A Metal Ion-Responsive Spiropyran-Based Fluorescent Color-Changing Hydrogel
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of 2-[3-(3′,3′-Dimethyl-6-nitrospiro[chromene-2,2′-indole]-1′-yl)propanoyloxy] Ethyl 2-Methylprop-2-enoate (SPMA)
2.3. Synthesis of Gold Nanoparticles Modified by DA (DA-Au)
2.4. Synthesis of NIPAAM/SPMA/DA-Au Hydrogel
2.5. Characterization
3. Results and Discussion
3.1. Fabrication of NIPAAM/SPMA/DA-Au
3.2. Fluorescence and Photochromism Performance
3.3. Metal Ion Responsiveness
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gao, Y.; Li, Q.; Cai, H.; Wu, C.; Wei, Y.; Yang, Y. Optimized Photochromic Performance of Spiropyran through Incorporation into Hydrogen-Bonded Organic Frameworks and Applications in Anticounterfeiting and Information Encryption. ACS Appl. Mater. Interfaces 2025, 17, 8127–8135. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zhang, H.; Jiang, Y.; Zhang, S.; Li, Y.; Yu, D.; Wang, W. Sulfonic Acid-Functionalized Spiropyran Colorimetric Gas-Sensitive Aerogel for Real-Time Visual Ammonia Sensing. Chem. Eng. J. 2025, 511, 162160. [Google Scholar] [CrossRef]
- Wang, N.; Zhang, J.; Sun, L.; Wang, P.; Liu, W. Gene-Modified Cell Detachment on Photoresponsive Hydrogels Strengthened through Hydrogen Bonding. Acta Biomater. 2014, 10, 2529–2538. [Google Scholar] [CrossRef] [PubMed]
- Huang, M.; Zhou, J.; Zheng, X.; Zhang, Y.; Xu, S.; Li, Z. Novel Spiropyran Derivative Based Reversible Photo-Driven Colorimetric and Fluorescent Probes for Recognizing Fe3+, Cr3+ and Al3+ Metal Ions. Inorg. Chem. Commun. 2020, 117, 107968. [Google Scholar] [CrossRef]
- Arjmand, F.; Mohamadnia, Z. Fabrication of a Light-Responsive Polymer Nanocomposite Containing Spiropyran as a Sensor for Reversible Recognition of Metal Ions. Polym. Chem. 2022, 13, 937–945. [Google Scholar] [CrossRef]
- Yu, G.; Cao, Y.; Liu, H.; Wu, Q.; Hu, Q.; Jiang, B.; Yuan, Z. A Spirobenzopyran-Based Multifunctional Chemosensor for the Chromogenic Sensing of Cu2+ and Fluorescent Sensing of Hydrazine with Practical Applications. Sens. Actuat. B-Chem. 2017, 245, 803–814. [Google Scholar] [CrossRef]
- Mandal, M.; Banik, D.; Karak, A.; Manna, S.K.; Mahapatra, A.K. Spiropyran–Merocyanine Based Photochromic Fluorescent Probes: Design, Synthesis, and Applications. ACS Omega 2022, 7, 36988–37007. [Google Scholar] [CrossRef]
- Stafforst, T.; Hilvert, D. Kinetic Characterization of Spiropyrans in Aqueous Media. Chem. Commun. 2009, 3, 287–288. [Google Scholar] [CrossRef]
- Li, C.; Iscen, A.; Palmer, L.C.; Schatz, G.C.; Stupp, S.I. Light-Driven Expansion of Spiropyran Hydrogels. J. Am. Chem. Soc. 2020, 142, 8447–8453. [Google Scholar] [CrossRef]
- Li, C.; Zhang, Y.; Hu, J.; Cheng, J.; Liu, S. Reversible Three-State Switching of Multicolor Fluorescence Emission by Multiple Stimuli Modulated FRET Processes within Thermoresponsive Polymeric Micelles. Angew. Chem. Int. Ed. 2010, 49, 5120–5124. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, Y.; Chen, Y.; Wang, S.-P.; Zhang, C.; Liu, Y. Polyrotaxane In-Situ Copolymerization Stretchable Supramolecular Hydrogels for Photo-Controlled Cascade Energy Transfer. Eur. Polym. J. 2023, 192, 112070. [Google Scholar] [CrossRef]
- Li, B.; Li, C.Y. Immobilizing Au Nanoparticles with Polymer Single Crystals, Patterning and Asymmetric Functionalization. J. Am. Chem. Soc. 2007, 129, 12–13. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Yang, F.; Chen, Q.; Zheng, J. A Novel Design of Multi-Mechanoresponsive and Mechanically Strong Hydrogels. Adv. Mater. 2017, 29, 1606900. [Google Scholar] [CrossRef] [PubMed]
