Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (932)

Search Parameters:
Keywords = resonance bonds

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 3303 KiB  
Article
Effect of Ozone on Nonwoven Polylactide/Natural Rubber Fibers
by Yulia V. Tertyshnaya, Svetlana G. Karpova and Maria V. Podzorova
Polymers 2025, 17(15), 2102; https://doi.org/10.3390/polym17152102 - 31 Jul 2025
Viewed by 140
Abstract
Ozone is a powerful destructive agent in the oxidative process of polymer composites. The destructive ability of ozone depends primarily on its concentration, duration of exposure, the type of polymer, and its matrix structure. In this work, nonwoven PLA/NR fibers with natural rubber [...] Read more.
Ozone is a powerful destructive agent in the oxidative process of polymer composites. The destructive ability of ozone depends primarily on its concentration, duration of exposure, the type of polymer, and its matrix structure. In this work, nonwoven PLA/NR fibers with natural rubber contents of 5, 10, and 15 wt.% were obtained, which were then subjected to ozone oxidation for 800 min. The effect of ozone treatment was estimated using various methods of physicochemical analysis. The visual effect was manifested in the form of a change in the color of PLA/NR fibers. The method of differential scanning calorimetry revealed a change in the thermophysical characteristics. The glass transition and cold crystallization temperatures of polylactide shifted toward lower temperatures, and the degree of crystallinity increased. It was found that in PLA/NR fiber samples, the degradation process predominates over the crosslinking process, as an increase in the melt flow rate by 1.5–1.6 times and a decrease in the correlation time determined by the electron paramagnetic resonance method were observed. The IR Fourier method recorded a change in the chemical structure during ozone oxidation. The intensity of the ether bond bands changed, and new bands appeared at 1640 and 1537 cm−1, which corresponded to the formation of –C=C– bonds. Full article
(This article belongs to the Special Issue Natural Degradation of Polymers)
Show Figures

Graphical abstract

16 pages, 1747 KiB  
Article
A Novel Glucosamine-Based Cannabidiol Complex Based on Intermolecular Bonding with Improved Water Solubility
by Mitja Križman, Jure Zekič, Primož Šket, Alojz Anžlovar, Barbara Zupančič and Jože Grdadolnik
Molecules 2025, 30(15), 3179; https://doi.org/10.3390/molecules30153179 - 29 Jul 2025
Viewed by 171
Abstract
In this study, a new, patented form of a water-soluble cannabidiol (CBD) complex was synthesised and tested. The formation of the complex is based on the interactions, presumably through hydrogen bonding, between cannabidiol and glucosamine, the latter contributing significantly to the increased hydrophilicity. [...] Read more.
In this study, a new, patented form of a water-soluble cannabidiol (CBD) complex was synthesised and tested. The formation of the complex is based on the interactions, presumably through hydrogen bonding, between cannabidiol and glucosamine, the latter contributing significantly to the increased hydrophilicity. The complex was characterised by chromatography, thermal analysis, nuclear magnetic resonance, Fourier transform infrared spectroscopy, and permeability tests. This complex has a substantially higher water solubility than normal CBD. Permeability tests indicate that it has almost five times lower permeability through lipophilic membranes and less than half the membrane mass retention of conventional CBD. At the same time, its equilibrium concentration is almost four times higher than that of normal CBD. These results suggest that this new form of CBD is a promising candidate for future biological and clinical studies, as it offers improved bioavailability and biodistribution. Full article
(This article belongs to the Section Natural Products Chemistry)
Show Figures

