Polymers-Based Biosensors and Bioelectronics: Designs and Applications

A special issue of Biosensors (ISSN 2079-6374). This special issue belongs to the section "Biosensor Materials".

Deadline for manuscript submissions: 20 June 2025 | Viewed by 6508

Special Issue Editor


E-Mail Website
Guest Editor
Laser and Thermal Engineering Laboratory, Department of Mechanical Engineering, Gachon University, Seongnam 13120, Republic of Korea
Interests: biosensors; chemical sensors; hydrogels; organic field-effect transistors; conjugated polymers; photo-catalyts
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Following the success of the first volume of the Special Issue entitled "Conjugated Polymers-Based Biosensors for Virus Detection", we are pleased to announce a new edition, entitled "Polymers-Based Biosensors and Bioelectronics: Designs and Applications". This Special Issue will continue to explore the innovative use of polymer materials in the development of biosensors and bioelectronic devices.

As the need for sensitive and selective detection methods grows in fields such as healthcare, environmental monitoring, and food safety, polymers have become indispensable materials. Their unique properties—such as flexibility, biocompatibility, and ease of functionalization—make them highly suitable for these applications.

This Special Issue will focus on recent advancements in the design, fabrication, and application of polymer-based biosensors and bioelectronic systems. We welcome the submission of original research articles, reviews, and short communications addressing a range of topics, including novel polymeric materials, integration techniques, sensing mechanisms, and practical applications in diagnostics and monitoring.

By gathering diverse contributions from researchers and industry experts, we aim to foster collaboration and knowledge exchange in this rapidly evolving field. We believe that this Special Issue will be a valuable resource for scientists and engineers working at the intersection of polymer science, biosensing technology, and bioelectronics, ultimately contributing to the advancement of next-generation sensing solutions.

Dr. Vinh Van Tran
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Biosensors is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2200 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • polymers-based biosensor
  • gas sensor
  • transistor-based biosensor
  • organic field-effect transistors (OFETs)
  • conductive polymers
  • organic electronics
  • smart materials (self-healable materials, hydrogels)

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (4 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

22 pages, 2504 KiB  
Article
Fluorogenic Biosensing with Tunable Polydiacetylene Vesicles
by John S. Miller, Tanner J. Finney, Ethan Ilagan, Skye Frank, Ye Chen-Izu, Keishi Suga and Tonya L. Kuhl
Biosensors 2025, 15(1), 27; https://doi.org/10.3390/bios15010027 - 7 Jan 2025
Viewed by 942
Abstract
Polydiacetylenes (PDAs) are conjugated polymers that are well known for their colorimetric transition from blue to red with the application of energetic stimulus. Sensing platforms based on polymerized diacetylene surfactant vesicles and other structures have been widely demonstrated for various colorimetric biosensing applications. [...] Read more.
Polydiacetylenes (PDAs) are conjugated polymers that are well known for their colorimetric transition from blue to red with the application of energetic stimulus. Sensing platforms based on polymerized diacetylene surfactant vesicles and other structures have been widely demonstrated for various colorimetric biosensing applications. Although less studied and utilized, the transition also results in a change from a non-fluorescent to a highly fluorescent state, making polydiacetylenes useful for both colorimetric and fluorogenic sensing applications. Here, we focus on the characterization and optimization of polydiacetylene vesicles to tune their sensitivity for fluorogenic sensing applications. Particularly, we look at how the structure of the diacetylene (DA) hydrocarbon tail and headgroup affect the self-assembled vesicle size and stability, polymerization kinetics, and the fluorogenic, blue to red phase transition. Longer DA acyl tails generally resulted in smaller and more stable vesicles. The polymerization kinetics and the blue to red transition were a function of both the DA acyl tail length and structure of the headgroup. Decreasing the acyl tail length generally led to vesicles that were more sensitive to energetic stimuli. Headgroup modifications had different effects depending on the structure of the headgroup. Ethanolamine headgroups resulted in vesicles with potentially increased stimuli responsivity. The lower energy stimulus to induce the chromatic transition was attributed to an increase in headgroup hydrogen bonding and polymer backbone strain. Boronic-acid headgroup functionalization led to vesicles that were generally unstable, only weakly polymerized, and unable to fully transform to the red phase due to strong polar, aromatic headgroup interactions. This work presents the design of PDA vesicles in the context of biosensing platforms and includes a discussion of the past, present, and future of PDA biosensing. Full article
Show Figures

