Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (266)

Search Parameters:
Keywords = reflective resonance response

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 302 KiB  
Article
Understanding Influencer Followership on Social Media: A Case Study of Students at a South African University
by Nkosinathi Mlambo, Mpendulo Ncayiyane, Tarirai Chani and Murimo Bethel Mutanga
Journal. Media 2025, 6(3), 120; https://doi.org/10.3390/journalmedia6030120 - 29 Jul 2025
Viewed by 293
Abstract
The influence of social media personalities has grown significantly, especially among youth audiences who spend substantial time on platforms like TikTok. The emergence and popularity of different types of social media influencers accelerated during the COVID-19 pandemic in many countries, including South Africa. [...] Read more.
The influence of social media personalities has grown significantly, especially among youth audiences who spend substantial time on platforms like TikTok. The emergence and popularity of different types of social media influencers accelerated during the COVID-19 pandemic in many countries, including South Africa. In turn, this period also saw a surge in youth audiences following these influencers. This rapid growth of influencer followings among young people is largely driven by specific types of content that resonate with them, thus encouraging continued engagement. However, the benefits that these young followers gain from engaging with various influencers and the factors driving their preferences for specific influencers remain underexplored, particularly within the context of South African students within higher education. Therefore, this study explores the types of social media influencers most followed by university students at a South African University and investigates the key factors that drive their preferences. A structured online questionnaire was distributed, gathering both multiple-choice and open-ended responses from students. The data were analyzed using categorical frequency counts and thematic analysis. The data highlight how students actively turn to influencers as emotional anchors, role models, and sources of practical guidance. Their engagement reflects a deep need for connection, inspiration, and identity formation in a challenging academic and social environment. These patterns show that influencer content is not just entertainment but plays a critical developmental role. Understanding these motivations helps educators, policymakers, and brands to align better with youth values. The significance of these results lies in how influencer content is now coming in to fill the emotional, cultural, and educational gaps left by traditional systems among the young South African university students in this modern era. Full article
22 pages, 11766 KiB  
Article
Seismic Performance of Tall-Pier Girder Bridge with Novel Transverse Steel Dampers Under Near-Fault Ground Motions
by Ziang Pan, Qiming Qi, Ruifeng Yu, Huaping Yang, Changjiang Shao and Haomeng Cui
Buildings 2025, 15(15), 2666; https://doi.org/10.3390/buildings15152666 - 28 Jul 2025
Viewed by 135
Abstract
This study develops a novel transverse steel damper (TSD) to enhance the seismic performance of tall-pier girder bridges, featuring superior lateral strength and energy dissipation capacity. The TSD’s design and arrangement are presented, with its hysteretic behavior simulated in ABAQUS. Key parameters (yield [...] Read more.
This study develops a novel transverse steel damper (TSD) to enhance the seismic performance of tall-pier girder bridges, featuring superior lateral strength and energy dissipation capacity. The TSD’s design and arrangement are presented, with its hysteretic behavior simulated in ABAQUS. Key parameters (yield strength: 3000 kN; initial gap: 100 mm; post-yield stiffness ratio: 15%) are optimized through seismic analysis under near-fault ground motions, incorporating pulse characteristic investigations. The optimized TSD effectively reduces bearing displacements and results in smaller pier top displacements and internal forces compared to the bridge with fixed bearings. Due to the higher-order mode effects, there is no direct correlation between top displacements and bottom internal forces. As pier height decreases, the S-shaped shear force and bending moment envelopes gradually become linear, reflecting the reduced influence of these modes. Medium- to long-period pulse-like motions amplify seismic responses due to resonance (pulse period ≈ fundamental period) or susceptibility to large low-frequency spectral values. Higher-order mode effects on bending moments and shear forces intensify under prominent high-frequency components. However, the main velocity pulse typically masks the influence of high-order modes by the overwhelming seismic responses due to large spectral values at medium to long periods. Full article
(This article belongs to the Special Issue Seismic Analysis and Design of Building Structures)
Show Figures

