Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline

Search Results (286)

Search Parameters:
Keywords = resonant Raman scattering

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 2867 KB  
Article
Facile Fabrication of Moderate Sensitivity SERS Substrate Using Cu-Plasma Polymer Fluorocarbon Nanocomposite Thin Film
by Sejin Cho, Sung Hyun Kim, Joowon Lee and Sang-Jin Lee
Coatings 2026, 16(1), 108; https://doi.org/10.3390/coatings16010108 - 13 Jan 2026
Viewed by 217
Abstract
Herein, we propose a simple and cost-effective method for fabricating moderate-sensitivity surface-enhanced Raman scattering (SERS) substrates using Cu-plasma polymer fluorocarbon (Cu-PPFC) nanocomposite films fabricated through RF sputtering. The use of a composite target composed of carbon nanotube (CNT), Cu, and polytetrafluoroethylene (PTFE) powders [...] Read more.
Herein, we propose a simple and cost-effective method for fabricating moderate-sensitivity surface-enhanced Raman scattering (SERS) substrates using Cu-plasma polymer fluorocarbon (Cu-PPFC) nanocomposite films fabricated through RF sputtering. The use of a composite target composed of carbon nanotube (CNT), Cu, and polytetrafluoroethylene (PTFE) powders (5:60–80:35–15 wt%) offers the advantage of the simple fabrication of moderate-sensitivity SERS substrates with a single cathode compared to co-sputtering. X-ray photoelectron spectroscopy (XPS) revealed that the film surface was partially composed of metallic Cu with Cu-F bonds and Cu–O bonds, confirming the coexistence of the conducting and plasmon-active domains. UV-VIS spectroscopy revealed a distinct absorption peak at approximately 680 nm, indicating the excitation of localized surface plasmon resonances in the Cu nanoclusters embedded in the plasma polymer fluorocarbon (PPFC) matrix. Atomic force microscopy and grazing incidence small-angle X-ray scattering analyses confirmed that the Cu nanoparticles were uniformly distributed with interparticle distances of 20–35 nm. The Cu-PPFC nanocomposite film with the highest Cu content (80 wt%) exhibited a Raman enhancement factor of 2.18 × 104 for rhodamine 6G, demonstrating its potential as a moderate-sensitivity SERS substrate. Finite-difference time-domain (FDTD) simulations confirmed the strong electromagnetic field localization at the Cu-Cu nanogaps separated by the PPFC matrix, corroborating the experimentally observed SERS enhancement. These results suggest that a Cu-PPFC nanocomposite film, easily fabricated using a composite target, provides an efficient and scalable route for fabricating reproducible, inexpensive, and moderate-sensitivity SERS substrates suitable for practical sensing applications. Full article
(This article belongs to the Special Issue Advanced Optical Film Coating)
Show Figures

Figure 1

14 pages, 3075 KB  
Article
Discovery of the High-Affinity Aptamer for Candidalysin Using a Dual-Mode Colorimetric–SERS Platform
by Yige Sun, Canlan Zheng, Yuxuan Shi, Mingyuan Sun, Chao Wang, Lin Han, Yu Zhang, Tiezhou Hou and Le Qiang
Biosensors 2026, 16(1), 35; https://doi.org/10.3390/bios16010035 - 2 Jan 2026
Viewed by 353
Abstract
Candida albicans poses significant health risks through its virulent peptide toxin Candidalysin. As no existing therapeutics specifically target this toxin, developing high-affinity aptamers for its efficient and safe removal is urgently needed. In response, we developed a dual-mode biosensor based on gold nanoparticles [...] Read more.
Candida albicans poses significant health risks through its virulent peptide toxin Candidalysin. As no existing therapeutics specifically target this toxin, developing high-affinity aptamers for its efficient and safe removal is urgently needed. In response, we developed a dual-mode biosensor based on gold nanoparticles (AuNPs) and aptamers for screening high-affinity aptamers for Candidalysin. This biosensor leverages the localized surface plasmon resonance (LSPR) phenomenon and surface-enhanced Raman scattering (SERS) of AuNPs to detect changes in color and Raman signals, respectively, indicative of high-affinity aptamer for Candidalysin presence. This dual-mode capability reduces false-negative signals and enhances detection accuracy. Our findings reveal a specific aptamer with high affinity for Candidalysin, presenting a significant advancement in candidiasis treatment. This work sets the stage for the development of effective therapeutic strategies against Candida infections. Full article
Show Figures

