Microbial Interactions in Plant Adaptation to Abiotic and Biotic Stress

A special issue of Microorganisms (ISSN 2076-2607). This special issue belongs to the section "Plant Microbe Interactions".

Deadline for manuscript submissions: 30 September 2025 | Viewed by 4540

Special Issue Editor


E-Mail Website
Guest Editor
Biology Department, Spelman College, Atlanta, GA, USA
Interests: antibiotic resistance in plants; plant microbiomes; antibiotic production by the root microbiome; genomic data science; undergraduate education

Special Issue Information

Dear Colleagues,

We are pleased to invite you to contribute to a Special Issue on ‘Microbial Interactions in Plant Adaptation to Abiotic and Biotic Stress’.

There is an increasing recognition that plant-associated microbiota are important in supporting plant health and resilience under stress. While these beneficial traits can be attributed to specific species, more often than not, they are associated with the wider bacterial community found in the vicinity of plants. Much of our understanding of factors governing the interactions between plants, microbes and the environment is still in its infancy, and yet there is a strong interest in being able to leverage this knowledge for practical applications such as mitigating plant disease or enhancing stress tolerance through the use of beneficial microbes. In the face of growing challenges such as global warming and sustainable agriculture, this area of investigation is timely.

This Special Issue aims at consolidating knowledge from model species and crops on the factors and mechanisms governing plant–microbe–environment interactions.

In this Special Issue, original research articles and reviews are welcome. Research areas may include (but are not limited to) the following:

  • Studies that examine how plant adaptation to stress influences associated microbial communities;
  • Conversely, studies that examine how microbial communities influence plant responses to abiotic or biotic stress;
  • Studies that focus on mechanisms involved during specific plant–microbe interactions that impact plant adaptions to stress;
  • Studies that focus on mechanisms involved in microbe–microbe interactions modulated by plant stress;
  • Novel approaches and techniques that enable the study of plant–microbe–environment interactions.

I look forward to receiving your contributions.

Dr. Ayalew B. Mentewab
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Microorganisms is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • abiotic stress
  • biotic stress
  • plant microbiome
  • environmental adaptation
  • microbial interactions

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (4 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

14 pages, 1231 KiB  
Article
Unlocking Salinity Stress Resilience in Turnip (Brassica rapa subsp. rapa) Plants Using Bacillus subtilis Z-12 and Bacillus aryabhattai Z-48
by Imran Khan, Areeba Rehman, Waheed Akram, Tehmina Anjum, Nasim Ahmad Yasin, Zill-e-Huma Aftab, Bareera Munir, Waheed Ullah Khan and Guihua Li
Microorganisms 2025, 13(2), 359; https://doi.org/10.3390/microorganisms13020359 - 7 Feb 2025
Cited by 1 | Viewed by 795
Abstract
Salinity stress poses a severe risk to food security and crop productivity. Stress reduction techniques are not necessarily sustainable or environmentally friendly. With the increasing adverse impact of salinity and area, it is necessary to restore and ameliorate salinity stress using environmentally friendly [...] Read more.
Salinity stress poses a severe risk to food security and crop productivity. Stress reduction techniques are not necessarily sustainable or environmentally friendly. With the increasing adverse impact of salinity and area, it is necessary to restore and ameliorate salinity stress using environmentally friendly approaches. In this context, beneficial rhizospheric microbes may offer a sustainable approach to managing salinity stress. We used Bacillus subtilis strain Z-12 and B. aryabhattai strain Z-48 to improve the growth of turnip (Brassica rapa subsp. rapa) plants under salinity stress conditions and elucidated the beneficial impact of these bacterial strains on different physiological and biochemical aspects of plants. The application of both strains had a significant (p < 0.05) positive influence on analyzed parameters under salt stress. Here, B. aryabhattai strain Z-48 superiorly increased shoot length (33.2-, 25.8%), root length (38.6-, 31.5%), fresh biomass (23.9-, 17.8%), and dry biomass (38.60-, 48.6%) in normal and saline stress (200 mM NaCl) conditions, respectively. Physiological studies showed that antioxidant enzyme activities were significantly increased by B. subtilis Z-12 and B. aryabhattai Z-48 under salinity stress, with a few exceptions. Moreover, the inoculation of both strains effectively increased total chlorophyll, soluble sugar, phenolic, flavonoid, and glucosinolate contents under simulated salinity stress and normal conditions. Hence, these findings support the framework that inoculating turnip plants with these strains can enhance their tolerance against salinity stress. Full article
Show Figures

