Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (628)

Search Parameters:
Keywords = resistance to novel food

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 3504 KB  
Article
Mechanisms of Tetramycin-Induced Resistance to Rice Blast Disease in Oryza sativa L.
by Hui Jiang, Caixia Zhao, Danting Li, Kai Sun, Yipeng Xu, Kun Pang, Xiaoping Yu and Xuping Shentu
Int. J. Mol. Sci. 2026, 27(2), 1024; https://doi.org/10.3390/ijms27021024 - 20 Jan 2026
Abstract
Rice blast, caused by the fungus Magnaporthe oryzae, is a devastating disease that threatens global food security, causing annual yield losses of 10–30%. Consequently, novel control strategies beyond conventional fungicides are urgently needed. Tetramycin, a polyene macrolide antibiotic, is known for its [...] Read more.
Rice blast, caused by the fungus Magnaporthe oryzae, is a devastating disease that threatens global food security, causing annual yield losses of 10–30%. Consequently, novel control strategies beyond conventional fungicides are urgently needed. Tetramycin, a polyene macrolide antibiotic, is known for its broad-spectrum antifungal activity. However, the specific mechanisms underlying its efficacy against rice blast remain to be fully elucidated. In this study, we demonstrate that tetramycin confers resistance through a dual mode of action. First, in vitro assays revealed that tetramycin directly inhibits M. oryzae mycelial growth. Second, and more critically, it functions as a potent immune elicitor in Oryza sativa. Transcriptome analysis coupled with physiological assays showed that tetramycin treatment triggers a rapid oxidative burst, characterized by significantly elevated activities of key defense enzymes, including superoxide dismutase, peroxidase, phenylalanine ammonia lyase, and polyphenol oxidase (PPO). This oxidative response is further orchestrated through the simultaneous activation of the jasmonic acid (JA) and salicylic acid (SA) signaling pathways, as evidenced by the distinct upregulation of their respective biosynthetic genes and hormone levels. Collectively, these findings indicate that tetramycin not only acts as a direct fungicide but also primes the rice innate immune system via a synergistic reactive oxygen species-JA-SA signaling network, offering a sustainable strategy for rice blast management. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

19 pages, 3601 KB  
Article
Isolation and Characterization of Brevibacillus parabrevis S09T2, a Novel Ochratoxin A-Degrading Strain with Application Potential
by Jinqi Xiao, Qingping Wu, Junhui Wu, Xin Wang, Shixuan Huang, Xiaojuan Yang, Xianhu Wei, Youxiong Zhang, Xiuying Kou, Yuwei Wu and Ling Chen
Foods 2026, 15(2), 295; https://doi.org/10.3390/foods15020295 - 14 Jan 2026
Viewed by 176
Abstract
Ochratoxin A (OTA), a fungal secondary metabolite, is frequently detected in grains, herbal products, and other agricultural commodities, posing potential food safety risks. Among existing detoxification strategies, biological degradation is considered both specific and environmentally sustainable. In this study, a novel OTA-degrading bacterium, [...] Read more.
Ochratoxin A (OTA), a fungal secondary metabolite, is frequently detected in grains, herbal products, and other agricultural commodities, posing potential food safety risks. Among existing detoxification strategies, biological degradation is considered both specific and environmentally sustainable. In this study, a novel OTA-degrading bacterium, Brevibacillus parabrevis S09T2, was isolated from soil using OTA as the sole carbon source. The strain exhibited no hemolytic activity and carried no virulence or antibiotic resistance genes, indicating a favorable safety profile. S09T2 efficiently degraded OTA, removing over 93% of 5–8 μg/mL OTA within 24 h at 37 °C, and almost completely degrading OTA concentrations up to 10 μg/mL within 72 h. UPLC-HRMS analysis identified ochratoxin α (OTα) and phenylalanine as the only degradation products, confirming detoxification via amide bond hydrolysis. The intracellular enzyme responsible for this reaction displayed notable thermostability, achieving near-complete degradation of 1 μg/mL OTA at 50 °C within 6 h. Moreover, the cell lysate significantly reduced OTA levels in Plumeria rubra extract, a widely consumed functional food, demonstrating applicability in complex food matrices. Collectively, these findings highlight S09T2 as a promising candidate for OTA detoxification and support its potential use in food and feed safety applications. Full article
Show Figures

