A Novel Glucosamine-Based Cannabidiol Complex Based on Intermolecular Bonding with Improved Water Solubility
Abstract
1. Introduction
2. Results and Discussion
2.1. Physical and Spectroscopic Observations
2.2. Water Solubility
2.3. Permeability Analysis
3. Materials and Methods
3.1. Water-Soluble Complex Synthesis
3.2. Water Solubility Analysis
3.3. Differential Scanning Calorimetry
3.4. Fourier Transform Infrared Spectroscopy
3.5. Nuclear Magnetic Resonance Spectroscopy
3.6. Permeability Tests
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ATR | Attenuated total reflection |
CAD | Charged aerosol detector |
CBD | Cannabidiol |
DMSO | Dimethyl sulfoxide |
DSC | Differential scanning calorimetry |
FL | Fluorescence |
FTIR | Fourier transform infrared |
GA | Glucosamine |
HPLC | High-performance liquid chromatography |
HSQC | Heteronuclear single quantum coherence |
NMR | Nuclear magnetic resonance |
MCT | Mercury cadmium telluride |
PAMPA | Parallel artificial membrane permeability assay |
PVDF | Polyvinylidene fluoride |
Appendix A
Appendix A.1
Appendix A.2
Appendix A.3
Appendix A.4
Appendix A.5
References
- McAllister, S.D.; Christian, R.T.; Horowitz, M.P.; Garcia, A.; Desprez, P.Y. Cannabidiol as a novel inhibitor of Id-1 gene expression in aggressive breast cancer cells. Mol. Cancer Ther. 2007, 6, 2921–2927. [Google Scholar] [CrossRef]
- Ramer, R.; Heinemann, K.; Merkord, J.; Rohde, H.; Salamon, A.; Linnebacher, M.; Hinz, B. COX-2 and PPAR-γ confer cannabidiol-induced apoptosis of human lung cancer cells. Mol. Cancer Ther. 2013, 12, 69–82. [Google Scholar] [CrossRef] [PubMed]
- Donadelli, M.; Dando, I.; Zaniboni, T.; Costanzo, C.; Dalla Pozza, E.; Scupoli, M.T.; Scarpa, A.; Zappavigna, S.; Marra, M.; Abbruzzese, A.; et al. Gemcitabine/cannabinoid combination triggers autophagy in pancreatic cancer cells through a ROS-mediated mechanism. Cell Death Dis. 2011, 2, e152. [Google Scholar] [CrossRef] [PubMed]
- Olivas-Aguirre, M.; Torres-López, L.; Villatoro-Gómez, K.; Perez-Tapia, S.M.; Pottosin, I.; Dobrovinskaya, O. Cannabidiol on the Path from the Lab to the Cancer Patient: Opportunities and Challenges. Pharmaceuticals 2022, 15, 366. [Google Scholar] [CrossRef]
- Rafailovska, E.; Xhemaili, E.; Naumovska, Z.; Gigopulu, O.; Miova, B.; Suturkova, L.; Stefkov, G. Unlocking the Antidiabetic Potential of CBD: In Vivo Preclinical Studies. Pharmaceuticals 2025, 18, 446. [Google Scholar] [CrossRef]
- Baswan, S.M.; Klosner, A.E.; Glynn, K.; Rajgopal, A.; Malik, K.; Yim, S.; Stern, N. Therapeutic Potential of Cannabidiol (CBD) for Skin Health and Disorders. Clin. Cosmet. Investig. Dermatol. 2020, 13, 927–942. [Google Scholar] [CrossRef]
- Defense Technical Information Center. Available online: https://apps.dtic.mil/sti/pdfs/AD1117718.pdf (accessed on 28 May 2025).