Figure 1

15 pages, 6634 KiB  
Article
Regulation of the Rhizosphere Microenvironment by Arbuscular Mycorrhizal Fungi to Mitigate the Effects of Cadmium Contamination on Perennial Ryegrass (Lolium perenne L.)
by Fan Yang, Jinji Han, Ruizhu Lin, Yuan Yin, Xiaoxia Deng, Yueming Li, Jixiang Lin and Jinghong Wang
Microorganisms 2024, 12(11), 2335; https://doi.org/10.3390/microorganisms12112335 - 15 Nov 2024
Cited by 1 | Viewed by 958
Abstract
Rhizosphere microorganisms are crucial for enhancing plant stress resistance. Current studies have shown that Arbuscular mycorrhizal fungi (AMF) can facilitate vegetation recovery in heavy metal-contaminated soils through interactions with rhizosphere microbiota. However, the mechanisms by which AMF influences rhizosphere microbiota and plant growth [...] Read more.
Rhizosphere microorganisms are crucial for enhancing plant stress resistance. Current studies have shown that Arbuscular mycorrhizal fungi (AMF) can facilitate vegetation recovery in heavy metal-contaminated soils through interactions with rhizosphere microbiota. However, the mechanisms by which AMF influences rhizosphere microbiota and plant growth under cadmium (Cd) stress remain unclear. In this study, Lolium perenne L. was inoculated with AMF (Rhizophagus irregularis) and grown in soils supplemented with Cd (0 mg kg−1, Cd0; 100 mg kg−1, Cd100). Plant biomass, antioxidant enzyme activities, peroxide content, Cd uptake, and rhizosphere bacterial community composition were evaluated. AMF inoculation reduced Cd influx in aboveground tissues, enhanced nutrient availability in the rhizosphere, and mitigated Cd biotoxicity. Additionally, AMF inoculation improved the scavenging efficiency of reactive oxygen species and alleviated oxidative stress in L. perenne, thereby mitigating biomass reduction. Moreover, AMF treatment increased leaf and root biomass by 342.94% and 41.31%, respectively. Furthermore, under the same Cd concentration, AMF inoculation increased bacterial diversity (as measured by the Shannon index) and reduced bacterial enrichment (as indicated by the ACE index). AMF promoted the enrichment of certain bacterial genera (e.g., Proteobacteria and Actinobacteria) in the Cd100 group. These findings suggest that AMF regulated the composition of the rhizosphere bacterial community and promoted the growth of potentially beneficial microorganisms, thereby enhancing the resistance of L. perenne to Cd stress. Cd contamination in soil severely limits plant growth and threatens ecosystem stability, highlighting the need to understand how AMF and rhizosphere microbes can enhance Cd tolerance in L. perenne. Therefore, inoculating plants with AMF is a promising strategy for enhancing their adaptability to Cd-contaminated soils. Full article
Show Figures

Figure 1

29 pages, 6522 KiB  
Article
Characterization of Dark Septate Endophytes Under Drought and Rehydration and Their Compensatory Mechanisms in Astragalus membranaceus
by Yali Xie, Xueli He, Duo Wang, Menghui Wang, Wanyun Li, Wenjing Chen, Xianen Li and Chao He
Microorganisms 2024, 12(11), 2254; https://doi.org/10.3390/microorganisms12112254 - 7 Nov 2024
Viewed by 894
Abstract
Drought is the most significant abiotic stress that impedes agroforestry development. In nature, drought tolerance also depends on the ability to compensate after water restoration. Dark septate endophytes (DSEs) are believed to enhance plant tolerance in drought environments. However, the compensatory mechanisms of [...] Read more.
Drought is the most significant abiotic stress that impedes agroforestry development. In nature, drought tolerance also depends on the ability to compensate after water restoration. Dark septate endophytes (DSEs) are believed to enhance plant tolerance in drought environments. However, the compensatory mechanisms of DSEs for rehydration after drought stress have not been reported. To assess the drought tolerance and compensatory capacity of DSEs, the following DSEs were investigated in this study using solid–liquid screening and potting tests under different drought gradients, rehydration conditions, and field water-holding capacities: Stagonosporopsis lupini, Microsphaeropsis cytisi, Macrophomina pseudophaseolina, Paraphoma radicina, Alternaria alstroemeriae, Alternaria tellustris, and Papulaspora equi. The results showed that M. pseudophaseolina reached the maximum diameter for plate growth in only 4 d. In a liquid shaker, the biomass of S. lupini peaked after rehydration. The Mantel heatmap indicated that lipid metabolites were significantly expressed in M. pseudophaseolina and S. lupini under drought stress. Correlations between drought tolerance indexes and amino acid metabolites increased dramatically in both DSEs after rehydration. Moreover, in rehydration after drought, the treatments inoculated with M. pseudophaseolina and S. lupini showed significant increases in root weight of 20.36% and 23.82%, respectively, compared with the uninoculated treatment. Full article
Show Figures

