Synergistically Enhanced Ta2O5/AgNPs SERS Substrate Coupled with Deep Learning for Ultra-Sensitive Microplastic Detection
Highlights
- Fabricated spherical Ta2O5/AgNPs substrates with pseudo-Neuston networks.
- Achieved an ultra-low detection limit of 10−13 M for R6G via EM/CM contribution.
- Developed a CNN-Transformer model achieving 98.7% accuracy in high-noise spectra.
- Provides a scalable strategy for enhancing semiconductor SERS activity.
- Overcomes spectral interference in complex environmental microplastic detection.
- Demonstrates deep learning’s potential in robust automated spectral analysis.
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Silver
2.3. Preparation of Ta2O5
2.4. Preparation of the Composite Substrate
2.5. Data Acquisition Method
2.6. Characterization and Instruments
3. Results and Discussion
3.1. Characterization of Ta2O5 Nanostructures and Composite Substrates
3.2. Raman Results
3.3. Data Acquisition and Processing
3.4. Model Architecture
3.5. Model Evaluation
3.6. Identification of Noisy Spectra
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kneipp, K.; Kneipp, H.; Itzkan, I.; Dasari, R.R.; Feld, M.S. Ultrasensitive chemical analysis by Raman spectroscopy. Chem. Rev. 1999, 99, 2957–2975. [Google Scholar] [CrossRef]
- Albrecht, M.G.; Creighton, J.A. Anomalously intense Raman spectra of pyridine at a silver electrode. J. Am. Chem. Soc. 1977, 99, 5215–5217. [Google Scholar] [CrossRef]
- Zhang, J.; Peng, M.; Lian, E.; Xia, L.; Asimakopoulos, A.G.; Luo, S.; Wang, L. Identification of Poly(ethylene terephthalate) Nanoplastics in Commercially Bottled Drinking Water Using Surface-Enhanced Raman Spectroscopy. Environ. Sci. Technol. 2023, 57, 8365–8372. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Li, F.; Wei, L.; Huang, Y.; Wen, X.; Wang, D.; Cheng, G.; Zhao, R.; Lin, Y.; Yang, H.; et al. Rapid and Precise Differentiation and Authentication of Agricultural Products via Deep Learning-Assisted Multiplex SERS Fingerprinting. Anal. Chem. 2024, 96, 4682–4692. [Google Scholar] [CrossRef]
- Xiu, X.; Hou, L.; Yu, J.; Jiang, S.; Li, C.; Zhao, X.; Peng, Q.; Qiu, S.; Zhang, C.; Man, B. Manipulating the surface-enhanced Raman spectroscopy (SERS) activity and plasmon-driven catalytic efficiency by the control of Ag NP/graphene layers under optical excitation. Nanophotonics 2021, 10, 1529–1540. [Google Scholar] [CrossRef]
- Samal, A.K.; Polavarapu, L.; Rodal-Cedeira, S.; Liz-Marzán, L.M.; Pérez-Juste, J.; Pastoriza-Santos, I. Size Tunable Au@ Ag core–shell nanoparticles: Synthesis and surface-enhanced raman scattering properties. Langmuir 2013, 29, 15076–15082. [Google Scholar] [CrossRef]
- Veerabaghu, P.P.; Ramasamy, P.; Sathe, V.; Mahalingam, U.; Mahalingam, A.; Sagadevan, S. Nano-architected titania/gold@GO nanosheets for sonocatalytic degradation of azo dyes in textile wastewater. J. Alloys Compd. 2024, 994, 174690. [Google Scholar] [CrossRef]
- Wang, Q.; Zheng, H.; Jing, Y.; Wang, R.; Chen, L.; Zhang, J.; Sui, S.; Wang, X. Rapid detection of artificial food colorants with surface enhanced Raman spectroscopy: Engineering a novel gold-induced silver triangle nanosheet. J. Alloys Compd. 2024, 1006, 176246. [Google Scholar] [CrossRef]
- Du, B.; Liu, Y.; Tan, J.; Wang, Z.; Ji, C.; Shao, M.; Zhao, X.; Yu, J.; Jiang, S.; Zhang, C.; et al. Thermoelectrically Driven Dual-Mechanism Regulation on SERS and Application Potential for Rapid Detection of SARS-CoV-2 Viruses and Microplastics. ACS Sens. 2024, 9, 502–513. [Google Scholar] [CrossRef] [PubMed]