- Reddy, T.S.; Zomer, R.; Mantri, N. Nanoformulations as a strategy to overcome the delivery limitations of cannabinoids. Phytother. Res. 2023, 37, 1526–1538. [Google Scholar] [CrossRef]
- ElSohly, M.A.; Shahzadi, I.; Gul, W. Absorption and Bioavailability of Novel UltraShear Nanoemulsion of Cannabidiol in Rats. Med. Cannabis Cannabinoids 2023, 6, 148–159. [Google Scholar] [CrossRef]
- Fu, J.; Zhang, K.; Lu, L.; Li, M.; Han, M.; Guo, Y.; Wang, X. Improved Therapeutic Efficacy of CBD with Good Tolerance in the Treatment of Breast Cancer through Nanoencapsulation and in Combination with 20(S)-Protopanaxadiol (PPD). Pharmaceutics 2022, 14, 1533. [Google Scholar] [CrossRef]
- McKallip, R.J.; Jia, W.; Schlomer, J.; Warren, J.W.; Nagarkatti, P.S.; Nagarkatti, M. Cannabidiol-induced apoptosis in human leukemia cells: A novel role of cannabidiol in the regulation of p22phox and Nox4 expression. Mol. Pharmacol. 2006, 70, 897–908. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, A.; Loureiro, R.; Cabral-Marques, H. Enhancing Cannabionoid Bioavailability in Pain Management: The Role of Cyclodextrins. Molecules 2024, 29, 5340. [Google Scholar] [CrossRef]
- O’Sullivan, S.E.; Jensen, S.S.; Kolli, A.R.; Nikolajsen, G.N.; Bruun, H.Z.; Hoeng, J. Strategies to Improve Cannabidiol Bioavailability and Drug Delivery. Pharmaceuticals 2024, 17, 244. [Google Scholar] [CrossRef]
- Koch, N.; Jennotte, O.; Gasparrini, Y.; Vandenbroucke, F.; Lechanteur, A.; Evrard, B. Cannabidiol aqueous solubility enhancement: Comparison of three amorphous formulations strategies using different type of polymers. Int. J. Pharm. 2020, 589, 119812. [Google Scholar] [CrossRef] [PubMed]
- Stasilowicz-Krzemien, A.; Szulc, P.; Cielecka-Piontek, J. Co-Dispersion Delivery Systems with Solubilizing Carriers Improving the Solubility and Permeability of Cannabinoids (Cannabidiol, Cannabidiolic Acid, and Cannabichromene) from Cannabis sativa (Henola Variety) Inflorescences. Pharmaceutics 2023, 15, 2280. [Google Scholar] [CrossRef] [PubMed]
- Muta, T.; Khetan, R.; Song, Y.; Garg, S. Optimising Cannabidiol Delivery: Improving Water Solubility and Permeability Through Phospholipid Complexation. Int. J. Mol. Sci. 2025, 26, 2647. [Google Scholar] [CrossRef]
- Grifoni, L.; Vanti, G.; Donato, R.; Sacco, C.; Bilia, A.R. Promising Nanocarriers to Enhance Solubility and Bioavailability of Cannabidiol for a Plethora of Therapeutic Opportunities. Molecules 2022, 27, 6070. [Google Scholar] [CrossRef]
- Wang, C.; Wang, J.; Sun, Y.; Freeman, K.; Mchenry, M.A.; Wang, C.; Guo, M. Enhanced stability and oral bioavailability of cannabidiol in zein and whey protein composite nanoparticles by a modified anti-solvent approach. Foods 2022, 11, 376. [Google Scholar] [CrossRef]
- Banerjee, A.; Binder, J.; Salama, R.; Trant, J.F. Synthesis, characterization and stress-testing of a robust quillaja saponin stabilized oil-in-water phytocannabinoid nanoemulsion. J. Cannabis Res. 2021, 3, 43. [Google Scholar] [CrossRef]
- Verrico, C.D.; Wesson, S.; Konduri, V.; Hofferek, C.J.; Vazquez-Perez, J.; Blair, E.; Dunner, K., Jr.; Salimpour, P.; Decker, W.K.; Halpert, M.M. A randomized, double-blind, placebo-controlled study of daily cannabidiol for the treatment of canine osteoarthritis pain. Pain 2020, 161, 2191–2202. [Google Scholar] [CrossRef]
- Sosnik, A.; Ben Shabo, R.; Halamish, H.M. Cannabidiol-loaded mixed polymeric micelles of chitosan/poly(vinyl alcohol) and poly(methyl methacrylate) for trans-corneal delivery. Pharmaceutics 2021, 13, 2142. [Google Scholar] [CrossRef] [PubMed]
- Francke, N.M.; Schneider, F.; Baumann, K.; Bunjes, H. Formulation of cannabidiol in colloidal lipid carriers. Molecules 2021, 26, 1469. [Google Scholar] [CrossRef] [PubMed]