Figure 1

22 pages, 6378 KiB  
Article
Cross-Modal Insights into Urban Green Spaces Preferences
by Jiayi Yan, Fan Zhang and Bing Qiu
Buildings 2025, 15(14), 2563; https://doi.org/10.3390/buildings15142563 - 20 Jul 2025
Viewed by 229
Abstract
Urban green spaces (UGSs) and forests play a vital role in shaping sustainable and livable cities, offering not only ecological benefits but also spaces that are essential for human well-being, social interactions, and everyday life. Understanding the landscape features that resonate most with [...] Read more.
Urban green spaces (UGSs) and forests play a vital role in shaping sustainable and livable cities, offering not only ecological benefits but also spaces that are essential for human well-being, social interactions, and everyday life. Understanding the landscape features that resonate most with public preferences is essential for enhancing the appeal, accessibility, and functionality of these environments. However, traditional approaches—such as surveys or single-data analyses—often lack the nuance needed to capture the complex and multisensory nature of human responses to green spaces. This study explores a cross-modal methodology that integrates natural language processing (NLP) and deep learning techniques to analyze text and image data collected from public reviews of 19 urban parks in Nanjing. By capturing both subjective emotional expressions and objective visual impressions, this study reveals a consistent public preference for natural landscapes, particularly those featuring evergreen trees, shrubs, and floral elements. Text-based data reflect users’ lived experiences and nuanced perceptions, while image data offers insights into visual appeal and spatial composition. By bridging human-centered insights with data-driven analysis, this research provides a robust framework for evaluating landscape preferences. It also underscores the importance of designing green spaces that are not only ecologically sound but also emotionally resonant and socially inclusive. The findings offer valuable guidance for the planning, design, and adaptive management of urban green infrastructure in ways that support healthier, more responsive, and smarter urban environments. Full article
(This article belongs to the Section Architectural Design, Urban Science, and Real Estate)
Show Figures

Figure 1

25 pages, 3459 KiB  
Article
Phase Composition, Structure, and Microwave Absorption of Magnetron-Sputtered Co–C–Cr Multilayer Films
by Nadezhda Prokhorenkova, Almira Zhilkashinova, Madi Abilev, Leszek Łatka, Igor Ocheredko and Assel Zhilkashinova
Compounds 2025, 5(3), 27; https://doi.org/10.3390/compounds5030027 - 20 Jul 2025
Viewed by 217
Abstract
Multilayer thin films composed of cobalt (Co), carbon (C), and chromium (Cr) possess promising electromagnetic properties, yet the combined Co–C–Cr system remains underexplored, particularly regarding its performance as a microwave absorber. Existing research has primarily focused on binary Co–C or Co–Cr compositions, leaving [...] Read more.
Multilayer thin films composed of cobalt (Co), carbon (C), and chromium (Cr) possess promising electromagnetic properties, yet the combined Co–C–Cr system remains underexplored, particularly regarding its performance as a microwave absorber. Existing research has primarily focused on binary Co–C or Co–Cr compositions, leaving a critical knowledge gap in understanding how ternary multilayer architectures influence electromagnetic behavior. This study addresses this gap by investigating the structure, phase composition, and microwave absorption performance of Co–C–Cr multilayer coatings fabricated via magnetron sputtering onto porous silicon substrates. This study compares four-layer and eight-layer configurations to assess how multilayer architecture affects impedance matching, reflection coefficients, and absorption characteristics within the 8.2–12.4 GHz frequency range. Structural analyses using X-ray diffraction and transmission electron microscopy confirm the coexistence of amorphous and nanocrystalline phases, which enhance absorption through dielectric and magnetic loss mechanisms. Both experimental and simulated results show that increasing the number of layers improves impedance gradients and broadens the operational bandwidth. The eight-layer coatings demonstrate a more uniform absorption response, while four-layer structures exhibit sharper resonant minima. These findings advance the understanding of ternary multilayer systems and contribute to the development of frequency-selective surfaces and broadband microwave shielding materials. Full article
Show Figures