Figure 1

18 pages, 2661 KiB  
Article
Resonator Width Optimization for Enhanced Performance and Bonding Reliability in Wideband RF MEMS Filter
by Gwanil Jeon, Minho Jeong, Shungmoon Lee, Youngjun Jo and Nam-Seog Kim
Micromachines 2025, 16(8), 878; https://doi.org/10.3390/mi16080878 - 29 Jul 2025
Viewed by 203
Abstract
This research investigates resonator width optimization for simultaneously enhancing electrical performance and mechanical reliability in wideband RF MEMS filters through systematic evaluation of three configurations: 0% (L1), 60% (L2), and 100% (L3) matching ratios between cap and bottom wafers using Au-Au thermocompression bonding. [...] Read more.
This research investigates resonator width optimization for simultaneously enhancing electrical performance and mechanical reliability in wideband RF MEMS filters through systematic evaluation of three configurations: 0% (L1), 60% (L2), and 100% (L3) matching ratios between cap and bottom wafers using Au-Au thermocompression bonding. The study demonstrates that resonator width alignment significantly influences both electromagnetic field coupling and bonding interface integrity. The L3 configuration with complete width matching achieved optimal RF performance, demonstrating 3.34 dB insertion loss across 4.5 GHz bandwidth (25% fractional bandwidth), outperforming L2 (3.56 dB) and L1 (3.10 dB), while providing enhanced electromagnetic wave coupling and minimized contact resistance. Mechanical reliability testing revealed superior bonding strength for the L3 configuration, withstanding up to 7.14 Kgf in shear pull tests, significantly exceeding L1 (4.22 Kgf) and L2 (2.24 Kgf). SEM analysis confirmed uniform bonding interfaces with minimal void formation (~180 nm), while Q-factor measurements showed L3 achieved optimal loaded Q-factor (QL = 3.31) suitable for wideband operation. Comprehensive environmental testing, including thermal cycling (−50 °C to +145 °C) and humidity exposure per MIL-STD-810E standards, validated long-term stability across all configurations. This investigation establishes that complete resonator width matching between cap and bottom wafers optimizes both electromagnetic performance and mechanical bonding reliability, providing a validated framework for developing high-performance, reliable RF MEMS devices for next-generation communication, radar, and sensing applications. Full article
(This article belongs to the Special Issue CMOS-MEMS Fabrication Technologies and Devices, 2nd Edition)
Show Figures

Figure 1

14 pages, 1386 KiB  
Article
Probing the Interaction Between Icariin and Proteinase K: A Combined Spectroscopic and Molecular Modeling Study
by Zhongbao Han, Huizi Zheng, Yimeng Qi, Dilshadbek T. Usmanov, Liyan Liu and Zhan Yu
Biophysica 2025, 5(3), 32; https://doi.org/10.3390/biophysica5030032 - 28 Jul 2025
Viewed by 176
Abstract
Icariin (ICA) is widely recognized for its health benefits. In this work, we examined the intermolecular interactions between ICA and proteinase K (PK) via multi-spectroscopic techniques and molecular simulations. The experimental findings revealed that ICA quenched the fluorescence emission of PK by forming [...] Read more.
Icariin (ICA) is widely recognized for its health benefits. In this work, we examined the intermolecular interactions between ICA and proteinase K (PK) via multi-spectroscopic techniques and molecular simulations. The experimental findings revealed that ICA quenched the fluorescence emission of PK by forming a noncovalent complex. Both hydrogen bonding and van der Waals interactions are essential for the complex’s formation. Then Förster resonance energy transfer (FRET), competitive experiments, and synchronous fluorescence spectroscopy were adopted to verify the formation of the complex. Molecular docking studies demonstrated that ICA could spontaneously bind to PK by hydrogen bonding and hydrophobic interactions, which is consistent with the spectroscopic results. The PK-ICA complex’s dynamic stability was evaluated using a 50 ns molecular dynamics (MD) simulation. The simulation results revealed no significant structural deformation or positional changes throughout the entire simulation period. The complex appears to be rather stable, as seen by the average root-mean-square deviation (RMSD) fluctuations for the host protein in the PK-ICA complex of 1.08 Å and 3.09 Å. These outcomes of molecular simulations suggest that ICA interacts spontaneously and tightly with PK, consistent with the spectroscopic findings. The approach employed in this research presents a pragmatic and advantageous method for examining protein–ligand interactions, as evidenced by the concordance between empirical and theoretical findings. Full article
(This article belongs to the Special Issue Biomedical Optics: 3rd Edition)
Show Figures