Graphical abstract

15 pages, 3846 KB  
Article
Noble Metal-Enhanced Chemically Sensitized Bi2WO6 for Point-of-Care Detection of Listeria monocytogenes in Ready-to-Eat Foods
by Yong Zhang, Hai Yu, Yu Han, Shu Cui, Jingyi Yang, Bingyang Huo and Jun Wang
Foods 2026, 15(2), 293; https://doi.org/10.3390/foods15020293 - 13 Jan 2026
Viewed by 165
Abstract
Listeria monocytogenes (LM) contamination constitutes a paramount global threat to food safety, necessitating the urgent development of advanced, rapid, and non-destructive detection methodologies to ensure food security. This study successfully synthesized Bi2WO6 nanoflowers through optimized feed ratios of [...] Read more.
Listeria monocytogenes (LM) contamination constitutes a paramount global threat to food safety, necessitating the urgent development of advanced, rapid, and non-destructive detection methodologies to ensure food security. This study successfully synthesized Bi2WO6 nanoflowers through optimized feed ratios of raw materials and further functionalized them with noble metal Au to construct a high-performance Au-Bi2WO6 composite nanomaterial. The composite exhibited high sensing performance toward acetoin, including high sensitivity (Ra/Rg = 36.9@50 ppm), rapid response–recovery kinetics (13/12 s), and excellent selectivity. Through UV-Vis diffuse reflectance spectroscopy (UV-Vis DRS) and X-ray photoelectron spectroscopy (XPS) characterizations, efficient electron exchange between Au and Bi2WO6 was confirmed. This electron exchange increased the initial resistance of the material, effectively enhancing the response value toward the target gas. Furthermore, the chemical sensitization effect of Au significantly increased the surface-active oxygen content, promoted gas–solid interfacial reactions, and improved the adsorption capacity for target gases. Compared to conventional turbidimetry, the Au-Bi2WO6 nanoflower-based gas sensor demonstrates superior practical potential, offering a novel technological approach for non-destructive and rapid detection of foodborne pathogens. Full article
Show Figures

Graphical abstract

15 pages, 6645 KB  
Article
Multiplex Editing of OsMads26, OsBsr-d1, OsELF3-2 and OsERF922 with CRISPR/Cas9 Confers Enhanced Resistance to Pathogens and Abiotic Stresses and Boosts Grain Yield in Rice (Oryza sativa)
by Hailing Luo, Hengwei Zou, Shengli Lin, Jiali Liu, Geng Zhou, Lijun Gao, Jieyi Huang, Jiaxuan Li, Ju Gao and Chonglie Ma
Int. J. Mol. Sci. 2026, 27(2), 781; https://doi.org/10.3390/ijms27020781 - 13 Jan 2026
Viewed by 152
Abstract
Rice (Oryza sativa) is one of the world’s major staple foods. However, stable rice production is constrained by various biotic and abiotic and stresses. Breeding and cultivation of rice varieties with resistance to multiple pathogens and environmental stresses is the most [...] Read more.
Rice (Oryza sativa) is one of the world’s major staple foods. However, stable rice production is constrained by various biotic and abiotic and stresses. Breeding and cultivation of rice varieties with resistance to multiple pathogens and environmental stresses is the most effective strategy to mitigate the adverse effect of pathogen attacks and abiotic stresses. Recently, researchers have focused on the exploitation of CRISPR/Cas9 technology to manipulate some negative defense-regulator genes to generate rice varieties with broad-spectrum resistance against rice pathogens. In this study, four negative regulator genes of rice blast, OsMads26, OsBsr-1, OsELF3-2 and OsERF922, were selected as CRISPR/Cas9 targets. By simultaneously knocking out all four genes via CRISPR/Cas9 technology, we created three mads26/bsr-1/elf3-2/erf922 quadruple knockout mutants. Our results demonstrated that all quadruple mutants exhibited much higher resistance not only to rice blast and bacterial blight but also to drought and salt stresses than the wildtype. Interestingly, grain yield of all three quadruple mutants was also drastically increased by 17.35% to 21.95%. Therefore, this study provides a novel strategy to rapidly improve rice varieties with broad-spectrum resistance to pathogens, elevated tolerance to abiotic stresses and enhanced yield potential. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