Figure 1

12 pages, 4552 KiB  
Article
Concave Magnetic-Responsive Hydrogel Discs for Enhanced Bioassays
by Amin Ghaffarzadeh Bakhshayesh and Huiyan Li
Biosensors 2024, 14(12), 596; https://doi.org/10.3390/bios14120596 - 5 Dec 2024
Cited by 1 | Viewed by 965
Abstract
Receptor-based biosensors often suffer from slow analyte diffusion, leading to extended assay times. Moreover, existing methods to enhance diffusion can be complex and costly. In response to this challenge, we presented a rapid and cost-effective technique for fabricating concave magnetic-responsive hydrogel discs (CMDs) [...] Read more.
Receptor-based biosensors often suffer from slow analyte diffusion, leading to extended assay times. Moreover, existing methods to enhance diffusion can be complex and costly. In response to this challenge, we presented a rapid and cost-effective technique for fabricating concave magnetic-responsive hydrogel discs (CMDs) by straightforward pipetting directly onto microscope glass slides. This approach enables immediate preparation and customization of hydrogel properties such as porosity, magnetic responsiveness, and embedded particles and is adaptable for use with microarray printers. The concave design increased the surface area by 43% compared to conventional hemispherical hydrogels, enhancing diffusion rates and accelerating reactions. By incorporating superparamagnetic particles, the hydrogels become magnetically responsive, allowing for stirring within reagent droplets using magnets to improve mixing. Our experimental results showed that CMDs dissolved approximately 2.5 times faster than hemispherical ones. Numerical simulations demonstrated up to a 46% improvement in diffusion speed within the hydrogel. Particles with lower diffusion coefficients, like human antibodies, benefited most from the concave design, resulting in faster biosensor responses. The increased surface area and ease of fabrication make our CMDs efficient and adaptable for various biological and biomedical applications, particularly in point-of-care diagnostics where rapid and accurate biomarker detection is critical. Full article
Show Figures

Figure 1

Review

Jump to: Research

19 pages, 5119 KiB  
Review
Carbon Quantum Dots: Synthesis, Characteristics, and Quenching as Biocompatible Fluorescent Probes
by Arif Kamal, Seongin Hong and Heongkyu Ju
Biosensors 2025, 15(2), 99; https://doi.org/10.3390/bios15020099 - 10 Feb 2025
Viewed by 1760
Abstract
Carbon quantum dots (CQDs), a new class of carbon-based nanomaterials, have emerged as nano-scaled probes with photoluminescence that have an eco-friendly and bio-compatible nature. Their cost-efficient synthesis and high photoluminescence quantum yields make them indispensable due to their application in opto-electronic devices, including [...] Read more.
Carbon quantum dots (CQDs), a new class of carbon-based nanomaterials, have emerged as nano-scaled probes with photoluminescence that have an eco-friendly and bio-compatible nature. Their cost-efficient synthesis and high photoluminescence quantum yields make them indispensable due to their application in opto-electronic devices, including biosensors, bioimaging, environmental monitoring, and light sources. This review provides intrinsic properties of CQDs such as their excitation-dependent emission, biocompatibility, and quenching properties. Diverse strategies for their easy synthesis are divided into bottom-up and top-down approaches and detailed herein. In particular, we highlight their luminescence properties, including quenching mechanisms that could even be utilized for the precise and rapid detection of biomolecules. We also discuss methodologies for the mitigation of fluorescence quenching, which is pivotal for the application of CQDs in biosensors and bioimaging. Full article
Show Figures

Figure 1

25 pages, 3691 KiB  
Review
Metal–Organic Framework-Based Nanostructures for Electrochemical Sensing of Sweat Biomarkers
by Jing Meng, Moustafa Zahran and Xiaolin Li
Biosensors 2024, 14(10), 495; https://doi.org/10.3390/bios14100495 - 12 Oct 2024
Cited by 4 | Viewed by 2292
Abstract
Sweat is considered the most promising candidate to replace conventional blood samples for noninvasive sensing. There are many tools and optical and electrochemical methods that can be used for detecting sweat biomarkers. Electrochemical methods are known for their simplicity and cost-effectiveness. However, they [...] Read more.
Sweat is considered the most promising candidate to replace conventional blood samples for noninvasive sensing. There are many tools and optical and electrochemical methods that can be used for detecting sweat biomarkers. Electrochemical methods are known for their simplicity and cost-effectiveness. However, they need to be optimized in terms of selectivity and catalytic activity. Therefore, electrode modifiers such as nanostructures and metal–organic frameworks (MOFs) or combinations of them were examined for boosting the performance of the electrochemical sensors. The MOF structures can be prepared by hydrothermal/solvothermal, sonochemical, microwave synthesis, mechanochemical, and electrochemical methods. Additionally, MOF nanostructures can be prepared by controlling the synthesis conditions or mixing bulk MOFs with nanoparticles (NPs). In this review, we spotlight the previously examined MOF-based nanostructures as well as promising ones for the electrochemical determination of sweat biomarkers. The presence of NPs strongly improves the electrical conductivity of MOF structures, which are known for their poor conductivity. Specifically, Cu-MOF and Co-MOF nanostructures were used for detecting sweat biomarkers with the lowest detection limits. Different electrochemical methods, such as amperometric, voltammetric, and photoelectrochemical, were used for monitoring the signal of sweat biomarkers. Overall, these materials are brilliant electrode modifiers for the determination of sweat biomarkers. Full article
Show Figures

Figure 1

Back to TopTop