Figure 1

18 pages, 7058 KiB  
Article
Failure Analysis and Optimized Simulation Design of Silicon Micromechanical Resonant Accelerometers
by Jingchen Wang, Heng Liu and Zhi Li
Sensors 2025, 25(15), 4583; https://doi.org/10.3390/s25154583 - 24 Jul 2025
Viewed by 203
Abstract
To develop solutions to the frequency instability and failure of silicon micromechanical resonant accelerometers, the state characteristics of micromechanical resonant accelerometers are investigated under temperature and vibration stresses. Through theoretical analysis and finite element simulation, the following is found: the Young’s modulus of [...] Read more.
To develop solutions to the frequency instability and failure of silicon micromechanical resonant accelerometers, the state characteristics of micromechanical resonant accelerometers are investigated under temperature and vibration stresses. Through theoretical analysis and finite element simulation, the following is found: the Young’s modulus of silicon varies with temperature, causing a resonance frequency shift of −1.364 Hz/°C; the residual stress of temperature change affects the resonance frequency shift of the microstructure, causing it to be 5.43 Hz/MPa (tensile stress) and −5.25 Hz/MPa (compressive stress); thermal expansion triggers the failure of the bonding wire, and, in the range of 10 °C to 150 °C, the peak stress of the electrode/lead bond area increases from 83.2/85.6 MPa to 1.08/1.28 GPa. The failure mode under vibration stress is resonance structure fracture and interlayer peeling. An isolation frame design is proposed for the sensitive part of the microstructure, which reduces the frequency effects by 34% (tensile stress) and 15% (compressive stress) under temperature-variable residual stresses and the maximum value of the structural root mean square stresses by 69.7% (X-direction), 63.6% (Y-direction), and 71.3% (Z-direction) under vibrational stresses. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

15 pages, 2806 KiB  
Article
Ni-MOF/g-C3N4 S-Scheme Heterojunction for Efficient Photocatalytic CO2 Reduction
by Muhammad Sabir, Mahmoud Sayed, Iram Riaz, Guogen Qiu, Muhammad Tahir, Khuloud A. Alibrahim and Wang Wang
Materials 2025, 18(14), 3419; https://doi.org/10.3390/ma18143419 - 21 Jul 2025
Viewed by 486
Abstract
The rapid recombination of photoinduced charge carriers in semiconductors remains a significant challenge for their practical application in photocatalysis. This study presents the design of a step-scheme (S-scheme) heterojunction composed of carbon nitride (g-C3N4) and nickel-based metal–organic framework (Ni-MOF) [...] Read more.
The rapid recombination of photoinduced charge carriers in semiconductors remains a significant challenge for their practical application in photocatalysis. This study presents the design of a step-scheme (S-scheme) heterojunction composed of carbon nitride (g-C3N4) and nickel-based metal–organic framework (Ni-MOF) to achieve enhanced charge separation. The establishment of an S-scheme charge transfer configuration at the interface of the Ni-MOF/g-C3N4 heterostructure plays a pivotal role in enabling efficient charge carrier separation, and hence, high CO2 photoreduction efficiency with a CO evolution rate of 1014.6 µmol g−1 h−1 and selectivity of 95% under simulated solar illumination. CO evolution represents an approximately 3.7-fold enhancement compared to pristine Ni-MOF. Density functional theory (DFT) calculations, supported by in situ irradiated X-ray photoelectron spectroscopy (XPS) and electron paramagnetic resonance (EPR) experimental results, confirmed the establishment of a well-defined and strongly bonded interface, which improves the charge transfer and separation following the S-scheme mechanism. This study sheds light on MOF-based S-scheme heterojunctions as fruitful and selective alternatives for practical CO2 photoreduction. Full article
(This article belongs to the Section Energy Materials)
Show Figures