Figure 1

16 pages, 9643 KB  
Article
Synergistically Enhanced Ta2O5/AgNPs SERS Substrate Coupled with Deep Learning for Ultra-Sensitive Microplastic Detection
by Chenlong Zhao, Yaoyang Wang, Shuo Cheng, Yuhang You, Yi Li and Xianwu Xiu
Materials 2026, 19(1), 90; https://doi.org/10.3390/ma19010090 - 25 Dec 2025
Viewed by 361
Abstract
Herein, a high-performance Ta2O5/AgNPs composite Surface-Enhanced Raman Scattering (SERS) substrate is engineered for highly sensitive detection of microplastics. Through morphology modulation and band-gap engineering, the semiconductor Ta2O5 is structured into spheres and composited with silver nanoparticles [...] Read more.
Herein, a high-performance Ta2O5/AgNPs composite Surface-Enhanced Raman Scattering (SERS) substrate is engineered for highly sensitive detection of microplastics. Through morphology modulation and band-gap engineering, the semiconductor Ta2O5 is structured into spheres and composited with silver nanoparticles (AgNPs), facilitating efficient charge transfer and localized surface plasmon resonance (LSPR). This architecture integrates electromagnetic (EM) and chemical (CM) enhancement mechanisms, achieving an ultra-low detection limit of 10−13 M for rhodamine 6G (R6G) with excellent linearity. Furthermore, the three-dimensional “pseudo-Neuston” network structure exhibits superior capture capability for microplastics (PS, PET, PMMA). To address spectral interference in simulated complex environments, a multi-scale deep-learning model combining wavelet transform, Convolutional Neural Networks (CNN), and Transformers is proposed. This model achieves a classification accuracy of 98.7% under high-noise conditions, significantly outperforming traditional machine learning methods. This work presents a robust strategy for environmental monitoring, offering a novel solution for precise risk assessment of microplastic pollution. Full article
Show Figures

Graphical abstract

20 pages, 19282 KB  
Article
Single-Exosome SERS Detection by Means of a Flexible Metasurface
by Konstantin Mochalov, Denis Korzhov, Milena Shestopalova, Andrey Ivanov, Konstantin Afanasev, Alexander Smyk, Alexander Shurygin and Andrey K. Sarychev
Biosensors 2025, 15(12), 815; https://doi.org/10.3390/bios15120815 - 15 Dec 2025
Cited by 1 | Viewed by 769
Abstract
Single exosomes are detected via surface-enhanced Raman scattering (SERS) due to electromagnetic field accumulation on a specially designed flexible metasurface. This metasurface is a modulated silver nanofilm deposited on a thin, flexible plastic substrate. An explicit Equation for calculating the local electric field [...] Read more.
Single exosomes are detected via surface-enhanced Raman scattering (SERS) due to electromagnetic field accumulation on a specially designed flexible metasurface. This metasurface is a modulated silver nanofilm deposited on a thin, flexible plastic substrate. An explicit Equation for calculating the local electric field is given. The field reaches extremely high values under plasmon resonance conditions and fills the depressions of the metasurface. The thin, flexible metasurface can be incorporated into automated Lab-On-Chip analytical systems and used for spectroscopic studies of exosomes. We propose a method to distinguish individual exosomes from the HEK293T cell line on the metasurface and then obtain and assign their SERS spectra. An important advantage of the plasmonic metasurface presented in this work is its spatial complementarity to exosomes and other vesicle-like objects. The plasmonic metasurface is fabricated using holographic lithography and further investigated using a correlation approach combining atomic force microscopy, scanning spreading resistance microscopy, and surface-enhanced spectroscopy. Full article
(This article belongs to the Special Issue Raman Scattering-Based Biosensing)
Show Figures

