NMR Spectroelectrochemistry in Studies of Procarbazine Oxidation by Laser-Induced Graphene Thin Films
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Preparation of LIG Thin Film as the WE
2.3. Construction of In Situ Electrochemical Cells
2.4. Measurements
3. Results and Discussion
3.1. The Characterization of LIG
3.2. The Electrocatalytic Behavior of PCZ
3.3. In Situ EC-NMR Experiment of PCZ Oxidation Reaction
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jiang, Y.; Zhao, M.; Peng, Z.; Zhong, G. Progress in in-situ electrochemical nuclear magnetic resonance for battery research. Magn. Reson. Lett. 2024, 4, 13–21. [Google Scholar] [CrossRef]
- Simon, H.; Melles, D.; Jacquoilleot, S.; Sanderson, P.; Zazzeroni, R.; Karst, U. Combination of electrochemistry and nuclear magnetic resonance spectroscopy for metabolism studies. Anal. Chem. 2012, 84, 8777–8782. [Google Scholar] [CrossRef] [PubMed]
- Vyalikh, A.; Wolfram, M.; Juan-Jesús, V. Detection of electrocatalytical and -chemical processes by means of in situ flow NMR spectroscopy. Electrochem. Commun. 2024, 163, 107736. [Google Scholar] [CrossRef]
- Dragancea, D.; Talmaci, N.; Shova, S.; Novitchi, G.; Darvasiova, D.; Rapta, P.; Breza, M.; Galanski, M.S.; Kožıšek, J.; Arion, V.B. Vanadium(V)complexes with substituted 1,5-bis(2-hydroxybenzaldehyde)carbohydrazones and their use as catalyst precursors in oxidation of cyclohexane. Inorg. Chem. 2016, 55, 9187–9203. [Google Scholar] [CrossRef] [PubMed]
- Ugo, B.; Mohammed, B. Review of advances in coupling electrochemistry and liquid state NMR. Talanta 2015, 136, 155–160. [Google Scholar] [CrossRef] [PubMed]
- Richards, J.A.; Evans, D.H. Flow cell for electrolysis within the probe of a nuclear magnetic resonance spectrometer. Anal. Chem. 1975, 47, 964–966. [Google Scholar] [CrossRef]
- Mincey, D.W.; Popovich, M.J.; Faustino, P.J.; Hurst, M.M.; Caruso, J.A. Monitoring of electrochemical reactions by nuclear magnetic resonance spectrometry. Anal. Chem. 1990, 62, 1197–1200. [Google Scholar] [CrossRef]
- Webster, R.D. In situ electrochemical-NMR spectroscopy. Reduction of aromatic halides. Anal. Chem. 2004, 76, 1603–1610. [Google Scholar] [CrossRef] [PubMed]
- Klod, S.; Ziegs, F.; Dunsch, L. In situ NMR spectroelectrochemistry of higher sensitivity by large scale electrodes. Anal. Chem. 2009, 81, 10262–10267. [Google Scholar] [CrossRef] [PubMed]
- Bussy, U.; Giraudeau, P.; Tea, I.; Boujtita, M. Understanding the degradation of electrochemically generated reactive drug metabolites by quantitative NMR. Talanta 2013, 116, 554–558. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Sorte, E.G.; Sun, S.G.; Tong, Y.Y.J. A straightforward implementation of in situ solution electrochemical 13C NMR spectroscopy for studying reactions on commercial electrocatalysts: Ethanol oxidation. Chem. Commun. 2015, 51, 8086–8088. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Sun, J.-Y.; Cao, S.-H.; Zhan, M.; Ni, Z.-R.; Sun, H.-J.; Chen, Z.; Zhou, Z.-Y.; Sorte, E.G.; Tong, Y.J.; et al. Combined EC-NMR and in situ FTIR spectroscopic studies of glycerol electrooxidation on Pt/C, PtRu/C, and PtRh/C. ACS Catal. 2016, 6, 7686–7695. [Google Scholar] [CrossRef]
- Zhang, X.-P.; Jiang, W.-L.; Cao, S.-H.; Sun, H.-J.; You, X.-Q.; Wang, J.-L.; Zhao, C.-S.; Wang, X.; Chen, Z.; Sun, S.-G. NMR spectroelectrochemistry in studies of hydroquinone oxidation by polyaniline thin films. Electrochim. Acta 2018, 273, 300–306. [Google Scholar] [CrossRef]
- Wang, J.; You, X.; Xiao, C.; Zhang, X.; Cai, S.; Jiang, W.; Guo, S.; Cao, S.; Chen, Z. Small-sized Pt nanoparticles supported on hybrid structures of MoS2 nanoflowers/graphene nanosheets: Highly active composite catalyst toward efficient ethanol oxidation reaction studied by in situ electrochemical NMR spectroscopy. Appl. Catal. B Environ. 2019, 259, 118060. [Google Scholar] [CrossRef]