- Vanti, G.; Grifoni, L.; Bergonzi, M.C.; Antiga, E.; Montefusco, F.; Caproni, M.; Bilia, A.R. Development and optimisation of biopharmaceutical properties of a new microemulgel of cannabidiol for locally-acting dermatological delivery. Int. J. Pharm. 2021, 607, 121036. [Google Scholar] [CrossRef] [PubMed]
- Soni, T.; Zhuang, M.; Kumar, M.; Balan, V.; Ubanwa, B.; Vivekanand, V.; Pareek, N. Multifaceted production strategies and applications of glucosamine: A comprehensive review. Crit. Rev. Biotechnol. 2021, 43, 100–120. [Google Scholar] [CrossRef]
- Zhang, T.; Yang, H.; Li, G.; Li, K.; Liu, S.; Yu, H.; Xing, R. A review on the preparation and synthesis strategies, mechanism and applications of different glucosamine salts and derivatives. Food Biosci. 2025, 69, 106923. [Google Scholar] [CrossRef]
- Križman, M.; Zekič, J.; Šket, P.; Anžlovar, A.; Zupančič, B.; Grdadolnik, J. Cannabinoid Complexes with Improved Properties. LU501323B1 Patent, 25 July 2023. [Google Scholar]
- Geskovski, N.; Stefkov, G.; Gigopulu, O.; Stefov, S.; Huck, C.W.; Makreski, P. Mid-infrared spectroscopy as process analytical technology tool for estimation of THC and CBD content in Cannabis flowers and extracts. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2021, 251, 119422. [Google Scholar] [CrossRef]
- Yordanov, Y.; Stefanova, D.; Spassova, I.; Kovacheva, D.; Tzankova, V.; Konstantinov, S.; Yoncheva, K. Formulation of Nanomicelles Loaded with Cannabidiol as a Platform for Neuroprotective Therapy. Pharmaceutics 2022, 14, 2625. [Google Scholar] [CrossRef]
- Li, H.; Chang, S.-L.; Chang, T.-R.; You, Y.; Wang, X.-D.; Wang, L.-W.; Yuan, X.-F.; Tan, M.-H.; Wang, P.-D.; Xu, P.-W.; et al. Inclusion complexes of cannabidiol with β-cyclodextrin and its derivative: Physicochemical properties, water solubility, and antioxidant activity. J. Mol. Liq. 2021, 334, 116070. [Google Scholar] [CrossRef]
- Krysa, M.; Szymańska-Chargot, M.; Zdunek, A. FT-IR and FT-Raman fingerprints of flavonoids—A review. Food Chem. 2022, 393, 133430. [Google Scholar] [CrossRef]
- Kim, H.S.; Kim, S.K.; Jeong, G.T. Efficient conversion of glucosamine to levulinic acid in a sulfamic acid-catalyzed hydrothermal reaction. RSC Adv. 2018, 8, 3198–3205. [Google Scholar] [CrossRef]
- Palanisamy, V.; Sanphui, P.; Palanisamy, K.; Prakash, M.; Bansal, A.K. Design of Ascorbic Acid Eutectic Mixtures With Sugars to Inhibit Oxidative Degradation. Front. Chem. 2022, 10, 754269. [Google Scholar] [CrossRef] [PubMed]
- Aakeröy, C.B.; Salmon, D.J. Building co-crystals with molecular sense and supramolecular sensibility. CrystEngComm 2005, 7, 439–448. [Google Scholar] [CrossRef]
- Duggirala, N.K.; Perry, M.L.; Almarsson, Ö.; Zaworotko, M.J. Pharmaceutical cocrystals: Along the path to improved medicines. Chem. Commun. 2016, 52, 640–655. [Google Scholar] [CrossRef]
- Arunan, E. One Hundred Years After the Latimer and Rodebush Paper, Hydrogen Bonding Remains an Elephant! J. Indian. Inst. Sci. 2020, 100, 249–255. [Google Scholar] [CrossRef]
- Siraleartmukul, K.; Siriwong, K.; Remsungnen, T.; Muangsin, N.; Udomkichdecha, W.; Hannongbua, S. Solvation structure of glucosamine in aqueous solution as studied by Monte Carlo simulation using ab initio fitted potential. Chem. Phys. Lett. 2004, 395, 233–238. [Google Scholar] [CrossRef]
- Gharsallaoui, A.; Roge, B.; Génotelle, J.; Mathlouthi, M. Relationships between hydration number, water activity and density of aqueous sugar solutions. Food Chem. 2008, 106, 1443–1453. [Google Scholar] [CrossRef]
- Dolci, M.; Pereira, L.; Milton, D.; Edge, T. HILIC Method Development in a Few Simple Steps. Thermo Scientific Poster Note. Available online: https://assets.thermofisher.com/TFS-Assets/CMD/posters/PN-20957-HILIC-Method-Development-HPLC-2014-PN20957-EN.pdf (accessed on 28 May 2025).