- Han, D.; Jiao, T. Reversible Chiral Optical Switching Based on Co-Assembled Spiropyran Gels. Langmuir 2022, 38, 13668–13673. [Google Scholar] [CrossRef]
- Zou, X.; Xiaozhen, X.; Shixiong, Z.; Jiajun, Z.; Yulin, H.; Liao, L. A Photo-Switchable and Thermal-Enhanced Fluorescent Hydrogel Prepared from N-Isopropylacrylamide with Water-Soluble Spiropyran Derivative. J. Biomater. Sci. Polym. Ed. 2018, 29, 1579–1594. [Google Scholar] [CrossRef]
- Liang, C.; Luan, J.; Wang, Z.; Jiang, Q.; Gupta, R.; Cao, S.; Liu, K.-K.; Morrissey, J.J.; Kharasch, E.D.; Naik, R.R.; et al. Gold Nanorod Size-Dependent Fluorescence Enhancement for Ultrasensitive Fluoroimmunoassays. ACS Appl. Mater. Interfaces 2021, 13, 11414–11423. [Google Scholar] [CrossRef]
- Jin, Y.; Petrescu, F.I.T.; Wang, Y.; Li, X.; Li, Y.; Shi, G. Spiropyran-Based Soft Substrate with SPR, Anti-Reflection and Anti-NRET for Enhanced Visualization/Fluorescence Dual Response to Metal Ions. Materials 2023, 16, 3746. [Google Scholar] [CrossRef]
- Wang, Y.; Feng, L.; Zhu, H.; Miao, H.; Li, Y.; Liu, X.; Shi, G. Noncontact Metal-Spiropyran-Metal Nanostructured Substrates with Ag and Au@SiO2 Nanoparticles Deposited in Nanohole Arrays for Surface-Enhanced Fluorescence and Trace Detection of Metal Ions. ACS Appl. Nano Mater. 2021, 4, 3780–3789. [Google Scholar] [CrossRef]
- Li, X.; Chen, L.; Li, Y.; Wang, L.; Wang, H.; Yang, J.; Miao, H.; Shi, G. Non-Uniform Deposition of N-CoP3 Films on Silicon-Based Photoelectrodes for Efficient Water Splitting. ACS Appl. Energy Mater. 2022, 5, 12622–12629. [Google Scholar] [CrossRef]
- Li, X.; Zhao, H.; Huang, J.; Li, Y.; Miao, H.; Shi, G.; Wong, P.K. A High-Performance TiO2 Protective Layer Derived from Non-High Vacuum Technology for a Si-Based Photocathode to Enhance Photoelectrochemical Water Splitting. J. Mater. Chem. A 2024, 12, 16605–16616. [Google Scholar] [CrossRef]
- Sun, H.; Li, X.; Chen, J.; Zhu, H.; Miao, H.; Li, Y.; Liu, X.; Shi, G. A Novel Photothermal, Self-Healing and Anti-Reflection Water Evaporation Membrane. Soft Matter 2021, 17, 4730–4737. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Hartmann, G.; Wu, Z.; Scarabelli, L.; Rajeeva, B.B.; Jarrett, J.W.; Perillo, E.P.; Dunn, A.K.; Liz-Marzán, L.M.; Hwang, G.S.; et al. Controlling Plasmon-Enhanced Fluorescence via Intersystem Crossing in Photoswitchable Molecules. Small 2017, 13, 1701763. [Google Scholar] [CrossRef] [PubMed]
- Mutluturk, E.; Baytekin, B.; Birlik Demirel, G. Spiropyran-Functionalized Polydimethylsiloxane Sponges for Reversible Adsorption of Metal Ions. ACS Appl. Polym. Mater. 2025, 7, 4099–4109. [Google Scholar] [CrossRef]
- Wang, Y.; Lan, T.; Ji, N.; Meng, Q.; He, W. Advancements in Spiropyran Probes: Mechanisms, Applications in Detection and Imaging. Dyes Pigments 2025, 238, 112654. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yin, Y.; Li, X.; Li, Y.; Miao, H.; Shi, G. A Metal Ion-Responsive Spiropyran-Based Fluorescent Color-Changing Hydrogel. Materials 2025, 18, 2573. https://doi.org/10.3390/ma18112573
Yin Y, Li X, Li Y, Miao H, Shi G. A Metal Ion-Responsive Spiropyran-Based Fluorescent Color-Changing Hydrogel. Materials. 2025; 18(11):2573. https://doi.org/10.3390/ma18112573
Chicago/Turabian StyleYin, Yuxiu, Xin Li, Ying Li, Hongyan Miao, and Gang Shi. 2025. "A Metal Ion-Responsive Spiropyran-Based Fluorescent Color-Changing Hydrogel" Materials 18, no. 11: 2573. https://doi.org/10.3390/ma18112573
APA StyleYin, Y., Li, X., Li, Y., Miao, H., & Shi, G. (2025). A Metal Ion-Responsive Spiropyran-Based Fluorescent Color-Changing Hydrogel. Materials, 18(11), 2573. https://doi.org/10.3390/ma18112573