- Keshavarz, M.; Chowdhury, A.K.M.R.H.; Kassanos, P.; Tan, B.; Venkatakrishnan, K. Self-assembled N-doped Q-dot carbon nanostructures as a SERS-active biosensor with selective therapeutic functionality. Sens. Actuators B-Chem. 2020, 323, 128703. [Google Scholar] [CrossRef]
- Cheng, S.; Li, Y.; Zhao, C.; Wang, Y.; You, Y.; Xiu, X. WS2/WO3 heterostructure for surface-enhanced Raman spectroscopy. Vacuum 2024, 230, 113717. [Google Scholar] [CrossRef]
- Wang, Z.; Zeng, W.; Zhang, K.; Xie, F.; Yu, G.; Mei, M.; Huang, C.; Wang, J. Silver-decorated three-dimensional ZnO nanoflowers enhancing the electromagnetic coupling for ultrasensitive SERS detection of multi-pesticide residues. J. Alloys Compd. 2024, 999, 175035. [Google Scholar] [CrossRef]
- Xu, H.; Sun, Y.; Pei, J.; Yu, X.; Zhang, J. Mesoporous Au-CuO substrate with dual super-hydrophilicity and efficient chemical enhancement for 4-aminothiophenol SERS detection. J. Alloys Compd. 2024, 1002, 175198. [Google Scholar] [CrossRef]
- Wang, X.; Wang, J.; Zhao, W.; Guo, R.; Cui, S.; Huang, J.; Lu, J.; Liu, H.; Liu, Y. Integrated treatment of tetracycline in complex environments with MIPs-based Fe3O4-Cu2O-Au nanocomposites: Selective SERS detection and targeted photocatalytic degradation. J. Alloys Compd. 2024, 982, 173796. [Google Scholar] [CrossRef]
- Han, C.; Wang, T. Tantalum Pentoxide: From Crystal Structures to Applications in Water Splitting. Energy Fuels 2023, 37, 13624–13644. [Google Scholar] [CrossRef]
- Liu, M.; Cheng, S.; Peng, Q.; Zhao, H.; Wang, Y.; Xiu, X. Preparation and SERS applications of Ta2O5 composite nanostructures. Opt. Express 2023, 31, 38699–38714. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Peng, Y.; Yang, Y.; Liu, J.; Huang, H.; Yu, B.; Zhao, J.; Lu, Y.; Huang, Z.; Li, Z.; et al. A Novel Ultra-Sensitive Semiconductor SERS Substrate Boosted by the Coupled Resonance Effect. Adv. Sci. 2019, 6, 1900310. [Google Scholar] [CrossRef]
- Zhu, G.; Lin, T.; Cui, H.; Zhao, W.; Zhang, H.; Huang, F. Gray Ta2O5 Nanowires with Greatly Enhanced Photocatalytic Performance. Acs Appl. Mater. Interfaces 2016, 8, 122–127. [Google Scholar] [CrossRef]
- Yang, L.; Yang, Y.; Lombardi, J.R.; Peng, Y.; Huang, Z. Charge transfer enhancement in the surface -enhanced Raman scattering of Ta2O5 superstructures. Appl. Surf. Sci. 2020, 520, 146325. [Google Scholar] [CrossRef]
- Guselnikova, O.; Trelin, A.; Kang, Y.; Postnikov, P.; Kobashi, M.; Suzuki, A.; Shrestha, L.K.; Henzie, J.; Yamauchi, Y. Pretreatment-free SERS sensing of microplastics using a self-attention-based neural network on hierarchically porous Ag foams. Nat. Commun. 2024, 15, 4351. [Google Scholar] [CrossRef]
- Kim, J.Y.; Koh, E.H.; Yang, J.-Y.; Mun, C.; Lee, S.; Lee, H.; Kim, J.; Park, S.-G.; Kang, M.; Kim, D.-H.; et al. 3D Plasmonic Gold Nanopocket Structure for SERS Machine Learning-Based Microplastic Detection. Adv. Funct. Mater. 2024, 34, 2307584. [Google Scholar] [CrossRef]
- Yang, Y.; Gao, X.; Zhang, H.; Chao, F.; Jiang, H.; Huang, J.; Lin, J. Multi-scale representation of surface-enhanced Raman spectroscopy data for deep learning-based liver cancer detection. Spectrochim. Acta Part A-Mol. Biomol. Spectrosc. 2024, 308, 123764. [Google Scholar] [CrossRef]