Figure 1

14 pages, 4136 KB  
Article
Tuning Surface-Enhanced Raman Scattering (SERS) via Filling Fraction and Period in Gold-Coated Bullseye Gratings
by Ziqi Li, Yaming Cheng, Carlos Fernandes, Xiaolu Wang and Harry E. Ruda
Nanomaterials 2025, 15(24), 1863; https://doi.org/10.3390/nano15241863 - 11 Dec 2025
Cited by 1 | Viewed by 472
Abstract
Surface-enhanced Raman scattering (SERS) is a highly sensitive analytical technique capable of single-molecule detection, yet its performance strongly depends on the underlying plasmonic architecture. In this study, we developed a robust SERS platform based on long-range–ordered bullseye plasmonic nano-gratings with tunable period and [...] Read more.
Surface-enhanced Raman scattering (SERS) is a highly sensitive analytical technique capable of single-molecule detection, yet its performance strongly depends on the underlying plasmonic architecture. In this study, we developed a robust SERS platform based on long-range–ordered bullseye plasmonic nano-gratings with tunable period and filling fraction, fabricated via electron beam lithography and reactive ion etching and uniformly coated with a thin gold film. These concentric nanostructures support efficient surface plasmon resonance and radial SPP focusing, enabling intense electromagnetic field enhancement across the substrate. Using this platform, we achieved quantitative detection of Rhodamine 6G with enhancement factors of 105. Notably, our results reveal a previously unrecognized mechanistic insight: the geometric configuration producing the strongest local electric fields does not yield the highest SERS enhancement, due to misalignment between the dominant field orientation and the molecular polarizability tensor. This finding explains the non-monotonic dependence of SERS performance on grating geometry and introduces a new design principle in which both field strength and field–molecule alignment must be co-optimized. Overall, this work provides a mechanistic framework for rationally engineering plasmonic substrates for sensitive and quantitative molecular detection. Full article
(This article belongs to the Section Nanophotonics Materials and Devices)
Show Figures

Graphical abstract

74 pages, 18738 KB  
Review
Nanoparticle Detection in Biology and Medicine: A Review
by Olga A. Kolesnikova, Dmitry A. Shikvin, Arina O. Antonova, Anna M. Iureva, Elena N. Komedchikova, Anastasiia S. Obozina, Valeryia S. Kachan, Anna V. Svetlakova, Ilya D. Kukushkin and Victoria O. Shipunova
Biosensors 2025, 15(12), 809; https://doi.org/10.3390/bios15120809 - 11 Dec 2025
Cited by 1 | Viewed by 2137
Abstract
Background/Objectives: Nanoparticles have emerged as indispensable tools in modern biomedicine, enabling precise diagnostics, targeted therapy, and controlled drug delivery. Despite their rapid progress, the translation of nanoparticle-based systems critically depends on the ability to detect, quantify, and track them across complex biological environments. [...] Read more.
Background/Objectives: Nanoparticles have emerged as indispensable tools in modern biomedicine, enabling precise diagnostics, targeted therapy, and controlled drug delivery. Despite their rapid progress, the translation of nanoparticle-based systems critically depends on the ability to detect, quantify, and track them across complex biological environments. Over the past two decades, a wide spectrum of detection modalities has been developed, encompassing optical, magnetic, acoustic, nuclear, cytometric, and mass spectrometric principles. Yet, no comprehensive framework has been established to compare these methods in terms of sensitivity, spatial resolution, and clinical applicability. Methods: Here we show a systematic analysis of all broadly applicable nanoparticle detection strategies, outlining their mechanisms, advantages, and drawbacks, and providing illustrative examples of practical applications. Results: This comparison reveals that each modality occupies a distinct niche: optical methods offer high sensitivity but limited penetration depth; magnetic and acoustic modalities enable repeated non-invasive tracking; nuclear imaging ensures quantitative, whole-body visualization; and invasive biochemical or histological assays achieve ultimate detection limits at the cost of tissue integrity. These findings redefine how each technique contributes to nanoparticle biodistribution and mechanistic studies, clarifying which are best suited for translational and clinical use. Conclusions: Placed in a broader context, this review bridges fundamental nanotechnology with biomedical applications, outlining a unified methodological framework that will guide the rational design, validation, and clinical implementation of nanoparticle-based therapeutics and diagnostics. By synthesizing the field into a single comparative framework, it also provides an accessible entry point for newcomers in nanotechnology and related biomedical sciences. Full article
(This article belongs to the Section Biosensors and Healthcare)
Show Figures