Figure 1

29 pages, 4280 KiB  
Article
Pore Structure and Fractal Characteristics of Coal Rocks Under Variable Moisture Content Increment Cycles Using LF-NMR Techniques
by Hongxin Xie, Yanpeng Zhao, Daoxia Qin, Hui Liu, Yaxin Xing, Zhiguo Cao, Yong Zhang, Liqiang Yu and Zetian Zhang
Water 2025, 17(13), 1884; https://doi.org/10.3390/w17131884 - 25 Jun 2025
Viewed by 620
Abstract
The spatiotemporal heterogeneity of moisture distribution causes the coal pillar dams in underground water reservoirs to undergo long-term dry–wet cycles (DWCs) under varying moisture content increments (MCIs). Accurately measuring the pore damage and fractal dimensions (Df) of coal rock by [...] Read more.
The spatiotemporal heterogeneity of moisture distribution causes the coal pillar dams in underground water reservoirs to undergo long-term dry–wet cycles (DWCs) under varying moisture content increments (MCIs). Accurately measuring the pore damage and fractal dimensions (Df) of coal rock by different MCIs under DWCs is a prerequisite for in-depth disclosure of the strength deterioration mechanism of underground reservoir coal pillar dams. This study employed low-field nuclear magnetic resonance (LF-NMR) to quantitatively characterize the pore structural evolution and fractal dimension with different MCI variations (Δw = 4%, 6%, 8%) after one to five DWCs. The results indicate that increasing MCIs at constant DWC numbers (NDWC) induces significant increases in pore spectrum area, adsorption pore area, and seepage pore area. MRI visualization demonstrates a progressive migration of NMR signals from sample peripheries to internal regions, reflecting enhanced moisture infiltration with higher MCIs. Total porosity increases monotonically with MCIs across all tested cycles. Permeability, T2 cutoff (T2C), and Df of free pores exhibit distinct response patterns. A porosity-based damage model further reveals that the promoting effect of cycle numbers on pore development and expansion outweighs that of MCIs at NDWC = 5. This pore-scale analysis provides essential insights into the strength degradation mechanisms of coal pillar dams under hydro-mechanical coupling conditions. Full article
(This article belongs to the Topic Hydraulic Engineering and Modelling)
Show Figures

Figure 1

32 pages, 11250 KiB  
Article
Novel Dielectric Resonator-Based Microstrip Filters with Adjustable Transmission and Equalization Zeros
by David Espinosa-Adams, Sergio Llorente-Romano, Vicente González-Posadas, José Luis Jiménez-Martín and Daniel Segovia-Vargas
Electronics 2025, 14(13), 2557; https://doi.org/10.3390/electronics14132557 - 24 Jun 2025
Viewed by 483
Abstract
This work presents a comprehensive technological study of dielectric resonator-based microstrip filters (DRMFs), encompassing the design, fabrication, and rigorous characterization of the TE01δ mode. Through systematic coupling analysis, we demonstrate filters featuring novel input–output coupling techniques and innovative implementations of [...] Read more.
This work presents a comprehensive technological study of dielectric resonator-based microstrip filters (DRMFs), encompassing the design, fabrication, and rigorous characterization of the TE01δ mode. Through systematic coupling analysis, we demonstrate filters featuring novel input–output coupling techniques and innovative implementations of both transmission zeros (4-2-0 configuration) and equalization zeros (4-0-2 configuration), specifically designed for demanding space and radar receiver applications, while the loaded quality factor (QL) and insertion loss do not match those of dielectric resonator cavity filters (DRCFs), our solution significantly surpasses conventional microstrip filters (MFs), achieving QL> 3000 compared to typical QL≈ 200 for coupled-line MFs in X-band. The fabricated filters exhibit exceptional performance as follows: input reflection (S11) below −18 dB (4-2-0) and −16.5 dB (4-0-2), flat transmission response (S21), and out-of-band rejection exceeding −30 dB. Mechanical tuning enables precise control of input–output coupling, inter-resonator coupling, cross-coupling, and frequency synthesis, while equalization zeros provide tailored group delay characteristics. This study positions DRMFs as a viable intermediate technology for high-performance RF systems, bridging the gap between conventional solutions. Full article
(This article belongs to the Special Issue Advances in Low Power Circuit and System Design and Applications)
Show Figures