- da Silva, P.F.; Gomes, B.F.; Lobo, C.M.S.; Carmo, M.; Roth, C.; Colnago, L.A. Composite graphite-epoxy electrodes for in situ electrochemistry coupling with high resolution NMR. ACS Omega 2022, 7, 4991–5000. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Yin, Z.; Wu, S.; Qi, X.; He, Q.; Zhang, Q.; Yan, Q.; Boey, F.; Zhang, H. Graphene-based materials: Synthesis, characterization, properties, and applications. Small 2011, 7, 1876–1902. [Google Scholar] [CrossRef] [PubMed]
- Geim, A.K.; Novoselov, K.S. The rise of graphene. Nat. Mater. 2009, 6, 11–19. [Google Scholar]
- Marconcini, P.; Macucci, M. Transport Simulation of Graphene Devices with a Generic Potential in the Presence of an Orthogonal Magnetic Field. Nanomaterials 2022, 12, 1087. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.; Peng, Z.; Liu, Y.; Ruiz-Zepeda, F.; Ye, R.; Samuel, E.L.G.; Yacaman, M.J.; Yakobson, B.I.; Tour, J.M. Laser-induced porous graphene films from commercial polymers. Nat. Commun. 2014, 5, 5714. [Google Scholar] [CrossRef] [PubMed]
- Peng, Z.; Tao, L.-Q.; Zou, S.; Zhu, C.; Wang, G.; Sun, H.; Ren, T.-L. A multi-functional NO2 gas monitor and self-alarm based on laser- induced graphene. Chem. Eng. J. 2022, 428, 131079. [Google Scholar] [CrossRef]
- Song, D.; Wang, Y.; Ma, R.; Xu, Z. Structural modulation of heterometallic metal-organic framework via a facile metal-ion-assisted surface etching and structural transformation. J. Mol. Liq. 2021, 334, 116073. [Google Scholar] [CrossRef]
- Vidhya, C.M.; Maithani, Y.; Kapoor, S.; Singh, J.P. Laser-induced graphene-coated wearable smart textile electrodes for biopotentials signal monitoring. Front. Mater. Sci. 2024, 18, 240680. [Google Scholar] [CrossRef]
- Ye, R.; James, D.K.; Tour, J.M. Laser-induced graphene. Acc. Chem. Res. 2018, 51, 1609–1620. [Google Scholar] [CrossRef]
- Samoson, K.; Saisahas, K.; Soleh, A.; Promsuwan, K.; Saichanapan, J.; Wangchuk, S.; Somapa, N.; Somapa, D.; Witoolkollachit, P.; Limbut, W. N–S dual-doped 3D porous laser-induced graphene electrode for curcumin determination in turmeric. Talanta 2025, 288, 127722. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, S.C.B.; Mendes, C.H.; Franklin Filho, F.S.; Queiroz, N.L.; Nascimento, J.A.; Nascimento, V.B. Electrochemical oxidation mechanism of procarbazine at glassy carbon electrode. J. Electroanal. Chem. 2015, 746, 51–56. [Google Scholar] [CrossRef]
- Zhang, X.P.; Yang, L.; Xu, L.; Wang, Z.; Sun, W. NMR spectroelectrochemistry in studies of L-dopa oxidation by graphdiyne/graphene thin films. J. Anal. At. Spectrom. 2025, 40, 1015–1022. [Google Scholar] [CrossRef]
- Hanif, F.; Tahir, A.; Akhtar, M.; Waseem, M.; Haider, S.; Aboud, M.F.A.; Shakir, I.; Imran, M.; Warsi, M.F. Ultra-selective detection of Cd2+ and Pb2+ using glycine functionalized reduced graphene oxide/polyaniline nanocomposite electrode. Synth. Met. 2019, 257, 116185. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Zhang, X.; Xu, S.; Yang, L.; Wang, L.; Wang, Y.; Mansoor, A.; Sun, W. NMR Spectroelectrochemistry in Studies of Procarbazine Oxidation by Laser-Induced Graphene Thin Films. C 2025, 11, 52. https://doi.org/10.3390/c11030052
Wang Z, Zhang X, Xu S, Yang L, Wang L, Wang Y, Mansoor A, Sun W. NMR Spectroelectrochemistry in Studies of Procarbazine Oxidation by Laser-Induced Graphene Thin Films. C. 2025; 11(3):52. https://doi.org/10.3390/c11030052
Chicago/Turabian StyleWang, Zhe, Xiaoping Zhang, Shihui Xu, Lin Yang, Lina Wang, Yijing Wang, Ahmad Mansoor, and Wei Sun. 2025. "NMR Spectroelectrochemistry in Studies of Procarbazine Oxidation by Laser-Induced Graphene Thin Films" C 11, no. 3: 52. https://doi.org/10.3390/c11030052
APA StyleWang, Z., Zhang, X., Xu, S., Yang, L., Wang, L., Wang, Y., Mansoor, A., & Sun, W. (2025). NMR Spectroelectrochemistry in Studies of Procarbazine Oxidation by Laser-Induced Graphene Thin Films. C, 11(3), 52. https://doi.org/10.3390/c11030052