Seismic Performance of Tall-Pier Girder Bridge with Novel Transverse Steel Dampers Under Near-Fault Ground Motions
Abstract
1. Introduction
2. Analytical Model and Seismic Input
2.1. Overview of the Bridge
2.2. Hysteretic Behavior of the TSD
2.3. Finite Element Analytical Model
2.4. Selection of Ground Motions
3. Optimization of the TSD
3.1. Different Yield Strength Variations
3.2. Different Initial Gap Variations
3.3. Different Post-Yield Stiffness Ratio Variations
3.4. Seismic Performance Comparisons
4. Influence of Pulse Characteristics
4.1. Effect of Pulse Period
4.2. Effect of Velocity Pulse
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chen, X.; Li, C. Seismic performance of tall pier bridges retrofitted with lead rubber bearings and rocking foundation. Eng. Struct. 2020, 212, 110529. [Google Scholar] [CrossRef]
- Shao, C.; Qi, Q.; Wang, M.; Xiao, Z.; Wei, W.; Hu, C.; Xiao, L. Experimental study on the seismic performance of round-ended hollow piers. Eng. Struct. 2019, 195, 309–323. [Google Scholar] [CrossRef]
- Chen, X. System fragility assessment of tall-pier bridges subjected to near-fault ground motions. J. Bridge Eng. 2020, 25, 04019143. [Google Scholar] [CrossRef]
- Parsons, T.; Ji, C.; Kirby, E. Stress changes from the 2008 Wenchuan earthquake and increased hazard in the Sichuan basin. Nature 2008, 454, 509–510. [Google Scholar] [CrossRef] [PubMed]
- Ni, S.; Wang, W.; Li, L. The April 14th, 2010 Yushu earthquake, a devastating earthquake with foreshocks. Sci. China Earth Sci. 2010, 53, 791. [Google Scholar] [CrossRef]
- Xu, X.; Wen, X.; Han, Z.; Chen, G.; Li, C.; Zheng, W.; Zhnag, S.; Ren, Z.; Xu, C.; Tan, X. Lushan Ms 7.0 earthquake: A blind reserve-fault event. Chin. Sci. Bull. 2013, 58, 3437–3443. [Google Scholar] [CrossRef]
- Sun, J.; Yu, Y.; Li, Y. Stochastic finite-fault simulation of the 2017 Jiuzhaigou earthquake in China. Earth Planets Space 2018, 70, 1–12. [Google Scholar] [CrossRef]
- Gu, H.; Itoh, Y. Ageing behaviour of natural rubber and high damping rubber materials used in bridge rubber bearings. Adv. Struct. Eng. 2010, 13, 1105–1113. [Google Scholar] [CrossRef]
- Tubaldi, E.; Mitoulis, S.A.; Ahmadi, H. Comparison of different models for high damping rubber bearings in seismically isolated bridges. Soil. Dyn. Earthq. Eng. 2018, 104, 329–345. [Google Scholar] [CrossRef]
- Aghaeidoost, V.; Billah, A.M. An advanced rate-dependent analytical model of lead rubber bearing. Earthq. Eng. Struct. Dyn. 2024, 53, 1961–1981. [Google Scholar] [CrossRef]
- Chen, P.; Wang, B.; Zhang, Z.; Li, T.; Dai, K. A generalized model of lead rubber bearing considering large strain stiffening and degradation. Eng. Struct. 2023, 275, 115264. [Google Scholar] [CrossRef]
- Chen, X.; Wu, S.; Li, J.; Guan, Z.; Xiang, N. Seismic performance assessment and design procedure of base-isolated bridges with lead-rubber-bearing and negative stiffness springs (LRB-NS). Eng. Struct. 2024, 306, 117871. [Google Scholar] [CrossRef]
- Shang, J.; Tan, P.; Zhang, Y.; Han, J.; Mi, P. Seismic isolation design of structure using variable friction pendulum bearings. Soil. Dyn. Earthq. Eng. 2021, 148, 106855. [Google Scholar] [CrossRef]
- Wei, B.; Yang, Z.; Fu, Y.; Xiao, B.; Jiang, L. Seismic displacement response analysis of Friction Pendulum Bearing under friction coupling and collision effects. Eng. Struct. 2024, 310, 118128. [Google Scholar] [CrossRef]
- Zheng, W.; Tan, P.; Li, J.; Wang, H.; Liu, Y.; Xian, Z. Superelastic conical friction pendulum isolator for seismic isolation of bridges under near-fault ground motions. Struct. Control Health Monit. 2023, 2023, 5497731. [Google Scholar] [CrossRef]
- Qi, Q.; Shao, C.; Cui, H.; Huang, H.; Wei, W.; Wang, C.; Zhuang, W. Shaking table tests and numerical studies on the seismic behaviors of FPB in railway continuous beam bridges. Eng. Struct. 2023, 290, 116318. [Google Scholar] [CrossRef]
- Wu, C.; Jing, H.; Feng, Z.; Song, J.; Wan, T.; Chen, Z. Control of longitudinal movement response of suspension bridges induced by passing trains using low-exponent fluid viscous dampers. Structures 2024, 62, 106330. [Google Scholar] [CrossRef]