Figure 1

23 pages, 1266 KiB  
Article
Research on Aircraft Control System Fault Risk Assessment Based on Composite Framework
by Tongyu Shi, Yi Gao, Long Xu and Yantao Wang
Aerospace 2025, 12(6), 532; https://doi.org/10.3390/aerospace12060532 - 12 Jun 2025
Viewed by 444
Abstract
The air transportation system is composed of multiple elements and belongs to a complex socio-technical system. It is difficult to assess the risk of an aircraft fault because it could constantly change during operation and is influenced by numerous factors. Although traditional methods [...] Read more.
The air transportation system is composed of multiple elements and belongs to a complex socio-technical system. It is difficult to assess the risk of an aircraft fault because it could constantly change during operation and is influenced by numerous factors. Although traditional methods such as Failure Mode, Effects, and Criticality Analysis (FMECA) and Fault Tree Analysis (FTA) can reflect the degree of fault risk to a certain extent, they cannot accurately quantify and evaluate the fault risk under the multiple influences of human factors, random faults, and external environment. In order to solve these problems, this article proposes a fault risk assessment method for aircraft control systems based on a fault risk composite assessment framework using the Improved Risk Priority Number (IRPN) as the basis for the fault risk assessment. Firstly, a Bayesian network (BN) and Gated Recurrent Unit (GRU) are introduced into the traditional evaluation framework, and a hybrid prediction model combining static and dynamic failure probability is constructed. Subsequently, this paper uses the functional resonance analysis method (FRAM) by introducing a risk damping coefficient to analyze the propagation and evolution of fault risks and accurately evaluate the coupling effects between different functional modules in the system. Finally, taking the fault of a jammed flap/slat drive mechanism as an example, the risk of the fault is evaluated by calculating the IRPN. The calculation results show that the comprehensive failure probability of the aircraft control system in this case is 3.503 × 10−4. Taking into account the severity, the detection, and the risk damping coefficient, the calculation result of IRPN is 158.00. According to the classification standard of the risk level, the failure risk level of the aircraft belongs to a controlled risk, and emergency measures need to be taken, which is consistent with the actual disposal decision in this case. Therefore, the evaluation framework proposed in this article not only supports a quantitative assessment of system safety and provides a new method for fault risk assessments in aviation safety management but also provides a theoretical basis and practical guidance for optimizing fault response strategies. Full article
(This article belongs to the Section Air Traffic and Transportation)
Show Figures

