Probing the Interaction Between Icariin and Proteinase K: A Combined Spectroscopic and Molecular Modeling Study
Abstract
1. Introduction
2. Experiment
2.1. Reagents
2.2. Spectroscopic Measurement
2.3. Site-Tagged Competition Studies Using Cytisine and Ibuprofen
2.4. Förster Resonance Energy Transfer Studies
2.5. Molecular Docking Studies
2.6. Molecular Dynamics Studies
3. Results and Discussions
3.1. Fluorescence Quenching Mechanism
3.2. Förster Resonance Energy Transfer
3.3. Synchronous Fluorescence Spectroscopy
3.4. Competitive Binding
3.5. Molecular Docking
3.6. Molecular Dynamics
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, H.; Sun, K.; Tan, W.; Gao, J.; Yuan, L.; Wen, J.; Deng, W. Icariin promoted ferroptosis by activating mitochondrial dysfunction to inhibit colorectal cancer and synergistically enhanced the efficacy of PD-1 inhibitors. Phytomedicine 2025, 136, 156224. [Google Scholar] [CrossRef]
- He, C.; Wang, Z.; Shi, J. Pharmacological effects of icariin. Adv. Pharmacol. 2020, 87, 179–203. [Google Scholar] [CrossRef]
- Jiang, W.; Kaixi, D.; Rensong, Y.; Lei, M. Therapeutic effects of icariin and icariside II on diabetes mellitus and its complications. Crit. Rev. Food Sci. Nutr. 2024, 64, 5852–5877. [Google Scholar] [CrossRef]
- Jin, J.; Wang, H.; Hua, X.; Chen, D.; Huang, C.; Chen, Z. An outline for the pharmacological effect of icariin in the nervous system. Eur. J. Pharmacol. 2019, 842, 20–32. [Google Scholar] [CrossRef]
- Tan, H.-L.; Chan, K.-G.; Pusparajah, P.; Saokaew, S.; Duangjai, A.; Lee, L.-H.; Goh, B.-H. Anti-cancer properties of the naturally occurring aphrodisiacs: Icariin and its derivatives. Front. Pharmacol. 2016, 7, 191. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.-Y.; Ding, D.-N.; Wang, Y.-R.; Liu, S.-X.; Peng, C.; Shen, F.; Zhu, X.-Y.; Li, C.; Tang, L.-P.; Han, F.-J. Icariin as a potential anticancer agent: A review of its biological effects on various cancers. Front. Pharmacol. 2023, 14, 1216363. [Google Scholar] [CrossRef] [PubMed]
- Dongye, Z.; Wu, X.; Wen, Y.; Ding, X.; Wang, C.; Zhao, T.; Li, J.; Wu, Y. Icaritin and intratumoral injection of CpG treatment synergistically promote T cell infiltration and antitumor immune response in mice. Int. Immunopharmacol. 2022, 111, 109093. [Google Scholar] [CrossRef] [PubMed]
- Morihara, K.; Tsuzuki, H. Specificity of Proteinase K from Tritirachium album Limber for Synthetic Peptides. Agric. Biol. Chem. 1975, 39, 1489–1492. [Google Scholar] [CrossRef]
- Klubthawee, N.; Wongchai, M.; Aunpad, R. The bactericidal and antibiofilm effects of a lysine-substituted hybrid peptide, CM-10K14K, on biofilm-forming Staphylococcus epidermidis. Sci. Rep. 2023, 13, 22262. [Google Scholar] [CrossRef]
- Hosseini-Koupaei, M.; Shareghi, B.; Saboury, A.A.; Davar, F.; Raisi, F. The effect of spermidine on the structure, kinetics and stability of proteinase K: Spectroscopic and computational approaches. RSC Adv. 2016, 6, 105476–105486. [Google Scholar] [CrossRef]
- Liu, K.; Zhang, Y.; Zhang, W.; Liu, L.; Yu, Z. A study on the interactions of proteinase K with myricetin and myricitrin by multi-spectroscopy and molecular modeling. Int. J. Mol. Sci. 2023, 24, 5317. [Google Scholar] [CrossRef]
- Paudyal, S.; Sigdel, G.; Shah, S.K.; Sharma, S.K.; Grubb, J.D.; Micic, M.; Caseli, L.; Leblanc, R.M. Interfacial behavior of Proteinase K enzyme at air-saline subphase. J. Colloid Interface Sci. 2022, 616, 701–708. [Google Scholar] [CrossRef] [PubMed]
- Jafari, A.; Shareghi, B.; Farhadian, S.; Tirgir, F. Evaluation of maltose binding to proteinase K: Insights from spectroscopic and computational approach. J. Mol. Liq. 2019, 280, 1–10. [Google Scholar] [CrossRef]