- Križman, M. A simplified approach for isocratic HPLC analysis of cannabinoids by fine tuning chromatographic selectivity. Eur. Food Res. Technol. 2020, 246, 315–322. [Google Scholar] [CrossRef]
- Yilmaz, B.; Arslan, S.; Asci, A. HPLC method for determination of atenolol in human plasma and application to a pharmacokinetic study in Turkey. J. Chromatogr. Sci. 2012, 50, 914–919. [Google Scholar] [CrossRef] [PubMed]
H | Multiplicity (Pure CBD) | δ/ppm (Pure CBD) | Multiplicity (Complex) | δ/ppm (Complex) |
---|---|---|---|---|
2 (1H) | s | 5.07 | s | 5.07 |
3 (1H) | m | 3.87–3.77 | / | / * |
4 (1H) | m | 3.02 | / | / * |
5 (2H) | m | 1.66 | m | 1.66 |
6 (1H) | m | 1.91 | m | 1.91 |
6 (1H) | m | 2.16–2.02 | / | / * |
7 (3H) | s | 1.59 | s | 1.59 |
9 (1H) | dd | 4.39 | dd | 4.39 |
9 (1H) | d | 4.48 | d | 4.48 |
10 (3H) | s | 1.57 | s | 1.57 |
2′,4′(2H) | s | 6.01 | s | 6.01 |
1′,5′OH (2H) | s | 8.67 | s (broadened peak) | 8.68 |
1″ (2H) | t | 2.29 | t | 2.29 |
2″ (2H) | m | 1.46 | m | 1.46 |
3″,4″ (4H) | m | 1.36–1.18 | m | 1.36–1.18 |
5″ (3H) | t | 0.85 | t | 0.85 |
CBD–Glucosamine Molar Ratio | CBD Concentration (mg/L) |
---|---|
pure CBD | below 0.06 |
1:1 | 21.1 |
1:2 | 26.5 |
1:3 | 28.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Križman, M.; Zekič, J.; Šket, P.; Anžlovar, A.; Zupančič, B.; Grdadolnik, J. A Novel Glucosamine-Based Cannabidiol Complex Based on Intermolecular Bonding with Improved Water Solubility. Molecules 2025, 30, 3179. https://doi.org/10.3390/molecules30153179
Križman M, Zekič J, Šket P, Anžlovar A, Zupančič B, Grdadolnik J. A Novel Glucosamine-Based Cannabidiol Complex Based on Intermolecular Bonding with Improved Water Solubility. Molecules. 2025; 30(15):3179. https://doi.org/10.3390/molecules30153179
Chicago/Turabian StyleKrižman, Mitja, Jure Zekič, Primož Šket, Alojz Anžlovar, Barbara Zupančič, and Jože Grdadolnik. 2025. "A Novel Glucosamine-Based Cannabidiol Complex Based on Intermolecular Bonding with Improved Water Solubility" Molecules 30, no. 15: 3179. https://doi.org/10.3390/molecules30153179
APA StyleKrižman, M., Zekič, J., Šket, P., Anžlovar, A., Zupančič, B., & Grdadolnik, J. (2025). A Novel Glucosamine-Based Cannabidiol Complex Based on Intermolecular Bonding with Improved Water Solubility. Molecules, 30(15), 3179. https://doi.org/10.3390/molecules30153179