Figure 1

9 pages, 2921 KiB  
Communication
Design of Orientation-Independent Non-Invasive Glucose Sensor Based on Meta-Structured Antenna
by Jae-Min Jeong, Franklin Bien and Jae-Gon Lee
Electronics 2025, 14(11), 2295; https://doi.org/10.3390/electronics14112295 - 5 Jun 2025
Viewed by 421
Abstract
This paper presents the design of an orientation-independent non-invasive glucose sensor based on a meta-structured antenna. The sensor is designed for blood glucose measurement through fingertip placement on the sensor and features a mushroom structure to generate zeroth-order resonance (ZOR). Moreover, the mushroom [...] Read more.
This paper presents the design of an orientation-independent non-invasive glucose sensor based on a meta-structured antenna. The sensor is designed for blood glucose measurement through fingertip placement on the sensor and features a mushroom structure to generate zeroth-order resonance (ZOR). Moreover, the mushroom structure has a hexagonal patch for orientation-independent non-invasive sensing. The operating frequency of the sensor is 4 GHz, and the overall size is 55 mm × 55 mm. In our study, the range of glucose concentration is from 50 to 250 mg/dL, with a step size of 50 mg/dL. The simulated and measured results show a linear relationship between the resonance frequency and the glucose concentration in the solution, and the linear shift of 0.352 MHz/mg/dL has been observed. On the other hand, the reflection coefficient level variation is a nonlinear function of the glucose concentration for the considered concentration ranges. Mathematical models describing the sensor response across all fingertip orientations are developed for the designed sensor using the regression analysis (R2 ≥ 0.993) relating the glucose concentration to the measured resonance frequency and reflection coefficient level. While the reflection coefficient shows a nonlinear response, the resonance frequency exhibits a strong linear correlation with glucose concentration, making it a more reliable parameter for accurate prediction in the proposed sensing model. Full article
Show Figures

Figure 1

30 pages, 3363 KiB  
Review
Surface Plasmon Resonance Aptasensors: Emerging Design and Deployment Landscape
by Fahd Khalid-Salako, Hasan Kurt and Meral Yüce
Biosensors 2025, 15(6), 359; https://doi.org/10.3390/bios15060359 - 4 Jun 2025
Viewed by 725
Abstract
SPR biosensors operate on the principle of evanescent wave propagation at metal–dielectric interfaces in total internal reflection conditions, with consequent photonic energy attenuation. This plasmonic excitation occurs in specific conditions of incident light wavelength, angle, and the dielectric refractive index. This principle has [...] Read more.
SPR biosensors operate on the principle of evanescent wave propagation at metal–dielectric interfaces in total internal reflection conditions, with consequent photonic energy attenuation. This plasmonic excitation occurs in specific conditions of incident light wavelength, angle, and the dielectric refractive index. This principle has been the basis for SPR-based biosensor setups wherein mass/concentration-induced changes in the refractive indices of dielectric media reflect as plasmonic resonance condition changes quantitatively reported as arbitrary response units. SPR biosensors operating on this conceptual framework have been designed to study biomolecular interactions with real-time readout and in label-free setups, providing key kinetic characterization that has been valuable in various applications. SPR biosensors often feature antibodies as target affinity probes. Notably, the operational challenges encountered with antibodies have led to the development of aptamers—oligonucleotide biomolecules rationally designed to adopt tertiary structures, enabling high affinity and specific binding to a wide range of targets. Aptamers have been extensively adopted in SPR biosensor setups with promising clinical and industrial prospects. In this paper, we explore the growing literature on SPR setups featuring aptamers, specifically providing expert commentary on the current state and future implications of these SPR aptasensors for drug discovery as well as disease diagnosis and monitoring. Full article
(This article belongs to the Special Issue Aptamer-Based Biosensors for Point-of-Care Diagnostics)
Show Figures