39 pages, 1754 KB  
Review
Eco-Physiological and Molecular Roles of Zinc Oxide Nanoparticles (ZnO-NPs) in Mitigating Abiotic Stress: A Comprehensive Review
by Erick H. Ochoa-Chaparro, Luis U. Castruita-Esparza and Esteban Sánchez
Plants 2026, 15(1), 147; https://doi.org/10.3390/plants15010147 - 4 Jan 2026
Viewed by 262
Abstract
Mitigation of abiotic stress of crops is currently one of the primary issues for modern agriculture to secure food supply. On that point, it is acknowledged that climate change is leading to an increase in temperature and solar radiation, while also contributing to [...] Read more.
Mitigation of abiotic stress of crops is currently one of the primary issues for modern agriculture to secure food supply. On that point, it is acknowledged that climate change is leading to an increase in temperature and solar radiation, while also contributing to prolonged drought events. In contrast, saline soil and heavy metal pollution have been globally problematic, affecting a large part of crops. In this review, we have provided an overview of the eco-physiological and molecular aspects of zinc oxide nanoparticles (ZnO-NPs) as a novel technology for alleviating abiotic stress in plants. It is reported that the presence of ZnO-NPs has positive benefits in physiological processes, such as photosynthetic efficiency, osmotic regulation, ionic homeostasis, and the activation of antioxidant defense systems through gene modifications and the regulation of genes that are regulated under stress conditions. These are positive results for yields, nutrition, and resistance levels in cereals, legumes, and horticultural crops. Furthermore, essential details are reported, suggesting that the addition of ZnO-NPs to crops may be involved in regulating plant metabolism. Nonetheless, we recognize that this technology poses significant challenges for validation on a large scale, particularly in uncontrolled environments. Full article
Show Figures

Figure 1

16 pages, 2892 KB  
Article
Edible Yellow Mealworm-Derived Antidiabetic Peptides: Dual Modulation of α-Glucosidase and Dipeptidyl-Peptidase IV Inhibition Revealed by Integrated Proteomics, Bioassays, and Molecular Docking Analysis
by Yuying Zhu, Enning Zhou, Yingran Tang, Qiangqiang Li and Liming Wu
Foods 2026, 15(1), 96; https://doi.org/10.3390/foods15010096 - 29 Dec 2025
Viewed by 387
Abstract
Type 2 diabetes mellitus (T2DM) poses a critical global health burden, necessitating safer multi-target therapies. We pioneer the exploration of novel bioactive peptides from Tenebrio molitor larvae—an underexplored, sustainable, and edible insect protein—through proteomics-guided screening and bioassays. Six unique peptides (DK-7, WK-6, GR-7, [...] Read more.
Type 2 diabetes mellitus (T2DM) poses a critical global health burden, necessitating safer multi-target therapies. We pioneer the exploration of novel bioactive peptides from Tenebrio molitor larvae—an underexplored, sustainable, and edible insect protein—through proteomics-guided screening and bioassays. Six unique peptides (DK-7, WK-6, GR-7, FK-8, SK-6, and DK-8) demonstrated significant α-glucosidase and dipeptidyl-peptidase IV (DPP-IV) inhibitory effects, and significant glucose consumption enhancement in insulin-resistant HepG2 cells. Molecular docking revealed a binding topology where peptides interacted with α-glucosidase at its active sites (Glu271, Arg643, Arg647, Arg653, Tyr733, Lys765, and Glu767) and with DPP-IV at active residues (Phe357, Tyr547, Trp629, Asp729, and Gln731) through dual hydrogen-bond networks and hydrophobic interactions, establishing a novel inhibition mechanism. We wish to propose that insect-derived biopeptides have potential value as next-generation therapeutics, simultaneously advancing sustainable drug discovery and approximating functional food bioresources to biomedicine. Full article
(This article belongs to the Section Nutraceuticals, Functional Foods, and Novel Foods)
Show Figures