- Saqib, S.; Faryad, S.; Afridi, M.I.; Arshad, B.; Younas, M.; Naeem, M.; Zaman, W.; Ullah, F.; Nisar, M.; Ali, S.; et al. Bimetallic assembled silver nanoparticles impregnated in aspergillus fumigatus extract damage the bacterial membrane surface and release cellular contents. Coatings 2022, 12, 1505. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 16 Rev. C.02; Gaussian, Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 2009, 30, 2785–2791. [Google Scholar] [CrossRef]
- Stierand, K.; Rarey, M. Drawing the PDB: Protein-ligand complexes in two dimensions. ACS Med. Chem. Lett. 2010, 1, 540–545. [Google Scholar] [CrossRef]
- Bowers, K.J.; Chow, E.; Xu, H.; Dror, R.O.; Eastwood, M.P.; Gregersen, B.A.; Klepeis, J.L.; Kolossvary, I.; Moraes, M.A.; Sacerdoti, F.D.; et al. Scalable algorithms for molecular dynamics simulations on commodity clusters. In Proceedings of the 2006 ACM/IEEE conference on Supercomputing, Tampa, FL, USA, 11–17 November 2006; p. 84. [Google Scholar] [CrossRef]
- Gupta, D.; Kumar, M.; Sharma, P.; Mohan, T.; Prakash, A.; Kumari, R.; Kaur, P. Effect of double mutation (L452R and E484Q) on the binding affinity of monoclonal antibodies (mAbs) against the RBD—A target for vaccine development. Vaccines 2023, 11, 23. [Google Scholar] [CrossRef]
- Guo, D.; Zhang, B.; Liu, R. Investigation of the effects of nanoAg on the enzyme lysozyme at the molecular level. RSC Adv. 2016, 6, 36273–36280. [Google Scholar] [CrossRef]
- Wang, T.; Zeng, L.-H.; Li, D.-L. A review on the methods for correcting the fluorescence inner-filter effect of fluorescence spectrum. Appl. Spectrosc. Rev. 2017, 52, 883–908. [Google Scholar] [CrossRef]
- Hosseini-Koupaei, M.; Shareghi, B.; Saboury, A.A.; Davar, F. Molecular investigation on the interaction of spermine with proteinase K by multispectroscopic techniques and molecular simulation studies. Int. J. Biol. Macromol. 2017, 94, 406–414. [Google Scholar] [CrossRef]
- Lakowicz, J.R.; Weber, G. Quenching of fluorescence by oxygen. Probe for structural fluctuations in macromolecules. Biochemistry 1973, 12, 4161–4170. [Google Scholar] [CrossRef]
- Song, X.; Zhao, Q.; Hou, X.; Liu, S.; Luo, L.; Ren, Y. Three luminescent Zn/Cd-based MOFs for detecting antibiotics/nitroaromatic compounds and quenching mechanisms study. J. Mol. Struct. 2025, 1324, 140813. [Google Scholar] [CrossRef]
- Deepa, H.R.; Thipperudrappa, J.; Suresh Kumar, H.M. Effect of temperature on fluorescence quenching and emission characteristics of laser dyes. J. Phys. Conf. Ser. 2020, 1473, 012046. [Google Scholar] [CrossRef]
- Ma, Y.-J.; Wu, J.-H.; Li, X.; Xu, X.-B.; Wang, Z.-Y.; Wu, C.; Du, M.; Song, L. Effect of alkyl distribution in pyrazine on pyrazine flavor release in bovine serum albumin solution. RSC Adv. 2019, 9, 36951–36959. [Google Scholar] [CrossRef]
- Grabowska, O.; Samsonov, S.A.; Kogut-Günthel, M.M.; Żamojć, K.; Wyrzykowski, D. Elucidation of binding mechanisms of bovine serum albumin and 1-alkylsulfonates with different hydrophobic chain lengths. Int. J. Biol. Macromol. 2024, 266, 131134. [Google Scholar] [CrossRef]
- Ahmad, E.; Sen, P.; Khan, R.H. Structural stability as a probe for molecular evolution of homologous albumins studied by spectroscopy and bioinformatics. Cell Biochem. Biophys. 2011, 61, 313–325. [Google Scholar] [CrossRef]
- Zhang, X.; Li, L.; Xu, Z.; Liang, Z.; Su, J.; Huang, J.; Li, B. Investigation of the interaction of naringin palmitate with bovine serum albumin: Spectroscopic analysis and molecular docking. PLoS ONE 2013, 8, e59106. [Google Scholar] [CrossRef] [PubMed]
- Clegg, R.M. Fluorescence resonance energy transfer and nucleic acids. Methods Enzymol. 1992, 211, 353–388. [Google Scholar] [CrossRef] [PubMed]
- Zehetmayer, P.; Hellerer, T.; Parbel, A.; Scheer, H.; Zumbusch, A. Spectroscopy of single phycoerythrocyanin monomers: Dark state identification and observation of energy transfer heterogeneities. Biophys. J. 2002, 83, 407–415. [Google Scholar] [CrossRef] [PubMed]