Graphical abstract

24 pages, 1814 KiB  
Article
Exploring Neural Signaling Patterns and Their Physiological Origins in Fibromyalgia by Means of Functional MRI Guided by a Review of the Literature
by Mara Will and Patrick W. Stroman
Brain Sci. 2025, 15(6), 603; https://doi.org/10.3390/brainsci15060603 - 4 Jun 2025
Viewed by 730
Abstract
Background/Objectives: Fibromyalgia (FM) is a chronic pain condition that includes symptoms of hyperalgesia and has an unknown etiology. This study aimed to further investigate the underlying neural signaling mechanisms and their relation to observed blood oxygenation-level dependent (BOLD) signal increases at the onset [...] Read more.
Background/Objectives: Fibromyalgia (FM) is a chronic pain condition that includes symptoms of hyperalgesia and has an unknown etiology. This study aimed to further investigate the underlying neural signaling mechanisms and their relation to observed blood oxygenation-level dependent (BOLD) signal increases at the onset of functional magnetic resonance imaging (fMRI) runs. Methods: The possible neural mechanisms were first explored by reviewing the current literature. The second component of this study involved a voxel-by-voxel analysis of BOLD responses in all regions of the brain. The fMRI data were obtained from a previous study of participants with and without fibromyalgia during fMRI runs involving either a noxious heat pain stimulus or no stimulus. Results: The literature review indicates that no single factor can explain the initial BOLD signal rise observed in FM but that there are likely multiple interacting influences. These include physiological dysregulation via mechanisms, such as oxidative stress, mitochondrial dysfunction, and cytokine activity, and may involve the sympathetic nervous system. The analysis of BOLD responses demonstrated that the initial BOLD rises occur specifically in gray matter regions and are largest in regions involved with pain processing, including the right insular cortex and periaqueductal gray region. Moreover, the BOLD rise is significantly larger in people with FM prior to the application of a noxious stimulus. Conclusions: The initial rise in BOLD response demonstrates heightened metabolic demand that is exaggerated in people with FM. It appears to be influenced by cognitive factors such as anticipation and may reflect neural dysregulation, possibly involving autonomic signaling. Full article
(This article belongs to the Section Systems Neuroscience)
Show Figures

Figure 1

10 pages, 2212 KiB  
Article
A Metal Ion-Responsive Spiropyran-Based Fluorescent Color-Changing Hydrogel
by Yuxiu Yin, Xin Li, Ying Li, Hongyan Miao and Gang Shi
Materials 2025, 18(11), 2573; https://doi.org/10.3390/ma18112573 - 30 May 2025
Viewed by 452
Abstract
The low fluorescence quantum efficiency of hydrophilic modified spiropyran in hydrogel matrices cannot be naturally improved during photoresponsive operation, which significantly limits their practical applications.In this study, a hybrid hydrogel system integrating metal plasmon resonance-enhanced fluorescence effects is designed through copolymerization of N,N′-bis(acryloyl)cystamine-modified [...] Read more.
The low fluorescence quantum efficiency of hydrophilic modified spiropyran in hydrogel matrices cannot be naturally improved during photoresponsive operation, which significantly limits their practical applications.In this study, a hybrid hydrogel system integrating metal plasmon resonance-enhanced fluorescence effects is designed through copolymerization of N,N′-bis(acryloyl)cystamine-modified Au nanoparticles (Au NPs), hydrophilic graft-modified spiropyran molecules, and N-isopropylacrylamide. This approach successfully achieves a spiropyran-based fluorescent hydrogel sensor with enhanced fluorescence intensity. Furthermore, an inverted pyramid-structured surface is engineered on the hydrogel using a template-assisted strategy, combining anti-reflection optical effects with plasmonic enhancement mechanisms. Molecular modification facilitated the integration of spiropyran and Au NPs into the hydrogel molecular chains, enhancing the dispersion of Au NPs within the hydrogel matrix and preventing fluorescence quenching from direct contact between Au NPs and spiropyran. Additionally, the anti-reflection effect of the hydrogel surface microstructure and the plasmon resonance effect of Au NPs were crucial in boosting the sensor’s fluorescence. Finally, the fluorescence intensity of the hydrogel increased by 10.2 times. In addition, under the action of excitation light, this sensor exhibited dual responsiveness of colorimetry and fluorescence, allowing for the sensing of heavy metal ions. The limit of detection for Zn2+ is as low as 0.803 μM, and the hydrogel exhibited more than 10 cycles of photo-isomerization and ion responsiveness. Full article
(This article belongs to the Special Issue Construction and Applications in Functional Polymers)
Show Figures