Figure 1

12 pages, 5803 KB  
Article
Tunable Near-Infrared Laser Emission at 1.7 μm Generated by Stimulated Raman Scattering of Sulfur Hexafluoride Molecules in Anti-Resonant Hollow-Core Fibers
by Peicong Liu, Tianyu Li, Wenxi Pei, Luohao Lei, Jing Shi, Guorui Lv, Qi Chen, Guangrong Sun, Yamei Xu, Shuyi Wang, Zhiyue Zhou and Zefeng Wang
Photonics 2025, 12(12), 1196; https://doi.org/10.3390/photonics12121196 - 4 Dec 2025
Viewed by 371
Abstract
Fiber lasers operating at 1.7 μm have significant application value in fields such as gas detection and material processing due to their characteristics, including compact structure and ease of thermal management. Based on the stimulated Raman scattering (SRS) of gas molecules in hollow-core [...] Read more.
Fiber lasers operating at 1.7 μm have significant application value in fields such as gas detection and material processing due to their characteristics, including compact structure and ease of thermal management. Based on the stimulated Raman scattering (SRS) of gas molecules in hollow-core fibers (HCFs), fiber gas Raman lasers (FGRLs) are a novel and effective method for generating 1.7 μm fiber lasers. We report here, to the best of our knowledge, the first FGRL based on the anti-resonant hollow-core fiber (AR-HCF) filled with sulfur hexafluoride (SF6) molecules. A nanosecond pulsed fiber amplifier tunable from 1540 to 1560 nm was used to pump a 17.8-m-long AR-HCF filled with SF6 molecules. By virtue of the vibrational SRS of SF6 molecules, laser output in the range of 1748–1774 nm was achieved. At a gas pressure of 15 bar, a maximum average power output of ~3 W was obtained, corresponding to an optical-to-optical conversion efficiency of ~22%. The output linewidth of the Raman laser was measured to be approximately 2.1 GHz using a Fabry–Pérot (F-P) scanning interferometer. The research results enriched the methods for 1.7 μm fiber laser output. Full article
Show Figures

Figure 1

32 pages, 6586 KB  
Review
Research Progress of Biosensors in the Detection of Pesticide Residues and Heavy Metals in Tea Leaves
by Pin Li, Miaopeng Chen, Tianle Yao, Long Wu, Shanran Wang, Yu Han, Ying Song and Jia Yin
Biosensors 2025, 15(12), 778; https://doi.org/10.3390/bios15120778 - 26 Nov 2025
Viewed by 1322
Abstract
Tea, a worldwide prevalent beverage, is continually contaminated by pesticide residues and heavy metals, presenting considerable health concerns to consumers. Nonetheless, effective monitoring is limited by conventional detection techniques—such as gas chromatography (GC) and inductively coupled plasma mass spectrometry (ICP-MS)—which, despite their high [...] Read more.
Tea, a worldwide prevalent beverage, is continually contaminated by pesticide residues and heavy metals, presenting considerable health concerns to consumers. Nonetheless, effective monitoring is limited by conventional detection techniques—such as gas chromatography (GC) and inductively coupled plasma mass spectrometry (ICP-MS)—which, despite their high precision, necessitate intricate pretreatment, incur substantial operational expenses, and are inadequate for swift on-site analysis. Biosensors have emerged as a viable option, addressing this gap with their exceptional sensitivity, rapid response, and ease of operation.This review rigorously evaluates recent advancements in biosensing technologies for the detection of pesticide residues and heavy metals in tea, emphasizing the mechanisms, analytical performance, and practical applicability of prominent platforms such as fluorescence, surface-enhanced Raman scattering (SERS), surface plasmon resonance (SPR), colorimetric, and electrochemical biosensors. Electrochemical and fluorescent biosensors provide the highest promise for portable, on-site use owing to their enhanced sensitivity, cost-effectiveness, and flexibility to intricate tea matrices. The paper further emphasizes upcoming techniques such multi-component detection, microfluidic integration, and AI-enhanced data processing. Biosensors provide significant potential to revolutionize tea safety monitoring, with future advancements dependent on the synergistic incorporation of sophisticated nanomaterials, intelligent microdevices, and real-time analytics across the whole “tea garden-to-cup” supply chain. Full article
Show Figures