Graphical abstract

11 pages, 3598 KiB  
Article
NMR Spectroelectrochemistry in Studies of Procarbazine Oxidation by Laser-Induced Graphene Thin Films
by Zhe Wang, Xiaoping Zhang, Shihui Xu, Lin Yang, Lina Wang, Yijing Wang, Ahmad Mansoor and Wei Sun
C 2025, 11(3), 52; https://doi.org/10.3390/c11030052 - 21 Jul 2025
Viewed by 313
Abstract
In this paper, nanoscale graphene film electrodes were prepared using laser-induced technology, and an in situ electrochemical cell was constructed. The normalized peak areas at 2.82 ppm for the samples without the in situ electrochemical cell and with an in situ electrochemical cell [...] Read more.
In this paper, nanoscale graphene film electrodes were prepared using laser-induced technology, and an in situ electrochemical cell was constructed. The normalized peak areas at 2.82 ppm for the samples without the in situ electrochemical cell and with an in situ electrochemical cell are 4.02 and 4.41, respectively. Tests showed that this in situ electrochemical cell has minimal interference from the nuclear magnetic resonance (NMR) magnetic field, allowing for high-resolution in situ spectra. Using this in situ electrochemical cell and employing in situ electrochemistry combined with NMR techniques, we investigated the oxidation reaction of 0.01 M procarbazine (PCZ) in real-time. We elucidated the following oxidation mechanism for procarbazine: the oxidation of PCZ first generates azo-procarbazine, which then undergoes a double bond shift to hydrazo-procarbazine. hydrazo-procarbazine undergoes hydrolysis to yield benzaldehyde-procarbazine, and then finally oxidizes to produce N-isopropylterephthalic acid. This confirms that the combination of in situ electrochemistry and nuclear magnetic resonance technology provides chemists with an effective tool for in situ studying the reaction mechanisms of drug molecules. Full article
(This article belongs to the Section Carbon Materials and Carbon Allotropes)
Show Figures

Graphical abstract

22 pages, 1438 KiB  
Article
The Transcription Machinery and the Driving Force of the Transcriptional Molecular Condensate: The Role of Phosphates
by Raúl Riera Aroche, Esli C. Sánchez Moreno, Yveth M. Ortiz García, Andrea C. Machado Sulbarán, Lizbeth Riera Leal, Luis R. Olivas Román and Annie Riera Leal
Curr. Issues Mol. Biol. 2025, 47(7), 571; https://doi.org/10.3390/cimb47070571 - 20 Jul 2025
Viewed by 353
Abstract
The dynamic phosphorylation of the human RNA Pol II CTD establishes a code applicable to all eukaryotic transcription processes. However, the ability of these specific post-translational modifications to convey molecular signals through structural changes remains unclear. We previously explained that each gene can [...] Read more.
The dynamic phosphorylation of the human RNA Pol II CTD establishes a code applicable to all eukaryotic transcription processes. However, the ability of these specific post-translational modifications to convey molecular signals through structural changes remains unclear. We previously explained that each gene can be modeled as a combination of n circuits connected in parallel. RNA Pol II accesses these circuits and, through a series of pulses, matches the resonance frequency of the DNA qubits, enabling it to extract genetic information and quantum teleport it. Negatively charged phosphates react under RNA Pol II catalysis, which increases the electron density on the deoxyribose acceptor carbon (2’C in the DNA sugar backbone). The phosphorylation effect on the stability of a carbon radical connects tyrosine to the nitrogenous base, while the subsequent pulses link the protein to molecular water through hydrogen bonds. The selective activation of inert C(sp3)–H bonds begins by reading the quantum information stored in the nitrogenous bases. The coupling of hydrogen proton transfer with electron transfer in water generates a supercurrent, which is explained by the correlation of pairs of the same type of fermions exchanging a boson. All these changes lead to the formation of a molecular protein–DNA–water transcriptional condensate. Full article
Show Figures