Figure 1

17 pages, 2987 KB  
Article
Hybrid Genome Sequencing and Comparative Analysis of Three Novel Listeria monocytogenes Strains: Insights into Lineage Diversity, Virulence, Antibiotic Resistance, and Defense Systems
by Violeta Pemaj, Aleksandra Slavko, Konstantinos Konandreas, Dimitrios E. Pavlidis, Anastasios Ioannidis, Konstantinos Panousopoulos, Nikoletta Xydia, Vassiliki Antonopoulou, Marina Papadelli, Eleftherios H. Drosinos, Panagiotis N. Skandamis, Simon Magin and Konstantinos Papadimitriou
Foods 2026, 15(1), 88; https://doi.org/10.3390/foods15010088 - 28 Dec 2025
Viewed by 457
Abstract
Listeria monocytogenes is a major foodborne pathogen, responsible for severe listeriosis outbreaks associated with contaminated foods. This study reports the comparative genomic analysis of three novel L. monocytogenes strains C5, A2D9 and A2D10, obtained from dairy and clinical sources. Hybrid genome sequencing with [...] Read more.
Listeria monocytogenes is a major foodborne pathogen, responsible for severe listeriosis outbreaks associated with contaminated foods. This study reports the comparative genomic analysis of three novel L. monocytogenes strains C5, A2D9 and A2D10, obtained from dairy and clinical sources. Hybrid genome sequencing with Oxford-Nanopore and Illumina technologies provided high-quality complete chromosomes. Phylogenomic analysis revealed a highly conserved core genome alongside accessory genome diversity. Strain C5 belonged to sequence type ST2, while A2D9 and A2D10 were assigned to ST155 and ST1, respectively. All strains exhibited close genomic relatedness to isolates from dairy animals and/or the dairy environment. Functional analysis identified conserved metabolic functions across all genomes. A total of 40 virulence genes were detected, including the LIPI-1 island in all strains and the LIPI-3 operon exclusively in A2D10, indicating a potential hypervirulent phenotype consistent with its ST1 background and the associated fatal clinical outcome. All strains exhibited similar antimicrobial resistance profiles typical of L. monocytogenes and diverse defense systems. The newly sequenced strains provide a valuable resource for functional analyses of the mechanisms underlying adaptation of L. monocytogenes to diverse environments. Full article
Show Figures

Figure 1

15 pages, 647 KB  
Article
Biotechnological Characterization and Safety Assessment of Lacticaseibacillus paracasei and Levilactobacillus brevis Strains Carrying entAS-48 and entQ Genes
by Roumaissaa Belkacem, Qada Benameur, Smaranda Crăciun, Hajer Kilani, Claudio Gervasi, George Cosmin Nadăș, Adriana Györke, Mohamed Salah Abbassi and Teresa Gervasi
Fermentation 2026, 12(1), 12; https://doi.org/10.3390/fermentation12010012 - 24 Dec 2025
Viewed by 678
Abstract
In our previous work, we reported for the first time the presence of enterocin-encoding genes in novel Lacticaseibacillus paracasei (L. paracasei) and Levilactobacillus brevis (Lev. brevis) strains isolated from artisanal dairy products made from raw cow milk. The aim [...] Read more.
In our previous work, we reported for the first time the presence of enterocin-encoding genes in novel Lacticaseibacillus paracasei (L. paracasei) and Levilactobacillus brevis (Lev. brevis) strains isolated from artisanal dairy products made from raw cow milk. The aim of this study was to isolate enterocin-positive lactic acid bacteria (LAB) from artisanal dairy products and assess their technological characteristics and safety for potential application in food systems. LAB isolates were characterized using phenotypic tests, Matrix-Assisted Laser Desorption/Ionization Time-of-Flight (MALDI-TOF) identification, and PCR detection of enterocin genes, followed by evaluation of their physiological and technological properties and a comprehensive safety assessment, including antimicrobial resistance, virulence, biogenic amine, and integron genes. Two strains, L. paracasei S2 and Lev. brevis S62, carried enterocin genes (entAS-48 and entQ) and exhibited strong acidifying and proteolytic activities, along with antibacterial effects against foodborne pathogens and reference strains. Both isolates tolerated environmental stresses, including low pH, and lacked virulence factors, clinically relevant antibiotic resistance genes, biogenic amine production, and integron elements. These results indicate that the strains are safe, multifunctional, and suitable for developing regionally adapted dairy products, highlighting artisanal dairy products as a valuable source of novel LAB with promising biotechnological applications. Full article
Show Figures