Figure 1

13 pages, 1918 KB  
Article
Low-Frequency Phonon Scattering in Wurtzite Cadmium Sulfide: An Off- and Near-Resonance Raman Spectroscopy Study
by Carlos Israel Medel Ruiz, Roger Chiu, Jesús Ricardo Sevilla Escoboza, Jesús Castañeda Contreras, Francisco Gerardo Peña Lecona and Jesús Muñoz Maciel
Solids 2025, 6(4), 61; https://doi.org/10.3390/solids6040061 - 4 Nov 2025
Viewed by 1434
Abstract
Phonons, the quantized lattice vibrations, are fundamental for a wide range of phenomena in condensed matter systems. In particular, low-frequency phonons significantly influence electrical conductivity, thermal transport, and the optical properties of solid-state materials. Although there is considerable literature on cadmium sulfide (CdS) [...] Read more.
Phonons, the quantized lattice vibrations, are fundamental for a wide range of phenomena in condensed matter systems. In particular, low-frequency phonons significantly influence electrical conductivity, thermal transport, and the optical properties of solid-state materials. Although there is considerable literature on cadmium sulfide (CdS) phonons—studied, for example, using resonance Raman spectroscopy—up-to-date information on the low-frequency phonons of this important semiconductor is still lacking. In this study, Raman spectroscopy under off- and near-resonance conditions is employed to investigate the low-frequency phonon in wurtzite CdS single crystals. Under off-resonance conditions, the spectrum exhibits multiple low-intensity peaks, which were analyzed through curve fitting. In contrast, the near-resonance spectrum shows an intense, broad band that was deconvoluted into its constituent components, including an antiresonance feature that was mathematically modeled for the first time in CdS. The results demonstrate that Raman scattering intensity in both regimes provides valuable insights into the low-frequency phonon modes of CdS. These findings enhance our understanding of the material’s vibrational properties and may facilitate the development of more efficient CdS-based optoelectronic devices. Full article
Show Figures

Graphical abstract

26 pages, 3689 KB  
Review
Optical Sensor Technologies for Enhanced Food Safety Monitoring: Advances in Detection of Chemical and Biological Contaminants
by Furong Fan, Zeyu Liao, Zhixiang He, Yaoyao Sun, Kuiguo Han and Yanqun Tong
Photonics 2025, 12(11), 1081; https://doi.org/10.3390/photonics12111081 - 1 Nov 2025
Viewed by 1152
Abstract
Optical sensing technologies are revolutionizing global food safety surveillance through exceptional sensitivity, rapid response, and high portability. This review systematically evaluates five major platforms, revealing unprecedented detection capabilities from sub-picomolar to single-cell resolution. Surface plasmon resonance achieves 0.021 ng/mL detection [...] Read more.
Optical sensing technologies are revolutionizing global food safety surveillance through exceptional sensitivity, rapid response, and high portability. This review systematically evaluates five major platforms, revealing unprecedented detection capabilities from sub-picomolar to single-cell resolution. Surface plasmon resonance achieves 0.021 ng/mL detection limits for veterinary drugs with superior molecular recognition. Quantum dot fluorescence sensors reach 0.17 nM sensitivity for pesticides, enabling rapid on-site screening. Surface-enhanced Raman scattering attains 0.2 pM sensitivity for heavy metals, ideal for trace contaminants. Laser-induced breakdown spectroscopy delivers multi-elemental analysis within seconds at 0.0011 mg/L detection limits. Colorimetric assays provide cost-effective preliminary screening in resource-limited settings. We propose a stratified detection framework that strategically allocates differentiated sensing technologies across food supply chain nodes, addressing heterogeneous demands while eliminating resource inefficiencies from deploying high-precision instruments for routine screening. Integration of microfluidics, artificial intelligence, and mobile platforms accelerates evolution toward multimodal fusion and decentralized deployment. Despite advances, critical challenges persist: matrix interference, environmental robustness, and standardized protocols. Future breakthroughs require interdisciplinary innovation in materials science, intelligent data processing, and system integration, transforming laboratory prototypes into intelligent early warning networks spanning the entire food supply chain. Full article
Show Figures