Figure 1

17 pages, 8680 KiB  
Article
Effects of Rehydration on Bacterial Diversity in the Rhizosphere of Broomcorn Millet (Panicum miliaceum L.) after Drought Stress at the Flowering Stage
by Yuhan Liu, Jiao Mao, Yuanmeng Xu, Jiangling Ren, Mengyao Wang, Shu Wang, Sichen Liu, Ruiyun Wang, Lun Wang, Liwei Wang, Zhijun Qiao and Xiaoning Cao
Microorganisms 2024, 12(8), 1534; https://doi.org/10.3390/microorganisms12081534 - 26 Jul 2024
Viewed by 1073
Abstract
This study aimed to elucidate responses of the bacterial structure and diversity of the rhizosphere in flowering broomcorn millet after rehydration following drought stress. In this study, the broomcorn millet varieties ‘Hequ red millet’ (A1) and ‘Yanshu No.10′ (A2), known for their different [...] Read more.
This study aimed to elucidate responses of the bacterial structure and diversity of the rhizosphere in flowering broomcorn millet after rehydration following drought stress. In this study, the broomcorn millet varieties ‘Hequ red millet’ (A1) and ‘Yanshu No.10′ (A2), known for their different drought tolerance levels, were selected as experimental materials. The plants were subjected to rehydration after drought stress at the flowering stage, while normal watering (A1CK and A2CK) served as the control. Soil samples were collected at 10 days (A11, A21, A1CK1, and A2CK1) and 20 days (A12, A22, A1CK2, and A2CK2) after rehydration. High-throughput sequencing technology was employed to investigate the variations in bacterial community structure, diversity, and metabolic functions in the rhizosphere of the broomcorn millet at different time points following rehydration. The findings indicated that the operational taxonomic units (OTUs) of bacteria in the rhizosphere of broomcorn millet were notably influenced by the duration of treatment, with a significant decrease in OTUs observed after 20 days of rehydration. However, bacterial Alpha diversity was not significantly impacted by rehydration following drought stress. The bacterial community in the rhizosphere of broomcorn millet was mainly composed of Actinobacteria and Proteobacteria. After rewatering for 10 to 20 days after drought stress, the abundance of Sphingomonas and Aeromicrobium in the rhizosphere soil of the two varieties of broomcorn millet decreased gradually. Compared with Yanshu No.10, the abundance of Pseudarthrobacter in the rhizosphere of Hequ red millet gradually increased. A Beta diversity analysis revealed variations in the dissimilarities of the bacterial community which corresponded to different rehydration durations. The relative abundance of bacterial metabolic functions in the rhizosphere of broomcorn millet was lower after 20 days of rehydration, compared to measurements after 10 days of rehydration. This observation might be attributed to the exchange of materials between broomcorn millet and microorganisms during the initial rehydration stage to repair the effects of drought, as well as to the enrichment of numerous microorganisms to sustain the stability of the community structure. This study helps to comprehend the alterations to the bacterial structure and diversity in the rhizosphere of broomcorn millet following drought stress and rehydration. It sheds light on the growth status of broomcorn millet and its rhizosphere microorganisms under real environmental influences, thereby enhancing research on the drought tolerance mechanisms of broomcorn millet. Full article
Show Figures

Figure 1

Back to TopTop