Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (20,210)

Search Parameters:
Keywords = protective factors

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 10050 KB  
Article
Temporal and Spatial Variation Pattern of Groundwater Storage and Response to Environmental Changes in Shandong Province
by Yanyang Bi and Xiucui Tan
Water 2026, 18(2), 189; https://doi.org/10.3390/w18020189 (registering DOI) - 10 Jan 2026
Abstract
Based on GRACE RL06 data, this study reconstructs a monthly Terrestrial Water Storage Anomaly (TWSA) series in Shandong Province (2003–2024) using Singular Spectrum Analysis (SSA) and derives Groundwater Storage Anomaly (GWSA) via the water balance equation. The spatiotemporal evolution characteristics of GWSA were [...] Read more.
Based on GRACE RL06 data, this study reconstructs a monthly Terrestrial Water Storage Anomaly (TWSA) series in Shandong Province (2003–2024) using Singular Spectrum Analysis (SSA) and derives Groundwater Storage Anomaly (GWSA) via the water balance equation. The spatiotemporal evolution characteristics of GWSA were systematically examined, and the relative contributions of climatic factors and human activities to groundwater storage changes were quantitatively assessed, with the aim of contributing to the development, utilization, and protection of groundwater in Shandong Province. The results indicate that temporally, GWSA in Shandong Province exhibited a statistically significant decreasing trend at a rate of −8.45 mm/a (p < 0.01). The maximum GWSA value of 17.15 mm was recorded in 2006, while the Mann–Kendall abrupt change-point analysis identified 2013 as a significant transition point. Following this abrupt change, GWSA demonstrated a persistent decline, reaching the minimum annual average of −225.78 mm in 2020. Although moderate recovery was observed after 2020, GWSA values remained substantially lower than those in the pre-abrupt change period. Seasonal analysis revealed a distinct “higher in autumn and lower in spring” pattern, with the most pronounced fluctuations occurring in summer and the most stable conditions in winter. Spatially, approximately 99.1% of the study area showed significant decreasing trends, displaying a clear east–west gradient with more severe depletion in inland regions compared to relatively stable coastal areas. Crucially, human activities emerged as the dominant driving factor, with an average contribution rate of 86.11% during 2003–2024. The areal proportion where human activities served as the decisive factor (contribution rate > 80%) increased dramatically to 99.58%. Furthermore, the impact of human activities demonstrated bidirectional characteristics, transitioning from negative influences during the depletion phase to positive contributions promoting groundwater recovery in recent years. At present, the GWSA in Shandong Province is expected to continue declining in the future, with an overall downward trend. Countermeasures must be implemented promptly. Full article
(This article belongs to the Section Hydrology)
Show Figures

Figure 1

22 pages, 6823 KB  
Article
Exploring the Spatial Distribution of Traditional Villages in Yunnan, China: A Geographic-Grid MGWR Approach
by Xiaoyan Yin, Shujun Hou, Xin Han and Baoyue Kuang
Buildings 2026, 16(2), 295; https://doi.org/10.3390/buildings16020295 (registering DOI) - 10 Jan 2026
Abstract
Traditional villages are vital carriers of cultural heritage and key foundations for rural revitalization and sustainable development, yet rapid urbanization increasingly threatens their survival, making it necessary to clarify their spatial distribution and driving mechanisms to support effective conservation and rational utilization. Yunnan [...] Read more.
Traditional villages are vital carriers of cultural heritage and key foundations for rural revitalization and sustainable development, yet rapid urbanization increasingly threatens their survival, making it necessary to clarify their spatial distribution and driving mechanisms to support effective conservation and rational utilization. Yunnan Province, home to 777 nationally recognized traditional villages and the highest number in China, offers a representative context for such analysis. Methodologically, this study uses a 12 km × 12 km geographic grid (3005 cells) rather than administrative units. The count of catalogued traditional villages in each cell is taken as the dependent variable, and nine indicators selected from five dimensions (traffic accessibility, natural topography, climatic conditions, socioeconomic factors, and historical and cultural factors) serve as explanatory variables. Assuming that relationships between villages and their environment are spatially nonstationary and operate at multiple spatial scales, we combine spatial autocorrelation analysis with a multiscale geographically weighted regression (MGWR) model to detect clustering patterns and estimate location-specific coefficients and bandwidths. The results indicate that: (1) traditional villages in Yunnan exhibit significant clustering, with over 60% concentrated in Dali, Baoshan, Honghe, and Lijiang; (2) the spatial pattern follows a “more in the northwest, fewer in the southeast, dense in mountainous areas” distribution, shaped by both natural and socioeconomic factors; (3) natural geographic factors show the strongest associations, with sunshine duration and water availability strongly promoting village presence, while slope exhibits regionally differentiated effects; (4) socioeconomic development and transportation accessibility are generally negatively associated with village distribution, but in tourism-driven areas such as Dali and Lijiang, road improvements have facilitated protection and revitalization; and (5) historical and cultural factors, particularly proximity to nationally protected cultural heritage sites, contribute to spatial clustering and long-term preservation. The MGWR model achieves strong explanatory power (R2 = 0.555, adjusted R2 = 0.495) and outperforms OLS and standard GWR, confirming its suitability for analyzing the spatial mechanisms of traditional villages. Finally, the study offers targeted recommendations for the conservation and sustainable development of traditional villages in Yunnan. Full article
(This article belongs to the Special Issue Advanced Study on Urban Environment by Big Data Analytics)
Show Figures