Figure 1

13 pages, 8282 KB  
Article
Fabrication of Bowl Array Surface-Enhanced Raman Scattering Substrates via Ag Nanoparticle Self-Assembly on Polymer UV-Imprinted Microbowls for Enhanced Raman Detection of Microplastics
by Yihong Liu, Longchao Qi, Kaibo Guo, Xianlong Ning, Yiming Huang and Xun Lu
Polymers 2025, 17(21), 2930; https://doi.org/10.3390/polym17212930 - 31 Oct 2025
Viewed by 965
Abstract
A facile, efficient, and cost-effective strategy for fabricating a bowl array SERS (surface-enhanced Raman scattering) substrate is presented. The resulting substrate is dimensionally compatible with micrometer-sized microplastics and integrates both SERS enhancement and light-trapping effects, enabling highly sensitive detection of micrometer-sized microplastics. Initially, [...] Read more.
A facile, efficient, and cost-effective strategy for fabricating a bowl array SERS (surface-enhanced Raman scattering) substrate is presented. The resulting substrate is dimensionally compatible with micrometer-sized microplastics and integrates both SERS enhancement and light-trapping effects, enabling highly sensitive detection of micrometer-sized microplastics. Initially, a pillar array template was produced via UV lithography, followed by UV imprinting to replicate bowl arrays with a diameter of 50 μm, a depth of 25 μm, and a periodicity of 100 μm. A gold layer was subsequently deposited, followed by the modification of its surface with AgNPs to construct the SERS substrate. The experimental results reveal that the optimal enhancement was achieved at an AgNP suspension concentration of 15 mg/mL. The substrate exhibited a detection limit of 10−9 M for rhodamine 6G with an enhancement factor (EF) of 2.02 × 107 and successfully detected polyethylene (PE) microplastics of 5, 10, and 20 μm at concentrations down to 100 μg/mL, demonstrating outstanding sensing performance. Full article
(This article belongs to the Section Circular and Green Sustainable Polymer Science)
Show Figures

Graphical abstract

38 pages, 7558 KB  
Review
A Review on ZnO Nanostructures for Optical Biosensors: Morphology, Immobilization Strategies, and Biomedical Applications
by Amauri Serrano-Lázaro, Karina Portillo-Cortez, María Beatriz de la Mora Mojica and Juan C. Durán-Álvarez
Nanomaterials 2025, 15(21), 1627; https://doi.org/10.3390/nano15211627 - 25 Oct 2025
Viewed by 1490
Abstract
ZnO nanostructures have attracted attention as transducer materials in optical biosensing platforms due to their wide bandgap, defect-mediated photoluminescence, high surface-to-volume ratio, and tunable morphology. This review examines how the dimensionality of ZnO nanostructures affects biosensor performance, particularly in terms of charge transport, [...] Read more.
ZnO nanostructures have attracted attention as transducer materials in optical biosensing platforms due to their wide bandgap, defect-mediated photoluminescence, high surface-to-volume ratio, and tunable morphology. This review examines how the dimensionality of ZnO nanostructures affects biosensor performance, particularly in terms of charge transport, signal transduction, and biomolecule immobilization. The synthesis approaches are discussed, highlighting how they influence crystallinity, defect density, and surface functionalization potential. The impact of immobilization strategies on sensor stability and sensitivity is also assessed. The role of ZnO in various optical detection schemes, including photoluminescence, surface plasmon resonance (SPR), localized (LSPR), fluorescence, and surface-enhanced Raman scattering (SERS), is reviewed, with emphasis on label-free and real-time detection. Representative case studies demonstrate the detection of clinically and environmentally relevant targets, such as glucose, dopamine, cancer biomarkers, and SARS-CoV-2 antigens, with limits of detection in the pico- to femtomolar range. Recent developments in ZnO-based hybrid systems and their integration into fiber-optic and microfluidic platforms are explored as scalable solutions for portable, multiplexed diagnostics. The review concludes by outlining current challenges related to reproducibility, long-term operational stability, and surface modification standardization. This work provides a framework for understanding structure–function relationships in ZnO-based biosensors and highlights future directions for their development in biomedical and environmental monitoring applications. Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
Show Figures