Figure 1

21 pages, 2578 KB  
Article
Efficient Expression of Lactone Hydrolase Cr2zen for Scalable Zearalenone Degradation in Pichia pastoris
by Mukhtar Ahmad, Hui Wang, Xiaomeng Liu, Shounan Wang, Tie Yin, Kun Deng, Caixia Lu, Xiaolin Zhang and Wei Jiang
Toxins 2026, 18(1), 10; https://doi.org/10.3390/toxins18010010 - 23 Dec 2025
Viewed by 358
Abstract
Zearalenone (ZEN) is a thermostable, lipophilic, non-steroidal estrogenic mycotoxin produced by Fusarium spp. that persistently contaminates food and feed. Its strong estrogenic activity and resistance to conventional detoxification strategies pose significant threats to food safety and human and animal health. Conventional physical and [...] Read more.
Zearalenone (ZEN) is a thermostable, lipophilic, non-steroidal estrogenic mycotoxin produced by Fusarium spp. that persistently contaminates food and feed. Its strong estrogenic activity and resistance to conventional detoxification strategies pose significant threats to food safety and human and animal health. Conventional physical and chemical degradation methods often compromise nutritional quality and leave toxic residues. Here we report the engineering of a novel Clonostachys rosea lactone hydrolase, Cr2zen, for efficient ZEN degradation in Pichia pastoris under mild conditions. Native Cr2zen exhibited a protein concentration of 0.076 mg/mL, achieving a degradation rate of approximately 17.9% within 30 min, with kinetic parameters of Km 75.9 µM and Vmax 0.482 µmol/L/s at 30 °C and pH 8.0. By integrating signal peptide screening and codon optimization, we identified Ser-Cr2 as the most effective variant, achieving a rapid 81.53% degradation of 10 ppm ZEN under mild conditions. Fed-batch cultivation in a 7.5 L bioreactor resulted in high cell densities of OD600 332.8 for Ser-Cr2 and 310.8 for Oser-Cr2, with extracellular protein concentrations of 0.62 and 0.79 g/L, respectively. The results demonstrate that signal peptide engineering and codon optimization substantially improved the production of lactone hydrolase in P. pastoris. This study establishes a scalable ZEN degradation under mild conditions in P. pastoris and outlines a strategy to integrate protein and process engineering for enhanced enzymatic mycotoxin degradation. Full article
Show Figures

Figure 1

25 pages, 8240 KB  
Article
Novel Bacillus-Infecting Phage Bquatquinnuvirus eskimopiis (Strains B450T and B450C), Founder of a New Genus, and the Properties of Its Endolysin
by Olesya A. Kazantseva, Olga N. Koposova, Irina A. Shorokhova, Vladislav A. Kulyabin and Andrey M. Shadrin
Int. J. Mol. Sci. 2026, 27(1), 131; https://doi.org/10.3390/ijms27010131 - 22 Dec 2025
Viewed by 346
Abstract
This study characterizes two novel Bacillus phages, B450T and B450C, isolated from Bacillus thuringiensis VKM B-450 via mitomycin C induction, along with their endolysin, PlyC19. Both phages, siphoviruses with 41,205 bp genomes, lysed 38% of the tested Bacillus cereus sensu lato strains, with [...] Read more.
This study characterizes two novel Bacillus phages, B450T and B450C, isolated from Bacillus thuringiensis VKM B-450 via mitomycin C induction, along with their endolysin, PlyC19. Both phages, siphoviruses with 41,205 bp genomes, lysed 38% of the tested Bacillus cereus sensu lato strains, with B450C showing enhanced lytic activity due to mutations in the repressor protein. PlyC19 lysed 56% of the strains tested, including Priestia flexa, demonstrating broader efficacy. Its Amidase_2 domain and dual SH3 cell wall-binding domains enable targeted peptidoglycan hydrolysis, with optimal activity at pH 9.0 and thermal stability up to 40 °C. We propose the taxonomic designation Bquatquinnuvirus eskimopiis for these phages, with B450T and B450C representing distinct strains, based on genomic divergence in the repressor protein’s HTH_Xre domain, consistent with their turbid and clear plaque morphologies, respectively. PlyC19′s broad specificity underscores its potential as an enzybiotic against multidrug-resistant Bacillus cereus group strains in food safety and medicine. Full article
(This article belongs to the Special Issue Bacteriophage—Molecular Studies (6th Edition))
Show Figures