Figure 1

16 pages, 5574 KiB  
Article
Skin Hydration Monitoring Using a Microwave Sensor: Design, Fabrication, and In Vivo Analysis
by Shabbir Chowdhury, Amir Ebrahimi, Kamran Ghorbani and Francisco Tovar-Lopez
Sensors 2025, 25(11), 3445; https://doi.org/10.3390/s25113445 - 30 May 2025
Viewed by 847
Abstract
This article introduces a microwave sensor tailored for skin hydration monitoring. The design enables wireless operation by separating the sensing component from the reader, making it ideal for wearable devices like wristbands. The sensor consists of a semi-lumped LC resonator coupled to [...] Read more.
This article introduces a microwave sensor tailored for skin hydration monitoring. The design enables wireless operation by separating the sensing component from the reader, making it ideal for wearable devices like wristbands. The sensor consists of a semi-lumped LC resonator coupled to an inductive coil reader, where the capacitive part of the sensing tag is in contact with the skin. The variations in the skin hydration level alter the dielectric properties of the skin, which, in turn, modify the resonances of the LC resonator. Experimental in vivo measurements confirmed the sensor’s ability to distinguish between four hydration conditions: wet skin, skin treated with moisturizer, untreated dry skin, and skin treated with Vaseline, by measuring the resonance frequencies of the sensor. Measurement of the input reflection coefficient (S11) using a vector network analyzer (VNA) revealed distinct reflection poles and zeros for each condition, demonstrating the sensor’s effectiveness in detecting skin hydration levels. The sensing principle was analyzed using an equivalent circuit model and validated through measurements of a fabricated sensor prototype. The results confirm in vivo skin hydration monitoring by detecting frequency shifts in the reflection response within the 50–200 MHz range. The measurements and data analysis show less than 0.037% error in transmission zero (fz) together with less than 1.5% error in transmission pole (fp) while being used to detect skin hydration status on individual human subjects. The simplicity of the detection method, focusing on key frequency shifts, underscores the sensor’s potential as a practical and cost-effective solution for non-invasive skin hydration monitoring. This advancement holds significant potential for skincare and biomedical applications, enabling detection without complex signal processing. Full article
(This article belongs to the Section Wearables)
Show Figures

Figure 1

19 pages, 5010 KiB  
Article
A Numerical Study on the Bragg Resonance Characteristics of Multiple Floating Breakwaters
by Weijie Liu, Zhengyang Luo and Miaohua Mao
J. Mar. Sci. Eng. 2025, 13(6), 1014; https://doi.org/10.3390/jmse13061014 - 23 May 2025
Viewed by 417
Abstract
This study investigates the Bragg resonance characteristics of multiple independently moored floating breakwaters and their wave attenuation performance using a computational fluid dynamics (CFD) model, OpenFOAM. The numerical framework is validated against experimental data for wave generation and floating body motion responses, demonstrating [...] Read more.
This study investigates the Bragg resonance characteristics of multiple independently moored floating breakwaters and their wave attenuation performance using a computational fluid dynamics (CFD) model, OpenFOAM. The numerical framework is validated against experimental data for wave generation and floating body motion responses, demonstrating its reliable accuracy. Results show that Bragg resonance occurs in floating breakwater arrays, with the reflection coefficient peaking when the ratio of spacing to half-wavelength is an integer. Deeper immersion depth and longer boxes can enhance both Bragg reflection and energy dissipation by intensifying vorticity around the structures. Increasing the number of floating boxes marginally affects Bragg reflection but notably improves wave energy dissipation, primarily due to additional pontoons generating more turbulent motion. The optimal wave attenuation condition does not fully coincide with the peak Bragg reflection, highlighting the combined effect of reflection and dissipation of movable floating breakwaters. Future studies may further focus on the irregular wave conditions and impacts of the mooring system on the Bragg reflection and wave energy dissipation effect of multiple floating breakwaters. Full article
(This article belongs to the Section Coastal Engineering)
Show Figures