Graphical abstract

18 pages, 4717 KB  
Article
Localized Surface Plasmon Resonance-Based Gas Sensor with a Metal–Organic-Framework-Modified Gold Nano-Urchin Substrate for Volatile Organic Compounds Visualization
by Cong Wang, Hao Guo, Bin Chen, Jia Yan, Fumihiro Sassa and Kenshi Hayashi
Sensors 2025, 25(21), 6522; https://doi.org/10.3390/s25216522 - 23 Oct 2025
Cited by 1 | Viewed by 957
Abstract
Volatile organic compound (VOC) monitoring is crucial for environmental safety and health, but conventional gas sensors often suffer from poor selectivity or lack spatial information. Here, we report a localized surface plasmon resonance (LSPR) gas sensor based on Au nano-urchins coated with a [...] Read more.
Volatile organic compound (VOC) monitoring is crucial for environmental safety and health, but conventional gas sensors often suffer from poor selectivity or lack spatial information. Here, we report a localized surface plasmon resonance (LSPR) gas sensor based on Au nano-urchins coated with a zeolitic imidazolate framework (ZIF-8) for both the quantitative detection and visualization of VOCs. Substrates were fabricated by immobilizing Au nano-urchins (~90 nm) on 3-aminopropyltriethoxysilane-modified glass and subsequently growing ZIF-8 crystals (~250 nm) for different durations. Scanning electron microscopy and optical analysis revealed that 90 min of ZIF-8 growth provided the optimal coverage and strongest plasmonic response. Using a spectrometer-based LSPR system, the optimized substrate exhibited clear, concentration-dependent responses to three representative VOCs, 2-pentanone, acetic acid, and ethyl acetate, over nine concentrations, with detection limits of 12.7, 14.5, and 36.3 ppm, respectively. Furthermore, a camera-based LSPR visualization platform enabled real-time imaging of gas plumes and evaporation-driven diffusion, with differential pseudo-color mapping providing intuitive spatial distributions and concentration dependence. These results demonstrate that ZIF-8-modified Au nano-urchin substrates enable sensitive and reproducible VOC detection and, importantly, transform plasmonic sensing into a visual modality, offering new opportunities for integrated LSPR–surface-enhanced Raman scattering dual-mode gas sensing in the future. Full article
(This article belongs to the Special Issue Nano/Micro-Structured Materials for Gas Sensor)
Show Figures

Figure 1

64 pages, 10522 KB  
Review
Spectroscopic and Microscopic Characterization of Inorganic and Polymer Thermoelectric Materials: A Review
by Temesgen Atnafu Yemata, Tessera Alemneh Wubieneh, Yun Zheng, Wee Shong Chin, Messele Kassaw Tadsual and Tadisso Gesessee Beyene
Spectrosc. J. 2025, 3(4), 24; https://doi.org/10.3390/spectroscj3040024 - 14 Oct 2025
Viewed by 1918
Abstract
Thermoelectric (TE) materials represent a critical frontier in sustainable energy conversion technologies, providing direct thermal-to-electrical energy conversion with solid-state reliability. The optimizations of TE performance demand a nuanced comprehension of structure–property relationships across diverse length scales. This review summarizes established and emerging spectroscopic [...] Read more.
Thermoelectric (TE) materials represent a critical frontier in sustainable energy conversion technologies, providing direct thermal-to-electrical energy conversion with solid-state reliability. The optimizations of TE performance demand a nuanced comprehension of structure–property relationships across diverse length scales. This review summarizes established and emerging spectroscopic and microscopic techniques used to characterize inorganic and polymer TE materials, specifically poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT:PSS). For inorganic TE, ultraviolet–visible (UV–Vis) spectroscopy, energy-dispersive X-ray (EDX) spectroscopy, and X-ray photoelectron spectroscopy (XPS) are widely applied for electronic structure characterization. For phase analysis of inorganic TE materials, Raman spectroscopy (RS), electron energy loss spectroscopy (EELS), and nuclear magnetic resonance (NMR) spectroscopy are utilized. For analyzing the surface morphology and crystalline structure, chemical scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray diffraction (XRD) are commonly used. For polymer TE materials, ultraviolet−visible–near-infrared (UV−Vis−NIR) spectroscopy and ultraviolet photoelectron spectroscopy (UPS) are generally employed for determining electronic structure. For functional group analysis of polymer TE, attenuated total reflectance–Fourier-transform infrared (ATR−FTIR) spectroscopy and RS are broadly utilized. XPS is used for elemental composition analysis of polymer TE. For the surface morphology of polymer TE, atomic force microscopic (AFM) and SEM are applied. Grazing incidence wide-angle X-ray scattering (GIWAXS) and XRD are employed for analyzing the crystalline structures of polymer TE materials. These techniques elucidate electronic, structural, morphological, and chemical properties, aiding in optimizing TE properties like conductivity, thermal stability, and mechanical strength. This review also suggests future research directions, including in situ methods and machine learning-assisted multi-dimensional spectroscopy to enhance TE performance for applications in electronic devices, energy storage, and solar cells. Full article
(This article belongs to the Special Issue Advances in Spectroscopy Research)
Show Figures