- Che, Y.; Ni, Y.; Jiao, Y.; Lei, F.; Liu, C.; Zhao, X.; Li, Z.; Zhang, C.; Yu, J. A Strategy for Accurate SERS Gas Detection: Skillful Integration of Mass-Productive Wafer-Scale SERS Substrate and Machine Learning–Assisted Multifeature Profiling. ACS Photonics 2024, 11, 3331–3342. [Google Scholar] [CrossRef]
- Chheda, J.; Fang, Y.; Deriu, C.; Ezzat, A.A.; Fabris, L. Discrimination of Genetic Biomarkers of Disease through Machine-Learning-Based Hypothesis Testing of Direct SERS Spectra of DNA and RNA. ACS Sens. 2024, 9, 2488–2498. [Google Scholar] [CrossRef]
- Sun, J.; Lai, W.; Zhao, J.; Xue, J.; Zhu, T.; Xiao, M.; Man, T.; Wan, Y.; Pei, H.; Li, L. Rapid Identification of Drug Mechanisms with Deep Learning-Based Multichannel Surface-Enhanced Raman Spectroscopy. ACS Sens. 2024, 9, 4227–4235. [Google Scholar] [CrossRef] [PubMed]
- Xie, L.; Shen, Y.; Zhang, M.; Zhong, Y.; Lu, Y.; Yang, L.; Li, Z. Single-model multi-tasks deep learning network for recognition and quantitation of surface-enhanced Raman spectroscopy. Opt. Express 2022, 30, 41580–41589. [Google Scholar] [CrossRef] [PubMed]
- Ye, Q.; Wu, M.; Xu, Q.; Zeng, S.; Jiang, T.; Xiong, W.; Fu, S.; Birowosuto, M.D.; Gu, C. Porous carbon film/WO3−x nanosheets based SERS substrate combined with deep learning technique for molecule detection. Spectrochim. Acta Part A-Mol. Biomol. Spectrosc. 2024, 310, 123962. [Google Scholar] [CrossRef]
- Luo, Y.; Su, W.; Xu, D.; Wang, Z.; Wu, H.; Chen, B.; Wu, J. Component identification for the SERS spectra of microplastics mixture with convolutional neural network. Sci. Total Environ. 2023, 895, 165138. [Google Scholar] [CrossRef] [PubMed]
- Weng, S.; Wang, C.; Zhu, R.; Wu, Y.; Yang, R.; Zheng, L.; Li, P.; Zhao, J.; Zheng, S. Identification of surface-enhanced Raman spectroscopy using hybrid transformer network. Spectrochim. Acta Part A-Mol. Biomol. Spectrosc. 2024, 316, 124295. [Google Scholar] [CrossRef]
- Zhou, J.; Wu, C.; He, X.; Zhang, L.; Gong, X.; Ren, W.; Lv, S.; Zhang, X.; Liu, A.; Huang, Y. Single AgNF@ZIF-8 nanoparticle for deep learning assisted SERS detection of gaseous molecule. Surf. Interfaces 2024, 48, 104232. [Google Scholar] [CrossRef]
- Hajikhani, M.; Hegde, A.; Snyder, J.; Cheng, J.; Lin, M. Integrating transformer-based machine learning with SERS technology for the analysis of hazardous pesticides in spinach. J. Hazard. Mater. 2024, 470, 134208. [Google Scholar] [CrossRef]
- Tseng, Y.-M.; Chen, K.-L.; Chao, P.-H.; Han, Y.-Y.; Huang, N.-T. Deep Learning-Assisted Surface-Enhanced Raman Scattering for Rapid Bacterial Identification. Acs Appl. Mater. Interfaces 2023, 15, 26398–26406. [Google Scholar] [CrossRef]
- Wang, Z.; Li, Y.; Zhai, J.; Yang, S.; Sun, B.; Liang, P. Deep learning-based Raman spectroscopy qualitative analysis algorithm: A convolutional neural network and transformer approach. Talanta 2024, 275, 126138. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Li, Z.; Wang, L.; Li, J.; Pan, J.; Wang, S.; Zhang, C.; Li, Z.; Peng, Q.; Xiu, X. Preparation and surface-enhanced Raman scattering properties of GO/Ag/Ta2O5 composite substrates. Opt. Express 2021, 29, 34552–34564. [Google Scholar] [CrossRef] [PubMed]
- Balankura, T.; Qi, X.; Zhou, Y.; Fichthorn, K.A. Predicting kinetic nanocrystal shapes through multi-scale theory and simulation: Polyvinylpyrrolidone-mediated growth of Ag nanocrystals. J. Chem. Phys. 2016, 145, 144106. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Liu, M.; Chen, B.; Pan, J.; Wang, S.; Zhang, C.; Li, Z.; Peng, Q.; Xiu, X. Graphene oxide/Ag nanoparticle/WS2 nanosheet heterostructures for surface-enhanced Raman spectroscopy. Opt. Mater. 2022, 12, 3718–3730. [Google Scholar] [CrossRef]