- Dolashka, P.; Dimov, I.; Genov, N.; Svendsen, I.; Wilson, K.S.; Betzel, C. Fluorescence properties of native and photooxidised proteinase K: The X-ray model in the region of the two tryptophans. Biochim. Et Biophys. Acta (BBA) Protein Struct. Mol. Enzymol. 1992, 1118, 303–312. [Google Scholar] [CrossRef]
- Ma, L.; Yang, F.; Zheng, J. Application of fluorescence resonance energy transfer in protein studies. J. Mol. Struct. 2014, 1077, 87–100. [Google Scholar] [CrossRef] [PubMed]
- Sanders Joshua, C.; Holmstrom Erik, D. Integrating single-molecule FRET and biomolecular simulations to study diverse interactions between nucleic acids and proteins. Essays Biochem. 2021, 65, 37–49. [Google Scholar] [CrossRef]
- Bobone, S.; van de Weert, M.; Stella, L. A reassessment of synchronous fluorescence in the separation of Trp and Tyr contributions in protein emission and in the determination of conformational changes. J. Mol. Struct. 2014, 1077, 68–76. [Google Scholar] [CrossRef]
- Sahoo, D.K.; Dasgupta, S.; Kistwal, T.; Datta, A. Fluorescence monitoring of binding of a Zn (II) complex of a Schiff base with human serum albumin. Int. J. Biol. Macromol. 2023, 226, 1515–1522. [Google Scholar] [CrossRef]
- Wani, T.A.; Bakheit, A.H.; Zargar, S.; Alamery, S. Mechanistic competitive binding interaction study between olmutinib and colchicine with model transport protein using spectroscopic and computer simulation approaches. J. Photochem. Photobiol. A Chem. 2022, 426, 113794. [Google Scholar] [CrossRef]
- Agu, P.C.; Afiukwa, C.A.; Orji, O.U.; Ezeh, E.M.; Ofoke, I.H.; Ogbu, C.O.; Ugwuja, E.I.; Aja, P.M. Molecular docking as a tool for the discovery of molecular targets of nutraceuticals in diseases management. Sci. Rep. 2023, 13, 13398. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Zeng, Z.; Zhang, J.; Wu, D.; Li, H.; Geng, F. Molecular dynamics simulation of the interaction of food proteins with small molecules. Food Chem. 2023, 405, 134824. [Google Scholar] [CrossRef]
- Lu, S.-Y.; Jiang, Y.-J.; Lv, J.; Wu, T.-X.; Yu, Q.-S.; Zhu, W.-L. Molecular docking and molecular dynamics simulation studies of GPR40 receptor–agonist interactions. J. Mol. Graph. Model. 2010, 28, 766–774. [Google Scholar] [CrossRef]
T/K | Ksv/104 L·mol−1 | Kq/1012 L·mol−1·s−1 | KA/105 L·mol−1 | nA |
---|---|---|---|---|
290 | 7.70 ± 0.16 | 7.70 ± 0.16 | 3.79 ± 0.14 | 1.13 ± 0.02 |
300 | 3.60 ± 0.12 | 3.60 ± 0.12 | 0.95 ± 0.03 | 1.08 ± 0.04 |
310 | 2.17 ± 0.07 | 2.17 ± 0.07 | 0.28 ± 0.02 | 1.02 ± 0.03 |
T/K | ∆H/kJ·mol−1 | ∆S/J·mol−1·K−1 | ∆G/kJ·mol−1 |
---|---|---|---|
290 | −31.0 | ||
300 | −96.6 | −227.4 | −28.6 |
310 | −26.4 |
J/cm3∙L∙mol−1 | R0/nm | E | r/nm |
---|---|---|---|
8.87 × 10−14 | 3.46 | 0.23 | 4.23 |
Ligand | Host | Ksv/104 L·mol−1 | R1 |
---|---|---|---|
PK | 7.70 | 0.997 | |
ICA | PK-IBU | 4.69 | 0.992 |
PK-CYT | 1.45 | 0.992 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, Z.; Zheng, H.; Qi, Y.; Usmanov, D.T.; Liu, L.; Yu, Z. Probing the Interaction Between Icariin and Proteinase K: A Combined Spectroscopic and Molecular Modeling Study. Biophysica 2025, 5, 32. https://doi.org/10.3390/biophysica5030032
Han Z, Zheng H, Qi Y, Usmanov DT, Liu L, Yu Z. Probing the Interaction Between Icariin and Proteinase K: A Combined Spectroscopic and Molecular Modeling Study. Biophysica. 2025; 5(3):32. https://doi.org/10.3390/biophysica5030032
Chicago/Turabian StyleHan, Zhongbao, Huizi Zheng, Yimeng Qi, Dilshadbek T. Usmanov, Liyan Liu, and Zhan Yu. 2025. "Probing the Interaction Between Icariin and Proteinase K: A Combined Spectroscopic and Molecular Modeling Study" Biophysica 5, no. 3: 32. https://doi.org/10.3390/biophysica5030032
APA StyleHan, Z., Zheng, H., Qi, Y., Usmanov, D. T., Liu, L., & Yu, Z. (2025). Probing the Interaction Between Icariin and Proteinase K: A Combined Spectroscopic and Molecular Modeling Study. Biophysica, 5(3), 32. https://doi.org/10.3390/biophysica5030032