Graphical abstract

47 pages, 15990 KB  
Review
Single-Molecule Detection Technologies: Advances in Devices, Transduction Mechanisms, and Functional Materials for Real-World Biomedical and Environmental Applications
by Sampa Manoranjan Barman, Arpita Parakh, A. Anny Leema, P. Balakrishnan, Ankita Avthankar, Dhiraj P. Tulaskar, Purshottam J. Assudani, Shon Nemane, Prakash Rewatkar, Madhusudan B. Kulkarni and Manish Bhaiyya
Biosensors 2025, 15(10), 696; https://doi.org/10.3390/bios15100696 - 14 Oct 2025
Cited by 1 | Viewed by 2012
Abstract
Single-molecule detection (SMD) has reformed analytical science by enabling the direct observation of individual molecular events, thus overcoming the limitations of ensemble-averaged measurements. This review presents a comprehensive analysis of the principles, devices, and emerging materials that have shaped the current landscape of [...] Read more.
Single-molecule detection (SMD) has reformed analytical science by enabling the direct observation of individual molecular events, thus overcoming the limitations of ensemble-averaged measurements. This review presents a comprehensive analysis of the principles, devices, and emerging materials that have shaped the current landscape of SMD. We explore a wide range of sensing mechanisms, including surface plasmon resonance, mechanochemical transduction, transistor-based sensing, optical microfiber platforms, fluorescence-based techniques, Raman scattering, and recognition tunneling, which offer distinct advantages in terms of label-free operation, ultrasensitivity, and real-time responsiveness. Each technique is critically examined through representative case studies, revealing how innovations in device architecture and signal amplification strategies have collectively pushed the detection limits into the femtomolar to attomolar range. Beyond the sensing principles, this review highlights the transformative role of advanced nanomaterials such as graphene, carbon nanotubes, quantum dots, MnO2 nanosheets, upconversion nanocrystals, and magnetic nanoparticles. These materials enable new transduction pathways and augment the signal strength, specificity, and integration into compact and wearable biosensing platforms. We also detail the multifaceted applications of SMD across biomedical diagnostics, environmental monitoring, food safety, neuroscience, materials science, and quantum technologies, underscoring its relevance to global health, safety, and sustainability. Despite significant progress, the field faces several critical challenges, including signal reproducibility, biocompatibility, fabrication scalability, and data interpretation complexity. To address these barriers, we propose future research directions involving multimodal transduction, AI-assisted signal analytics, surface passivation techniques, and modular system design for field-deployable diagnostics. By providing a cross-disciplinary synthesis of device physics, materials science, and real-world applications, this review offers a comprehensive roadmap for the next generation of SMD technologies, poised to impact both fundamental research and translational healthcare. Full article
Show Figures

Figure 1

Back to TopTop