- Zhao, Y.; Huang, P.; Long, G.; Yuan, Y.; Sun, Y. Influence of fluid viscous damper on the dynamic response of suspension bridge under random traffic load. Adv. Civ. Eng. 2020, 2020, 1857378. [Google Scholar] [CrossRef]
- Liu, Q.; Zhu, S.; Yu, W.; Wu, X.; Song, F.; Ren, X. Ground motion frequency insensitivity of bearing-supported pedestrian bridge with viscous dampers. KSCE J. Civ. Eng. 2021, 25, 2662–2673. [Google Scholar] [CrossRef]
- Han, Q.; Zhou, Y.; Ou, Y.; Du, X. Seismic behavior of reinforced concrete sacrificial exterior shear keys of highway bridges. Eng. Struct. 2017, 139, 59–70. [Google Scholar] [CrossRef]
- Mei, H.; Guo, A. Experimental investigation and finite element analysis for seismic capacity prediction of RC shear keys with different failure modes. Soil. Dyn. Earthq. Eng. 2023, 175, 108243. [Google Scholar] [CrossRef]
- Zhou, L.; Wang, X.; Ye, A. Low cycle fatigue performance investigation on transverse steel dampers for bridges under ground motion sequences using shake-table tests. Eng. Struct. 2019, 196, 109328. [Google Scholar] [CrossRef]
- Yue, K.; Xu, L.; Liu, J.; Fan, L.; Xu, L. Seismic performance of an energy dissipating shear key for highway bridges using butterfly-shaped steel plates. Eng. Struct. 2023, 295, 116885. [Google Scholar] [CrossRef]
- Huang, L.; Wang, W.; Xu, S.; Wang, B.; Li, Z. Shaking table tests and numerical study on the seismic performance of arc-shaped shear keys in highway continuous-girder bridges. Buildings 2024, 14, 3060. [Google Scholar] [CrossRef]
- Bi, K.; Hao, H. Modelling of shear keys in bridge structures under seismic loads. Soil. Dyn. Earthq. Eng. 2015, 74, 56–68. [Google Scholar] [CrossRef]
- Xiang, N.; Li, J. Effect of exterior concrete shear keys on the seismic performance of laminated rubber bearing-supported highway bridges in China. Soil. Dyn. Earthq. Eng. 2018, 112, 185–197. [Google Scholar] [CrossRef]
- Özşahin, E.; Pekcan, G.; Borekci, M. Design of shear keys for mitigating seismic response due to translational and torsional ground motions. Eng. Struct. 2024, 312, 118195. [Google Scholar] [CrossRef]
- Abbasi, M.; Moustafa, M.A. Effect of shear keys on seismic response of irregular bridge configurations. Transp. Res. Rec. 2017, 2642, 155–165. [Google Scholar] [CrossRef]
- Wu, S. Investigation on the connection forces of shear keys in skewed bridges during earthquakes. Eng. Struct. 2019, 194, 334–343. [Google Scholar] [CrossRef]
- Shen, Y.; Li, J.; Freddi, F.; Igarashi, A.; Zhou, J. Numerical investigation of transverse steel damper (TSD) seismic system for suspension bridges considering pounding between girder and towers. Soil. Dyn. Earthq. Eng. 2022, 155, 107203. [Google Scholar] [CrossRef]
- Tubaldi, E.; Tassotti, L.; Dall’Asta, A.; Dezi, L. Seismic response analysis of slender bridge piers. Earthq. Eng. Struct. Dyn. 2014, 43, 1503–1519. [Google Scholar] [CrossRef]
- Chen, X.; Wu, P.; Li, C. Seismic performance assessment of base-isolated tall pier bridges using friction pendulum bearings achieving resilient design. Structures 2022, 38, 618–629. [Google Scholar] [CrossRef]
- Yang, D.; Liu, J.; Yu, R.; Chen, G. Unified framework for stochastic dynamic responses and system reliability analysis of long-span cable-stayed bridges under near-fault ground motions. Eng. Struct. 2025, 322, 119061. [Google Scholar] [CrossRef]
- Jia, Y.; Xin, L.; Yang, D.; Pei, M.; Zhao, L.; Huang, Z. Seismic behavior analysis of long-span cable-stayed bridge under bi-directional near-fault ground motions. Structures 2024, 64, 106512. [Google Scholar] [CrossRef]
- Ozturk, B.; Cetin, H.; Aydin, E. Optimum vertical location and design of multiple tuned mass dampers under seismic excitations. Structures 2022, 41, 1141–1163. [Google Scholar] [CrossRef]
- Guan, Z.; Li, J.; Xu, Y.; Lu, H. Higher-order mode effects on the seismic performance of tall piers. Front. Struct. Civ. Eng. 2011, 5, 496–502. [Google Scholar] [CrossRef]
- JT/T 842-2012; High Damping Seismic Isolation Rubber Bearings for Highway Bridges. Ministry of Transport of the People’s Republic of China: Beijing, China, 2012.