Figure 1

13 pages, 1412 KB  
Article
clpC-Mediated Translational Control Orchestrates Stress Tolerance and Biofilm Formation in Milk-Originated Staphylococcus aureus RMSA24
by Maofeng Zhang, Jie Hu and Ting Xue
Foods 2025, 14(24), 4333; https://doi.org/10.3390/foods14244333 - 16 Dec 2025
Viewed by 328
Abstract
Staphylococcus aureus is an important pathogen that can cause widespread infections as well as severe outbreaks of food poisoning. Recent studies have drawn attention to foodborne pathogens such as S. aureus endowed with the ability to form biofilms and increase resistance to antimicrobial [...] Read more.
Staphylococcus aureus is an important pathogen that can cause widespread infections as well as severe outbreaks of food poisoning. Recent studies have drawn attention to foodborne pathogens such as S. aureus endowed with the ability to form biofilms and increase resistance to antimicrobial agents as well as environmental stress, posing challenges to food safety. The Clp (caseinolytic protease) protein complex plays a crucial role in energy-dependent protein hydrolysis processes. This mechanism is a common way to maintain intracellular homeostasis and regulation in both prokaryotic and eukaryotic cells, especially under stress conditions. In S. aureus, multiple genes encoding Clp ATPase homologues have been identified: clpC, clpB, clpY, clpX, and clpL. This study investigated the roles of clpC in stress tolerance and biofilm formation of foodborne S. aureus RMSA24 isolated from raw milk. Our results showed that the deletion of the clpC gene significantly reduced the bacterium’s tolerance to heat, desiccation, hydrogen peroxide, and high osmotic pressure compared to wild type (WT). Furthermore, the clpC knockout mutant also exhibited a marked decrease in biofilm formation using Crystal Violet Staining (CVS) and Scanning Electron Microscopy (SEM). Finally, compared to WT, there was a total of 102 DEGs (differentially expressed genes), with a significant downregulation of genes related to biofilm formation (isaA and spa) and heat-shock response (clpP and danJ). These findings suggest that clpC regulates environmental tolerance in S. aureus by modulating the expression of stress- and biofilm-related genes, positioning it as a potential biomarker and a novel target for controlling contamination in the food industry. Full article
(This article belongs to the Section Food Microbiology)
Show Figures

Figure 1

18 pages, 1551 KB  
Review
Wheat as a Storehouse of Natural Antimicrobial Compounds
by Eva Scarcelli, Domenico Iacopetta, Jessica Ceramella, Daniela Bonofiglio, Alessia Catalano, Giovanna Basile, Francesca Aiello and Maria Stefania Sinicropi
Molecules 2025, 30(24), 4774; https://doi.org/10.3390/molecules30244774 - 14 Dec 2025
Viewed by 497
Abstract
Background: Antimicrobial resistance (AMR) represents a global health challenge, contributing to elevated rates of morbidity and mortality. This growing problem is attributed to the widespread and indiscriminate use of antimicrobial agents. In response, current research is focused on identifying novel strategies to combat [...] Read more.
Background: Antimicrobial resistance (AMR) represents a global health challenge, contributing to elevated rates of morbidity and mortality. This growing problem is attributed to the widespread and indiscriminate use of antimicrobial agents. In response, current research is focused on identifying novel strategies to combat AMR, with particular attention to alternative therapeutic agents. Natural antimicrobials have emerged as promising candidates. Among these, wheat, one of the most cultivated food crops in the world, is identified as a valuable source of such bioactive compounds. Beyond its nutritional importance and prevalent use in food production, wheat is rich in polyphenols, small peptides, benzoxazinoids, 1,4-benzoquinones, and 5-n-alkylresorcinols. In vitro investigations have demonstrated that these phytochemicals possess broad-spectrum antimicrobial activities, exhibiting efficacy against Gram–positive and Gram–negative bacteria, as well as various fungi. Methods: Two databases, i.e., Google Scholar and Scopus, were screened using different keywords. Results: A series of key compounds responsible for these effects were identified, evaluating wheat’s potential role as a sustainable source of novel and potent antimicrobial agents. Conclusions: This review aims to collect the latest findings regarding the antimicrobial potential of different wheat varieties and their by-products. Full article
(This article belongs to the Special Issue Bioactive Molecules from Natural Sources and Their Functions)
Show Figures