Figure 1

11 pages, 2278 KiB  
Article
Femtosecond Laser Irradiation Induced Heterojunctions Between Graphene Oxide and Silver Nanowires
by Jiayun Feng, Zhiyuan Wang, Zhuohuan Wu, Shujun Wang, Yuxin Sun, Qi Meng, Jiayue Wen, Shang Wang and Yanhong Tian
Materials 2025, 18(14), 3393; https://doi.org/10.3390/ma18143393 - 19 Jul 2025
Viewed by 288
Abstract
In this article, femtosecond laser scanning was used to create heterojunctions between silver nanowire (Ag NW) and graphene oxide (GO), resulting in a mechanical and electrical interconnection. Surface plasmon resonances (SPRs) were generated on the nanowire surface by using femtosecond laser irradiation, producing [...] Read more.
In this article, femtosecond laser scanning was used to create heterojunctions between silver nanowire (Ag NW) and graphene oxide (GO), resulting in a mechanical and electrical interconnection. Surface plasmon resonances (SPRs) were generated on the nanowire surface by using femtosecond laser irradiation, producing a periodically excited electric field along the Ag NWs. This electric field then interfered with the femtosecond laser field, creating strong localized heating effects, which melted the Ag NW and GO, leading to mechanical bonding between the two. The formation of these heterostructures was attributed to the transfer of plasmon energy from the Ag NW to the adjacent GO surface. Since the connection efficiency of the nanowires is closely related to the specific location and the polarization direction of the laser, FDTD simulations were conducted to model the electric field distribution on the surface of Ag NW and GO structures under different laser polarization directions, varying the lengths and diameters of the nanowires. Finally, the resistance changes of the printed Ag NW paths on the GO thin film after femtosecond laser irradiation were investigated. It was found that laser bonding could reduce the resistance of the Ag NW-GO heterostructures by two orders of magnitude, further confirming the formation of the junctions. Full article
Show Figures

Figure 1

29 pages, 4982 KiB  
Article
Comprehensive Investigation of Polymorphic Stability and Phase Transformation Kinetics in Tegoprazan
by Joo Ho Lee, Ki Hyun Kim, Se Ah Ryu, Jason Kim, Kiwon Jung, Ki Sung Kang and Tokutaro Yamaguchi
Pharmaceutics 2025, 17(7), 928; https://doi.org/10.3390/pharmaceutics17070928 - 18 Jul 2025
Viewed by 453
Abstract
Background/Objectives: Tegoprazan (TPZ) is a potassium-competitive acid blocker (P-CAB) used to treat conditions such as gastroesophageal reflux disease, peptic ulcer, and Helicobacter pylori infection. It exists in three solid forms: amorphous, Polymorph A, and Polymorph B. This study investigates the molecular basis of [...] Read more.
Background/Objectives: Tegoprazan (TPZ) is a potassium-competitive acid blocker (P-CAB) used to treat conditions such as gastroesophageal reflux disease, peptic ulcer, and Helicobacter pylori infection. It exists in three solid forms: amorphous, Polymorph A, and Polymorph B. This study investigates the molecular basis of polymorph selection, focusing on conformational bias and solvent-mediated phase transformations (SMPTs). Methods: The conformational energy landscapes of two TPZ tautomers were constructed using relaxed torsion scans with the OPLS4 force field and validated by nuclear Overhauser effect (NOE)-based nuclear magnetic resonance (NMR). Hydrogen-bonded dimers were analyzed using DFT-D. Powder X-ray diffraction (PXRD), differential scanning calorimetry (DSC), solubility, and slurry tests were conducted using methanol, acetone, and water. Kinetic profiles were modeled with the Kolmogorov–Johnson–Mehl–Avrami (KJMA) equation. Results: Polymorph A was thermodynamically stable across all analyses. Both amorphous TPZ and Polymorph B converted to A in a solvent-dependent manner. Methanol induced direct A formation, while acetone showed a B → A transition. Crystallization was guided by solution conformers and hydrogen bonding. Conclusions: TPZ polymorph selection is governed by solution-phase conformational preferences, tautomerism, and solvent-mediated hydrogen bonding. DFT-D and NMR analyses showed that protic solvents favor the direct crystallization of stable Polymorph A, while aprotic solvents promote the transient formation of metastable Polymorph B. Elevated temperatures and humidity accelerate polymorphic transitions. This crystal structure prediction (CSP)-independent strategy offers a practical framework for rational polymorph control and the mitigation of disappearing polymorph risks in tautomeric drugs. Full article
(This article belongs to the Special Issue Drug Polymorphism and Dosage Form Design, 2nd Edition)
Show Figures