- JTG/T 2231-01-2020; Specifications for Seismic Design of Highway Bridges. Ministry of Transport of the People’s Republic of China: Beijing, China, 2020.
- JTG 3363-2019; Specifications-for-Design-of-Foundation of Highway Bridges and Culverts. Ministry of Transport of the People’s Republic of China: Beijing, China, 2019.
- Silva, P.F.; Megally, S.; Seible, F. Seismic performance of sacrificial exterior shear keys in bridge abutments. Earthq. Spectra 2009, 25, 643–664. [Google Scholar] [CrossRef]
- Qi, Q.; Shao, C.; Wei, W.; Xiao, Z.; He, J. Seismic performance of railway rounded rectangular hollow tall piers using the shaking table test. Eng. Struct. 2020, 220, 110968. [Google Scholar] [CrossRef]
- Qi, Q.; Shao, C.; Yang, H.; Cui, H.; Chen, Z.; Gong, W. Axial-flexure-shear model for seismic analysis of RC thin-walled hollow piers. Soil. Dyn. Earthq. Eng. 2025, 195, 109375. [Google Scholar] [CrossRef]
- Baker, J.W. Quantitative classification of near-fault ground motions using wavelet analysis. Bull. Seismol. Soc. Am. 2007, 97, 1486–1501. [Google Scholar] [CrossRef]
- Shahi, S.K.; Baker, J.W. An empirically calibrated framework for including the effects of near-fault directivity in probabilistic seismic hazard analysis. Bull. Seismol. Soc. Am. 2011, 101, 742–755. [Google Scholar] [CrossRef]
Bearing | Vertical Load Capacity (kN) | Compressive Stiffness (kN/mm) | Equivalent Damping Ratio (%) | Dimension (mm) | ||
---|---|---|---|---|---|---|
Transverse | Longitudinal | Height | ||||
HDRB | 13,864 | 2713 | 15 | 1070 | 1070 | 414 |
Case | Parameter | Yield Strength | Initial Gap | Post-Yield Stiffness Ratio |
---|---|---|---|---|
(kN) | (mm) | (%) | ||
1 | Different yield strength | 1000 | 80 | 5 |
2 | 2000 | 80 | 5 | |
3 | 3000 | 80 | 5 | |
4 | 4000 | 80 | 5 | |
5 | 5000 | 80 | 5 | |
6 | 6000 | 80 | 5 | |
7 | 1000 | 100 | 5 | |
8 | 2000 | 100 | 5 | |
9 | 3000 | 100 | 5 | |
10 | 4000 | 100 | 5 | |
11 | 5000 | 100 | 5 | |
12 | 6000 | 100 | 5 | |
13 | 1000 | 120 | 5 | |
14 | 2000 | 120 | 5 | |
15 | 3000 | 120 | 5 | |
16 | 4000 | 120 | 5 | |
17 | 5000 | 120 | 5 | |
18 | 6000 | 120 | 5 | |
19 | Different initial gap | 2000 | 40 | 5 |
20 | 2000 | 60 | 5 | |
21 | 2000 | 80 | 5 | |
22 | 2000 | 100 | 5 | |
23 | 2000 | 120 | 5 | |
24 | 2000 | 140 | 5 | |
25 | 3000 | 40 | 5 | |
26 | 3000 | 60 | 5 | |
27 | 3000 | 80 | 5 | |
28 | 3000 | 100 | 5 | |
29 | 3000 | 120 | 5 | |
30 | 3000 | 140 | 5 | |
31 | 4000 | 40 | 5 | |
32 | 4000 | 60 | 5 | |
33 | 4000 | 80 | 5 | |
34 | 4000 | 100 | 5 | |
35 | 4000 | 120 | 5 | |
36 | 4000 | 140 | 5 | |