Figure 1

23 pages, 13866 KB  
Article
Structural and Physicochemical Properties of Chlorella pyrenoidosa Neutral/Acidic Polysaccharides and Their Differential Regulatory Effects on Gut Microbiota and Metabolites in In Vitro Fermentation Model
by Ziwei Cui, Rongrong Ma, Xiaohua Pan, Chang Liu, Jinling Zhan, Tianyi Yang, Wangyang Shen and Yaoqi Tian
Nutrients 2025, 17(24), 3912; https://doi.org/10.3390/nu17243912 - 14 Dec 2025
Viewed by 464
Abstract
Background/Objectives: Chlorella pyrenoidosa polysaccharides (CPPs) exhibit digestion-resistant properties, with their bioactivity largely driven by gut microbiota metabolism. However, the fermentation characteristics of CPPs within the intestinal tract remain to be fully elucidated. Elucidating the utilization and metabolic processes of CPPs with respect [...] Read more.
Background/Objectives: Chlorella pyrenoidosa polysaccharides (CPPs) exhibit digestion-resistant properties, with their bioactivity largely driven by gut microbiota metabolism. However, the fermentation characteristics of CPPs within the intestinal tract remain to be fully elucidated. Elucidating the utilization and metabolic processes of CPPs with respect to the gut microbiota aids in understanding the potential mechanisms underlying the biological activity of these polysaccharides. Methods: This work fractionated CPPs into a neutral polysaccharide fraction (CPP-1) and an acidic polysaccharide fraction (CPP-2), followed by the characterization of their structure, physicochemical properties, and in vitro fermentation characteristics. Results: The results demonstrated that both CPP-1 and CPP-2 were non-starch heteropolysaccharides linked primarily by α-glycosidic bonds and lacking a triple helix structure. Both samples exhibited exceptional thermal stability, high water solubility, and low viscosity properties. CPP-2 selectively promoted Enterocloster, whereas CPP-1 significantly enriched Bacteroides and Bifidobacterium in gut microbiota. This differential regulation may be attributable to structural variations between the polysaccharides. Functional predictions indicated that CPP-1 enhances intestinal barrier integrity and immune homeostasis, whereas CPP-2 has anti-inflammatory activity. CPP-1 and CPP-2 interventions significantly upregulated the levels of health-promoting metabolites, including nicotinamide adenine dinucleotide, putrescine, and 3′-adenosine monophosphate. CPP-1 predominantly modulated amino acid metabolic pathways, while CPP-2 could effectively regulate purine, pyrimidine, amino acid, and butanoate metabolic pathways. Conclusions: This work identifies CPPs (CPP-1 and CPP-2) as novel modulators of gut homeostasis and host metabolism through microbiota–metabolite axis remodeling, supporting their prebiotic potential for functional food innovation. Full article
(This article belongs to the Section Nutrition and Metabolism)
Show Figures