Graphical abstract

26 pages, 2712 KiB  
Article
[1,3]Thiazolo[3,2-b][1,2,4]triazolium Salts as Effective Antimicrobial Agents: Synthesis, Biological Activity Evaluation, and Molecular Docking Studies
by Mykhailo Slivka, Boris Sharga, Daryna Pylypiv, Hanna Aleksyk, Nataliya Korol, Maksym Fizer, Olena I. Fedurcya, Oleksandr G. Pshenychnyi and Ruslan Mariychuk
Int. J. Mol. Sci. 2025, 26(14), 6845; https://doi.org/10.3390/ijms26146845 - 16 Jul 2025
Viewed by 419
Abstract
This study focuses on the search for new effective synthetic antimicrobial compounds as a tool against the widespread presence of microorganisms resistant to existing drugs. Five derivatives of [1,3]thiazolo[3,2-b][1,2,4]triazoles were synthesized using an accessible protocol based on electrophilic heterocyclization and were characterized using [...] Read more.
This study focuses on the search for new effective synthetic antimicrobial compounds as a tool against the widespread presence of microorganisms resistant to existing drugs. Five derivatives of [1,3]thiazolo[3,2-b][1,2,4]triazoles were synthesized using an accessible protocol based on electrophilic heterocyclization and were characterized using infrared (FTIR) and nuclear magnetic resonance (NMR) spectroscopies, and their in vitro antimicrobial and antifungal activities were evaluated using the agar plate diffusion method and the microdilution plate procedure. Both antibacterial (Gram-positive and Gram-negative) and antifungal activities were found for the examined samples. The minimum inhibitory concentration (MIC) varied from 0.97 to 250 µg/mL, and the minimum bactericidal concentration (MBC) from 1.95 to 500 µg/mL. Compound 2a showed good antifungal action against Candida albicans and Saccharomyces cerevisiae with minimum fungicidal concentration (MFC) 125 and MIC 31.25 µg/mL. The molecular docking revealed that the 2-heptyl-3-phenyl-6,6-trimethyl-5,6-dihydro-3H-[1,3]thiazolo[3,2-b][1,2,4]triazol-7-ium cation stands out as a highly promising candidate for further investigation due to a wide range of interactions, including conventional hydrogen bonds, π–σ, π–π T-shaped, and hydrophobic alkyl interactions. The synthesis and preliminary evaluation of [1,3]thiazolo[3,2-b][1,2,4]triazoles yielded promising antimicrobial and antifungal candidates. The diverse interaction profile of the 2-heptyl derivative salt allows this compound’s selection for further biological studies. Full article
(This article belongs to the Section Materials Science)
Show Figures

