CM and 2% KH led to the highest increases in soil organic carbon (OC, +62.9%) and soil respiration (+56.4%). Nitrate and available phosphorus (P) peaked with 3% w/w RHB + 2% KH (+120%) and 1% w/w CM + 0.5% KH (+35.5%), respectively. For plant traits, 0.5% w/w KH increased the total leaf area by 61.9%, while 1% w/w CM enhanced shoot and root biomass by 60.8% and 79.0%, respectively. In contrast, 2% w/w KH reduced chlorophyll content (−43.6%). Regarding bioactive compounds, the highest total phenolic content (TPC) was observed with 1% w/w KH (+21.9%), while the strongest DPPH antioxidant activity was found under 1% w/w CM + 1% w/w KH (+72.6%). A correlation analysis revealed that biomass production and secondary metabolite accumulation are shaped by trade-offs arising from resource allocation under stress or nutrient limitations. Potassium, P, soil microbial respiration, and OC emerged as key integrators connecting soil structure, fertility, and plant metabolic responses. Overall, the combination of 1% w/w CM with 0.5–1% w/w KH proved to be the most effective strategy under the tested conditions. Full article
(This article belongs to the Section Agricultural Biosystem and Biological Engineering)
Show Figures

Figure 1

26 pages, 4558 KiB  
Article
Enrichment of Rice Flour with Almond Bagasse Powder: The Impact on the Physicochemical and Functional Properties of Gluten-Free Bread
by Stevens Duarte, Janaina Sánchez-García, Joanna Harasym and Noelia Betoret
Foods 2025, 14(13), 2382; https://doi.org/10.3390/foods14132382 - 5 Jul 2025
Viewed by 431
Abstract
Almond bagasse, a by-product of almond milk production, is rich in fibre, protein, polyunsaturated fatty acids, and bioactive compounds. Its incorporation into food products provides a sustainable approach to reducing food waste while improving nutritional quality. This study explored the impact of enriching [...] Read more.
Almond bagasse, a by-product of almond milk production, is rich in fibre, protein, polyunsaturated fatty acids, and bioactive compounds. Its incorporation into food products provides a sustainable approach to reducing food waste while improving nutritional quality. This study explored the impact of enriching rice flour with almond bagasse powders—either hot air-dried (HAD60) or lyophilised (LYO)—at substitution levels of 5%, 10%, 15%, 20%, 25%, and 30% (w/w), to assess effects on gluten-free bread quality. The resulting flour blends were analysed for their physicochemical, techno-functional, rheological, and antioxidant properties. Gluten-free breads were then prepared using these blends and evaluated fresh and after seven days of refrigerated storage. The addition of almond bagasse powders reduced moisture and water absorption capacities, while also darkening the bread colour, particularly in HAD60, due to browning from thermal drying. The LYO powder led to softer bread by disrupting the starch structure more than HAD60. All breads hardened after storage due to starch retrogradation. The incorporation of almond bagasse powder reduced the pasting behaviour—particularly at substitution levels of ≥ 25%—as well as the viscoelastic moduli of the flour blends, due to fibre competing for water and thereby limiting starch gelatinisation. Antioxidant capacity was significantly enhanced in HAD60 breads, particularly in the crust and at higher substitution levels, due to Maillard reactions. Furthermore, antioxidant degradation over time was less pronounced in formulations with higher substitution levels, with HAD60 proving more stable than LYO. Overall, almond bagasse powder improves the antioxidant profile and shelf-life of gluten-free bread, highlighting its value as a functional and sustainable ingredient. Full article
(This article belongs to the Section Food Engineering and Technology)
Show Figures

Figure 1

19 pages, 3549 KiB  
Article
Bacillus amyloliquefaciens SQ-2 and Biochar: A Promising Combination for Enhancing Rice Growth in Pb/Al-Contaminated Acidic Soils
by Guohui Gao, Xue Li, Jiajun Ma, Yumeng Cui, Ming Ying, Lei Huang and Meitong Li
Microorganisms 2025, 13(7), 1556; https://doi.org/10.3390/microorganisms13071556 - 2 Jul 2025
Viewed by 246
Abstract
In this study, Bacillus amyloliquefaciens SQ-2, previously isolated from a commercial watercress paste, was investigated for its potential in promoting rice growth in Pb/Al-contaminated acidic soil, especially when used in conjunction with corn straw biochar. Firstly, the physiological properties of rice were enhanced, [...] Read more.
In this study, Bacillus amyloliquefaciens SQ-2, previously isolated from a commercial watercress paste, was investigated for its potential in promoting rice growth in Pb/Al-contaminated acidic soil, especially when used in conjunction with corn straw biochar. Firstly, the physiological properties of rice were enhanced, with the activities of catalase and superoxide dismutase increasing by 162.5% and 162.9%, respectively. Additionally, the total phenolic and chlorophyll contents of rice increased by 17.6% and 83.7%, respectively. Secondly, the nutrient content of the rice rhizosphere soil was improved. In particular, nitrate nitrogen, available potassium, and sucrase were enhanced by 9.4%, 45.9%, and 466.8%, respectively. Moreover, SQ-2–biochar was demonstrated to have a notable capacity for removing Pb2+ and Al3+. The mineralization of Pb2+ and Al3+ was achieved through the use of SQ-2–biochar, as revealed by SEM-EDS, XRD, XPS, and FT-IR analyses, with the main precipitates being Pb3(PO4)2 and AlPO4. Functional groups such as C-O-C, C=O, N-H, P-O, and -O-H on the microbial surface were found to be involved in the biosorption process of Pb2+ and Al3+. In summary, SQ-2–biochar can effectively mineralize Pb2+ and Al3+, enhance the physiological properties of rice, and improve soil nutrients, thereby augmenting the antioxidant capacity, photosynthesis, and stress resistance of rice and ultimately promoting rice growth. Full article
Show Figures