Figure 1

20 pages, 827 KB  
Article
Exploring the Antibacterial, Anti-Inflammatory, and Antioxidant Properties of the Natural Food Supplement “Protegol” as a Supportive Strategy in Respiratory Tract Infections
by Alexia Barbarossa, Maria Pia Argentieri, Maria Valeria Diella, Eleonora Spinozzi, Filippo Maggi, Antonio Carrieri, Filomena Corbo, Antonio Rosato and Alessia Carocci
Antibiotics 2025, 14(12), 1260; https://doi.org/10.3390/antibiotics14121260 - 13 Dec 2025
Viewed by 1011
Abstract
Background/Objectives: Respiratory tract infections (RTIs) remain a leading cause of morbidity worldwide and are frequently associated with the emergence of multidrug-resistant pathogens. In this context, natural compounds represent a valuable source of novel antimicrobial and immunomodulatory agents. The present study aimed to [...] Read more.
Background/Objectives: Respiratory tract infections (RTIs) remain a leading cause of morbidity worldwide and are frequently associated with the emergence of multidrug-resistant pathogens. In this context, natural compounds represent a valuable source of novel antimicrobial and immunomodulatory agents. The present study aimed to evaluate the antibacterial, anti-inflammatory, and antioxidant activities of Protegol, a natural food supplement enriched in bioactive phytochemicals including hydroalcoholic extracts of propolis and hedge mustard (Sisymbrium officinale (L.) Scop.) aerial parts, together with honey, against clinically relevant bacterial strains and in cellular models of inflammation and oxidative stress. Furthermore, the ability of the multi-herbal formulation to alter the permeability of the bacterial cell wall was assessed. Methods: The antibacterial properties of Protegol were evaluated by determining its minimum inhibitory (MIC) and minimum bactericidal concentrations (MBC) against a panel of Gram-positive and Gram-negative bacteria, using the broth microdilution method. Cell wall permeability was investigated through the propidium iodide (PI) uptake assay. The anti-inflammatory potential was investigated in LPS-stimulated RAW 264.7 macrophages by measuring nitric oxide (NO) production with the Griess assay. The antioxidant activity was evaluated in BALB/3T3 fibroblasts exposed to hydrogen peroxide, using the DCFH-DA assay. Results: Protegol exhibited a broad-spectrum antibacterial effect, with MIC values ranging from 1.5 to 6.2 mg/mL and MBC values between 3.1 and 12.4 mg/mL. The strongest activity was observed against Staphylococcus aureus and Streptococcus pyogenes, including clinical isolates, while moderate efficacy was detected against resistant Klebsiella pneumoniae strains. PI uptake assays confirmed a dose-dependent disruption of bacterial membrane integrity, supporting a direct effect of Protegol on cell wall permeability. In macrophages, Protegol significantly and dose-dependently reduced NO release, lowering production to 44% at the highest concentration tested. In BALB/3T3 cells, Protegol markedly decreased ROS accumulation to 24% at the same concentration. Conclusions: Overall, the findings support the potential of Protegol as a natural adjuvant to the conventional therapies for respiratory tract health by counteracting bacterial pathogens, reducing inflammation, and mitigating oxidative stress, thereby supporting host defense mechanisms in the context of respiratory tract infections. Full article
Show Figures

Figure 1

21 pages, 4834 KB  
Review
Probiotic-Fermented Foods and Antimicrobial Stewardship: Mechanisms, Evidence, and Translational Pathways Against AMR
by Karina Teixeira Magalhães
Fermentation 2025, 11(12), 684; https://doi.org/10.3390/fermentation11120684 - 10 Dec 2025
Viewed by 710
Abstract
Antimicrobial resistance (AMR) remains a critical global challenge, requiring novel complementary strategies beyond antibiotic development. Probiotic-fermented foods (PFFs) offer an emerging, low-cost approach to mitigate AMR risk through ecological, molecular, and immunological mechanisms. This review integrates mechanistic insights, clinical evidence, and translational frameworks [...] Read more.
Antimicrobial resistance (AMR) remains a critical global challenge, requiring novel complementary strategies beyond antibiotic development. Probiotic-fermented foods (PFFs) offer an emerging, low-cost approach to mitigate AMR risk through ecological, molecular, and immunological mechanisms. This review integrates mechanistic insights, clinical evidence, and translational frameworks linking PFFs to antimicrobial stewardship. Key mechanisms include colonization resistance, nutrient and adhesion-site competition, production of antimicrobial metabolites, such as bacteriocins, hydrogen peroxide, and organic acids and Quorum-quenching-sensing activities that suppress pathogen virulence. Randomized clinical trials indicate that fermented diets and probiotic supplementation can improve microbiome diversity, reduce inflammatory cytokines, and decrease antibiotic-associated diarrhea, though direct AMR outcomes remain underexplored. Evidence from kefir, kombucha, and other microbial consortia suggests potential for in vivo pathogen suppression and reduced infection duration. However, safe translation requires standardized starter-culture genomics, resistome monitoring, and regulatory oversight under QPS/GRAS frameworks. Integrating PFF research with One Health surveillance systems, such as the WHO GLASS platform, will enable tracking of antimicrobial consumption and resistance outcomes. Collectively, these findings position PFFs as promising adjuncts for AMR mitigation, linking sustainable food biotechnology with microbiome-based health and global stewardship policies. Full article
(This article belongs to the Special Issue Feature Review Papers on Fermentation for Food and Beverages 2025)
Show Figures

Graphical abstract

Back to TopTop