- He, R.X.; Liang, R.; Peng, P.; Zhou, Y.N. Effect of the size of silver nanoparticles on SERS signal enhancement. J. Nanopart. Res. 2017, 19, 267. [Google Scholar] [CrossRef]
- Lu, X.; Ding, S.; Lin, T.; Mou, X.; Hong, Z.; Huang, F. Ta2O5 Nanowires: A novel synthetic method and their solar energy utilization. Dalton Trans. 2012, 41, 622–627. [Google Scholar] [CrossRef]
- Yang, H.G.; Liu, G.; Qiao, S.Z.; Sun, C.H.; Jin, Y.G.; Smith, S.C.; Zou, J.; Cheng, H.M.; Lu, G.Q. Solvothermal Synthesis and Photoreactivity of Anatase TiO2 Nanosheets with Dominant {001} Facets. J. Am. Chem. Soc. 2009, 131, 4078–4083. [Google Scholar] [CrossRef]
- Yang, H.G.; Sun, C.H.; Qiao, S.Z.; Zou, J.; Liu, G.; Smith, S.C.; Cheng, H.M.; Lu, G.Q. Anatase TiO2 single crystals with a large percentage of reactive facets. Nature 2008, 453, 638–641. [Google Scholar] [CrossRef]
- Yu, X.; Li, W.; Li, Z.; Liu, J.; Hu, P. Defect engineered Ta2O5 nanorod: One-pot synthesis, visible-light driven hydrogen generation and mechanism. Appl. Catal. B-Environ. 2017, 217, 48–56. [Google Scholar] [CrossRef]
- Ruan, X.; Xie, L.; Liu, J.; Ge, Q.; Liu, Y.; Li, K.; You, W.; Huang, T.; Zhang, L. Rapid detection of nanoplastics down to 20 nm in water by surface-enhanced raman spectroscopy. J. Hazard. Mater. 2024, 462, 132702. [Google Scholar] [CrossRef] [PubMed]
- Lv, L.; He, L.; Jiang, S.; Chen, J.; Zhou, C.; Qu, J.; Lu, Y.; Hong, P.; Sun, S.; Li, C. In situ surface-enhanced Raman spectroscopy for detecting microplastics and nanoplastics in aquatic environments. Sci. Total Environ. 2020, 728, 138449. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Han, K.; Zhang, A.; Wang, T.; Yan, Z.; Ding, Z.; Shen, Y.; Zhang, M.; Zhang, W. Honeycomb-like AgNPs@TiO2 array SERS sensor for the quantification of micro/nanoplastics in the environmental water samples. Talanta 2024, 266, 125070. [Google Scholar] [CrossRef] [PubMed]
- Schiavi, S.; Parmigiani, M.; Galinetto, P.; Albini, B.; Taglietti, A.; Dacarro, G. Plasmonic Nanomaterials for Micro- and Nanoplastics Detection. Appl. Sci. 2023, 13, 9291. [Google Scholar] [CrossRef]
- van der Maaten, L.; Hinton, G. Visualizing Data using t-SNE. J. Mach. Learn. Res. 2008, 9, 2579–2605. [Google Scholar]







Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Zhao, C.; Wang, Y.; Cheng, S.; You, Y.; Li, Y.; Xiu, X. Synergistically Enhanced Ta2O5/AgNPs SERS Substrate Coupled with Deep Learning for Ultra-Sensitive Microplastic Detection. Materials 2026, 19, 90. https://doi.org/10.3390/ma19010090
Zhao C, Wang Y, Cheng S, You Y, Li Y, Xiu X. Synergistically Enhanced Ta2O5/AgNPs SERS Substrate Coupled with Deep Learning for Ultra-Sensitive Microplastic Detection. Materials. 2026; 19(1):90. https://doi.org/10.3390/ma19010090
Chicago/Turabian StyleZhao, Chenlong, Yaoyang Wang, Shuo Cheng, Yuhang You, Yi Li, and Xianwu Xiu. 2026. "Synergistically Enhanced Ta2O5/AgNPs SERS Substrate Coupled with Deep Learning for Ultra-Sensitive Microplastic Detection" Materials 19, no. 1: 90. https://doi.org/10.3390/ma19010090
APA StyleZhao, C., Wang, Y., Cheng, S., You, Y., Li, Y., & Xiu, X. (2026). Synergistically Enhanced Ta2O5/AgNPs SERS Substrate Coupled with Deep Learning for Ultra-Sensitive Microplastic Detection. Materials, 19(1), 90. https://doi.org/10.3390/ma19010090