Figure 1

20 pages, 2461 KiB  
Article
Effects of Different Forms of Organic Selenium on Growth Performance, Antioxidant Capacity, and Intestinal Health in Rice Field Eel (Monopterus albus)
by Denghang Yu, Yujia Liu, Jincheng Wan, Jiaxiang Chen, Yangjie Qiu and Chi Zhang
Animals 2025, 15(13), 1949; https://doi.org/10.3390/ani15131949 - 2 Jul 2025
Viewed by 361
Abstract
To evaluate the effects of different organic selenium sources on rice field eel (Monopterus albus), four isonitrogenous and isolipidic diets were tested: a control (no supplement) and four diets each supplemented with 0.24 mg/kg selenium as diselenoacetic acid (Se1), diselenopropionic acid [...] Read more.
To evaluate the effects of different organic selenium sources on rice field eel (Monopterus albus), four isonitrogenous and isolipidic diets were tested: a control (no supplement) and four diets each supplemented with 0.24 mg/kg selenium as diselenoacetic acid (Se1), diselenopropionic acid (Se2), diselenobutyric acid (Se3), or diselenodibutyric acid (Se4). Rice field eels (initial body weight 18.43 ± 0.03 g) were fed for 60 days. The Se1 group showed significantly higher WGR and SGR than the control. Whole-body crude protein was significantly increased in the Se3 and Se4 groups, while crude lipid content was significantly decreased in Se1, Se3, and Se4 groups. Selenium concentrations in the liver and kidney were highest in the Se2 group. Serum AST and ALT activities were decreased in Se4. In the Se4 group, intestinal CAT, T-SOD, and GSH-PX activities were enhanced, along with upregulation of Gpx8, CAT, Nrf2, and Keap1. Hepatic CAT and GSH-PX increased in Se2 and Se4, with Gpx8 upregulated in Se1. Intestinal lipase activity was significantly increased in Se2. At the phylum level, Proteobacteria predominated. At the genus level, Cetobacterium predominated. In summary, diselenoacetic acid enhanced growth, while diselenopropionic acid and diselenodibutyric acid improved antioxidant defense and intestinal health in rice field eel. Full article
(This article belongs to the Special Issue Sustainable Feed Ingredients in Freshwater Aquaculture)
Show Figures

Figure 1

25 pages, 4122 KiB  
Article
Bioaugmentation with Plant Growth-Promoting Rhizobacteria Alleviates Chromium and Salt Stress in Rice Through the Improvement of Physiology, Ion Homeostasis, and Antioxidant Defense
by Muhammad Abdus Sobahan, Nasima Akter, Muhammad Manjurul Karim, Md. Muzahidul Islam Badhon, Shakila Nargis Khan, Samiul Alam, P.V. Vara Prasad and Mirza Hasanuzzaman
Microorganisms 2025, 13(7), 1462; https://doi.org/10.3390/microorganisms13071462 - 24 Jun 2025
Viewed by 578
Abstract
Salinity and heavy metal stress significantly reduce agricultural productivity in arable lands, particularly affecting crops like rice (Oryza sativa L.). This study aimed to evaluate the efficacy of heavy metal-tolerant plant growth-promoting rhizobacteria (HMT-PGPR) in mitigating the harmful effects of salt (NaCl), [...] Read more.
Salinity and heavy metal stress significantly reduce agricultural productivity in arable lands, particularly affecting crops like rice (Oryza sativa L.). This study aimed to evaluate the efficacy of heavy metal-tolerant plant growth-promoting rhizobacteria (HMT-PGPR) in mitigating the harmful effects of salt (NaCl), chromium (Cr), and combined NaCl + Cr stress on rice plants. Two pre-isolated and well-characterized heavy metal-tolerant epiphytic (Ochrobactrum pseudogrignonense strain P14) and endophytic (Arthrobacter woluwensis strain M1R2) PGPR were tested. The LSD test (p ≤ 0.05) was used to assess the statistical significance between treatment means. Stresses caused by NaCl, Cr, and their combination were found to impair plant growth and biomass accumulation through mechanisms, including osmotic stress, oxidative damage, ionic imbalance, reduced photosynthetic pigment, lowered relative water content, and compromised antioxidant defense systems. Conversely, inoculation with HMT-PGPR alleviated these adverse effects by reducing oxidative stress indicators, including malondialdehyde (MDA), hydrogen peroxide (H2O2) content and electrolyte leakage (EL) and enhancing plant growth, osmolyte synthesis, and enzymatic antioxidant activity under single- and dual-stress conditions. The application of HMT-PGPR notably restricted Na+ and Cr6+ uptake, with an endophytic A. woluwensis M1R2 demonstrating superior performance in reducing Cr6+ translocation (38%) and bioaccumulation (42%) in rice under dual stress. The findings suggest that A. woluwensis effectively mitigates combined salinity and chromium stress by maintaining ion homeostasis and improving the plant’s antioxidant defenses. Full article
Show Figures

Figure 1

Back to TopTop