37 | Different post-yield stiffness ratio | 3000 | 80 | 5 |
38 | 3000 | 80 | 10 | |
39 | 3000 | 80 | 15 | |
40 | 3000 | 80 | 20 | |
41 | 3000 | 80 | 25 | |
42 | 3000 | 100 | 5 | |
43 | 3000 | 100 | 10 | |
44 | 3000 | 100 | 15 | |
45 | 3000 | 100 | 20 | |
46 | 3000 | 100 | 25 |
RSN | Earthquake | Mw | Rp (km) | PGA (m/s2) | PGV (m/s) | Tg (s) | Tp (s) | Note |
---|---|---|---|---|---|---|---|---|
181 | Imperial Valley-06 | 6.53 | 1.35 | 4.341 | 1.216 | 0.822 | 3.773 | For the TSD optimization |
2466 | Chi-Chi Taiwan-03 | 6.2 | 3.52 | 2.005 | 0.3 | 0.822 | 1.057 | Short-period (Tpm = 1.12 s) |
2495 | Chi-Chi Taiwan-03 | 6.2 | 22.37 | 4.565 | 0.698 | 1.072 | 1.379 | |
2627 | Chi-Chi Taiwan-03 | 6.2 | 14.66 | 5.168 | 0.614 | 0.654 | 0.924 | |
2457 | Chi-Chi Taiwan-03 | 6.2 | 19.65 | 1.838 | 0.327 | 0.919 | 3.185 | Medium-period (Tpm = 2.959 s) |
2734 | Chi-Chi Taiwan-04 | 6.2 | 6.2 | 1.838 | 0.327 | 0.435 | 2.436 | |
3317 | Chi-Chi Taiwan-06 | 6.3 | 35.97 | 1.264 | 0.342 | 1.426 | 3.255 | |
1244 | Chi-Chi Taiwan | 7.62 | 9.94 | 3.783 | 1.088 | 1.033 | 5.341 | Long-period (Tpm = 5.208 s) |
1475 | Chi-Chi_ Taiwan | 7.62 | 56.12 | 1.062 | 0.457 | 0.876 | 5.285 | |
1510 | Chi-Chi_ Taiwan | 7.62 | 0.89 | 3.045 | 1.048 | 1.033 | 4.998 | |
1513 | Chi-Chi_ Taiwan | 7.62 | 10.97 | 5.8067 | 0.7054 | 0.5422 | - | Non-pulse |
2370 | Chi-Chi_ Taiwan-02 | 5.9 | 45.89 | 0.2989 | 0.0284 | 0.7067 | - | |
2381 | Chi-Chi Taiwan-02 | 5.9 | 42.77 | 0.4352 | 0.0574 | 0.8263 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pan, Z.; Qi, Q.; Yu, R.; Yang, H.; Shao, C.; Cui, H. Seismic Performance of Tall-Pier Girder Bridge with Novel Transverse Steel Dampers Under Near-Fault Ground Motions. Buildings 2025, 15, 2666. https://doi.org/10.3390/buildings15152666
Pan Z, Qi Q, Yu R, Yang H, Shao C, Cui H. Seismic Performance of Tall-Pier Girder Bridge with Novel Transverse Steel Dampers Under Near-Fault Ground Motions. Buildings. 2025; 15(15):2666. https://doi.org/10.3390/buildings15152666
Chicago/Turabian StylePan, Ziang, Qiming Qi, Ruifeng Yu, Huaping Yang, Changjiang Shao, and Haomeng Cui. 2025. "Seismic Performance of Tall-Pier Girder Bridge with Novel Transverse Steel Dampers Under Near-Fault Ground Motions" Buildings 15, no. 15: 2666. https://doi.org/10.3390/buildings15152666
APA StylePan, Z., Qi, Q., Yu, R., Yang, H., Shao, C., & Cui, H. (2025). Seismic Performance of Tall-Pier Girder Bridge with Novel Transverse Steel Dampers Under Near-Fault Ground Motions. Buildings, 15(15), 2666. https://doi.org/10.3390/buildings15152666