Figure 1

17 pages, 2405 KiB  
Article
Development of Soy-Based Meat Analogues via Wet Twin-Screw Extrusion: Enhancing Textural and Structural Properties Through Whole Yeast Powder Supplementation
by Shikang Tang, Yidian Li, Xuejiao Wang, Linyan Zhou, Zhijia Liu, Lianzhou Jiang, Chaofan Guo and Junjie Yi
Foods 2025, 14(14), 2479; https://doi.org/10.3390/foods14142479 - 15 Jul 2025
Viewed by 402
Abstract
Amid growing global concerns about environmental sustainability and food security, plant-based meat substitutes have emerged as a promising alternative to conventional meat. However, current formulations, especially those based on soy protein isolate (SPI) often fail to replicate the desired texture and structural integrity. [...] Read more.
Amid growing global concerns about environmental sustainability and food security, plant-based meat substitutes have emerged as a promising alternative to conventional meat. However, current formulations, especially those based on soy protein isolate (SPI) often fail to replicate the desired texture and structural integrity. To address this limitation, this study aimed to evaluate the use of whole yeast powder (WYP) combined with SPI for producing plant-based meat analogues via high-moisture extrusion. Seven groups were designed: a control group with 0% WYP, five treatment groups with 5%, 10%, 20%, 30%, and 40% WYP, and one reference group containing 20% yeast protein powder (YPP). Although lower in protein content than yeast protein powder (YPP), whole yeast powder exhibits superior water-binding capacity and network-forming ability owing to its complex matrix and fiber content. At a 20% inclusion level, whole yeast powder demonstrated a higher fibrous degree (1.84 ± 0.02 vs. 1.81 ± 0.04), greater hardness (574.93 ± 5.84 N vs. 531.18 ± 17.34 N), and increased disulfide bonding (95.33 ± 0.92 mg/mL vs. 78.41 ± 0.78 mg/mL) compared to 20% YPP. Scanning electron microscopy (SEM) and low-field nuclear magnetic resonance (LF-NMR) revealed that whole yeast powder facilitated the formation of aligned fibrous networks and enhanced water binding. Fourier transform infrared spectroscopy (FTIR) confirmed an increase in β-sheet content (0.267 ± 0.003 vs. 0.260 ± 0.003), which contributed to improved protein aggregation. Increasing the WYP content to 30–40% led to a decline in these parameters, including a reduced fibrous degree (1.69 ± 0.06 at 40% WYP) and weakened molecular interactions (p < 0.05). The findings highlight 20% WYP as the optimal substitution level, offering superior textural enhancement and fibrous structure formation compared to YPP. These results suggest that WYP is not only a cost-effective and processing-friendly alternative to YPP but also holds great promise for scalable industrial application in the plant-based meat sector. Its compatibility with extrusion processes and ability to improve sensory and structural attributes supports its relevance for sustainable meat analogue production. Full article
(This article belongs to the Section Plant Foods)
Show Figures

Figure 1

15 pages, 1196 KiB  
Article
Assisted Isolation of Camelliagenin B from Camellia oliefera Seed Cake Meal and Microbial Transformation by Bacillus subtilis ATCC 6633, Bacillus megaterium CGMCC 1.1741, and Streptomyces gresius ATCC 13273
by Richa Raj, Jingling Zhang, Yanyan Meng, Xuewa Jiang, Wei Wang, Jian Zhang and Boyang Yu
Fermentation 2025, 11(7), 407; https://doi.org/10.3390/fermentation11070407 - 15 Jul 2025
Viewed by 472
Abstract
This study investigates the potential for the microbial transformation of camelliagenin B, a saponin derived from Camellia oleifera seed cake meal, to develop novel metabolites. We employed three microbial strains, specifically Bacillus subtilis ATCC 6633, Bacillus megaterium CGMCC 1.1741, and Streptomyces griseus ATCC [...] Read more.
This study investigates the potential for the microbial transformation of camelliagenin B, a saponin derived from Camellia oleifera seed cake meal, to develop novel metabolites. We employed three microbial strains, specifically Bacillus subtilis ATCC 6633, Bacillus megaterium CGMCC 1.1741, and Streptomyces griseus ATCC 13273, to biotransform camelliagenin B into its derivatives. The compounds were purified and separated using chromatographic techniques, such as high-performance liquid chromatography (HPLC). Structural identification was carried out using spectroscopic methods, including nuclear magnetic resonance (NMR) and mass spectrometry (MS). Ten bioactive compounds were obtained (1a-1j), of which nine were novel with multiple tailoring reactions, such as allyl oxidation, C-C double-bond rearrangement, hydroxylation, dehydrogenation, and glycosylation, observed in camelliagenin B analogs. The structures of these compounds were determined by 1D/2D NMR and HR-ESI-MS analysis. Therefore, this study showcases the capacity of microbial transformation as a sustainable and environmentally friendly method for generating bioactive compounds from C. oleifera seed cake meals. The individual chemicals can potentially facilitate the design of novel medicinal agents, functional foods, and natural preservatives. Full article
Show Figures