Figure 1

20 pages, 4152 KiB  
Article
Embodied, Exploratory Listening in the Concert Hall
by Remy Haswell-Martin, Finn Upham, Simon Høffding and Nanette Nielsen
Behav. Sci. 2025, 15(5), 710; https://doi.org/10.3390/bs15050710 - 21 May 2025
Viewed by 589
Abstract
Live music can afford novel, transformative aesthetic interactions for individual audience members. Nevertheless, concert research tends to focus on shared experience. In this paper we offer an account of exploratory listening that foregrounds embodied–enactive engagement and affective resonance through close analysis of the [...] Read more.
Live music can afford novel, transformative aesthetic interactions for individual audience members. Nevertheless, concert research tends to focus on shared experience. In this paper we offer an account of exploratory listening that foregrounds embodied–enactive engagement and affective resonance through close analysis of the music, physiological measurements, and reflections from interviews. Our analysis centres on data collected from two musician audience members about one specific piece out of a larger interdisciplinary project involving concerts given by the Stavanger Symphony Orchestra and The Norwegian Radio Orchestra in March and June of 2024. Through the combination of in-depth phenomenological interviews with musically skilled audience members and measurements of breathing and body motion, we explore aesthetic enactment beyond common patterns of ‘synchronised’ response, focusing on audience members’ experiences of Harald Sæverud’s ‘Kjempeviseslåtten’ (The Ballad of Revolt) (1943). We find forms of absorbed, both imaginative and embodied involvement, of listeners enacting meaningful contact with, and pathways through, the music that in some ways corroborate crowd patterns but also reveal exploratory expertise and idiosyncratic affective orientations. Full article
(This article belongs to the Special Issue Music Listening as Exploratory Behavior)
Show Figures

Figure 1

19 pages, 6754 KiB  
Article
New Challenges in Assessment of the Acoustic Properties of Coating Polymers
by Mariana Domnica Stanciu, Maria Violeta Guiman and Silviu Marian Năstac
Polymers 2025, 17(10), 1418; https://doi.org/10.3390/polym17101418 - 21 May 2025
Viewed by 398
Abstract
The study presented in this paper investigates the influence of coating polymers on the acoustic properties of resonant spruce wood. It evaluates absorption, acoustic reflection, and resonance frequency spectrum characteristics in both unvarnished and varnished samples, with the interface between the coating polymer [...] Read more.
The study presented in this paper investigates the influence of coating polymers on the acoustic properties of resonant spruce wood. It evaluates absorption, acoustic reflection, and resonance frequency spectrum characteristics in both unvarnished and varnished samples, with the interface between the coating polymer and the wood modifying the acoustic response. The novelty of the research consists in evaluating the acoustic and dynamic parameters of resonant spruce wood boards, varnished with varnishes with different chemical properties (oil-based varnish, spirit varnish, nitrocellulose varnish). The study focuses on the influence of the type of varnish and the thickness of the varnish film on the frequency spectrum, damping coefficient, quality factor, acoustic absorption coefficient, and sound reflection. The sound absorption coefficient increases with the number of varnish layers and is influenced by the sound’s frequency range, the type of varnish, and the quality of the wood—factors that collectively enhance acoustic performance. For instance, oil-based varnish applied in 5 or 10 layers contributes to a fuller sound at a frequency of 1.5 kHz. In contrast, spirit varnish, which has a lower acoustic absorption coefficient at this frequency, and a reduced damping coefficient, can lead to a nasal tone, although the frequency spectrum turns out to have the richest. Applying more than 10 layers of varnish softens the sound when using oil-based varnish but sharpens it with spirit varnish on resonant wood. Thus, the acoustic performance of a soundboard can be tailored by selecting the appropriate varnishing system and number of layers applied. However, a detailed analysis of the timbre of musical instruments finished with these varnishes is necessary to confirm their influence on the acoustic quality of the instruments. Full article
(This article belongs to the Special Issue Advances in Wood and Wood Polymer Composites)
Show Figures

Figure 1

Back to TopTop