Figure 1

16 pages, 1229 KiB  
Article
Nonlinear Hydrogen Bond Network in Small Water Clusters: Combining NMR, DFT, FT-IR, and EIS Research
by Ignat Ignatov, Yordan G. Marinov, Paunka Vassileva, Georgi Gluhchev, Ludmila A. Pesotskaya, Ivan P. Jordanov and Mario T. Iliev
Symmetry 2025, 17(7), 1062; https://doi.org/10.3390/sym17071062 - 4 Jul 2025
Cited by 1 | Viewed by 513
Abstract
Water’s unique physicochemical properties arise from its dynamic hydrogen-bonding network, yet the precise molecular threshold at which these cooperative behaviors emerge remains a key question. This study employed nuclear magnetic resonance (NMR) spectroscopy and density functional theory (DFT) calculations to investigate the evolution [...] Read more.
Water’s unique physicochemical properties arise from its dynamic hydrogen-bonding network, yet the precise molecular threshold at which these cooperative behaviors emerge remains a key question. This study employed nuclear magnetic resonance (NMR) spectroscopy and density functional theory (DFT) calculations to investigate the evolution of hydrogen bonding strength in small water clusters, ranging from dimers to pentamers. The observed exponential increase in NMR chemical shift up to the pentamer reflects growing hydrogen bond cooperativity, identifying the (H2O)5 cluster as a critical structural and energetic threshold. At this size, the network achieves sufficient connectivity to support key bulk-like phenomena such as proton transfer and dielectric relaxation. These conclusions were corroborated by complementary FT-IR and electrochemical impedance spectroscopy (EIS) measurements of bulk water. Our results position the water pentamer as the molecular onset of emergent solvent behavior, effectively bridging the divide between discrete clusters and the macroscopic properties of liquid water. Full article
(This article belongs to the Section Chemistry: Symmetry/Asymmetry)
Show Figures

Figure 1

13 pages, 6902 KiB  
Article
Influence of Content and Type of Lanthanide on the Structure of Ln2O3-Covered Carbon Nanoflakes: The EPR and XPS Study
by Serguei V. Savilov, Evgeniya V. Suslova, Alexander N. Ulyanov, Konstantin I. Maslakov, Sergey V. Maximov, Denis A. Shashurin and Georgy A. Chelkov
Nanomaterials 2025, 15(13), 1016; https://doi.org/10.3390/nano15131016 - 1 Jul 2025
Viewed by 328
Abstract
Synthesized Ln2O3 (Ln = La, Nd or Gd) nanoparticles with sizes of 1–3 nm, 5–6 nm and 10–15 nm were stabilized by carbon nanoflakes (CNFs). The weight content of Ln2O3 in the Ln2O3/CNF [...] Read more.
Synthesized Ln2O3 (Ln = La, Nd or Gd) nanoparticles with sizes of 1–3 nm, 5–6 nm and 10–15 nm were stabilized by carbon nanoflakes (CNFs). The weight content of Ln2O3 in the Ln2O3/CNF composites was 20–50 wt. %, which makes these composites potentially suitable for practical use as computed tomography and magnetic resonance imaging contrast agents. The structure of CNFs and Ln2O3/CNF composites was investigated by X-ray diffraction data, X-ray photoelectron spectroscopy (XPS) and electron paramagnetic resonance (EPR). The EPR spectra of raw CNFs were silent. The oxidation of the CNF surface resulted in the appearance of paramagnetic centers associated with two types of unpaired electrons in the carbon support. After impregnation of the CNFs with the Ln3+ ion solution, the number of unpaired electrons was reduced, presumably due to the formation of C–O–Ln bonds. All Ln3+ ions changed the composites’ EPR spectra by reducing the number of unpaired electrons in the CNF structure. Full article
(This article belongs to the Section Synthesis, Interfaces and Nanostructures)
Show Figures

Figure 1

Back to TopTop