Figure 1

28 pages, 9478 KB  
Article
Integrating Agro-Hydrological Modeling with Index-Based Vulnerability Assessment for Nitrate-Contaminated Groundwater
by Dawid Potrykus, Adam Szymkiewicz, Beata Jaworska-Szulc, Gianluigi Busico, Anna Gumuła-Kawęcka, Wioletta Gorczewska-Langner and Micol Mastrocicco
Sustainability 2026, 18(2), 729; https://doi.org/10.3390/su18020729 (registering DOI) - 10 Jan 2026
Abstract
Protecting groundwater against pollution from agricultural sources is a key aspect of sustainable management of soil and water resources. Implementation of sustainable strategies for agricultural production can be supported by modeling tools, which allow us to quantify the effects of different agricultural practices [...] Read more.
Protecting groundwater against pollution from agricultural sources is a key aspect of sustainable management of soil and water resources. Implementation of sustainable strategies for agricultural production can be supported by modeling tools, which allow us to quantify the effects of different agricultural practices in the context of groundwater vulnerability to contamination. In this study we present a method to assess groundwater vulnerability to nitrate pollution based on a combination of the SWAT agro-hydrological model and the DRASTIC index method. SWAT modeling was applied to assess different scenarios of agricultural practices and identify solutions for sustainable management of soil and groundwater and reduction of nitrate pollution. The developed method was implemented for groundwater resources in a study area (Puck Bay region, southern Baltic coast), which represented a complex multi-aquifer system formed in Quaternary fluvioglacial deposits (sand and gravel) separated by moraine tills. In order to investigate the effects of different agricultural practices, 12 scenarios have been defined, which were grouped into four classes: crop type, fertilizer management, tillage, and grazing. An overlay index structure was applied, and ratings and weights to several factors were assigned. All analyses were processed using GIS tools, and the results are presented in the form of maps, which categorize groundwater vulnerability to nitrate pollution into five classes, ranging from very low to very high. The results reveal significant variability in groundwater vulnerability to nitrate pollution in the study area. Agricultural practices have a very strong influence on groundwater vulnerability by controlling both recharge rates and nitrogen losses from the soil profile. The most pronounced increases in vulnerability were associated with scenarios involving excessive fertilization and intensive grazing. Among crop types, potato cultivation appears to pose the greatest risk to groundwater quality. Full article
Show Figures

Figure 1

10 pages, 252 KB  
Review
Review Regarding the Impact of Breastfeeding on Early Childhood Caries
by Mihaela Tănase, Ana-Maria Pistol, Diana Daniela Daciana Zmărăndache, Ioana-Andreea Stanciu and Aneta Munteanu
Children 2026, 13(1), 102; https://doi.org/10.3390/children13010102 (registering DOI) - 10 Jan 2026
Abstract
Background: Early childhood caries (ECC) compromise the nutrition, growth, and quality of life in young children, and their relationship with breastfeeding practices remains disputed. Aim: To determine if prolonged breastfeeding increases the risk of dental caries in children aged under 71 months. Material [...] Read more.
Background: Early childhood caries (ECC) compromise the nutrition, growth, and quality of life in young children, and their relationship with breastfeeding practices remains disputed. Aim: To determine if prolonged breastfeeding increases the risk of dental caries in children aged under 71 months. Material and Methods: A systematic review of PubMed, Multidisciplinary Digital Publishing Institute, and Evidence-Based Dentistry, was conducted through August 2025, including observational studies, randomized trials, narrative reviews, and meta-analyses on breastfeeding and ECC. Results: Thirty-one studies involving 28,000 children were included. Exclusive breastfeeding for under six months halves ECC probability (OR 0.53–0.58), whereas breastfeeding beyond 12 months and nocturnal feeds increase probability by 60–86% (OR 2.35–7.14). Parental factors—high plaque levels, feeding-to-sleep, and skipped post-feed cleaning—strongly predict ECC (OR 8.51–75.6). Interventions combining feeding counseling with home visits or visual aids reduce ECC incidence by 22–32% (RR 0.68–0.78). Conclusions: Exclusive breastfeeding through six months is protective against ECC, but prolonged or nocturnal feeding heightens risk. Integrating structured oral health education into breastfeeding promotion is recommended. Full article
(This article belongs to the Section Pediatric Emergency Medicine & Intensive Care Medicine)
22 pages, 14558 KB  
Article
Ginsenoside Re Ameliorates UVB-Induced Skin Photodamage by Modulating the Glutathione Metabolism Pathway: Insights from Integrated Transcriptomic and Metabolomic Analyses
by Jiaqi Wang, Duoduo Xu, Yangbin Lai, Yuan Zhao, Qiao Jin, Yuxin Yin, Jinqi Wang, Yang Wang, Shuying Liu and Enpeng Wang
Int. J. Mol. Sci. 2026, 27(2), 708; https://doi.org/10.3390/ijms27020708 (registering DOI) - 10 Jan 2026
Abstract
With the growing prominence of skin photodamage caused by ultraviolet (UV) radiation, the development of efficient and safe natural photoprotectants has become a major research focus. Ginsenoside Re (G-Re), a primary active component of ginseng (Panax ginseng C. A. Mey.), has attracted [...] Read more.
With the growing prominence of skin photodamage caused by ultraviolet (UV) radiation, the development of efficient and safe natural photoprotectants has become a major research focus. Ginsenoside Re (G-Re), a primary active component of ginseng (Panax ginseng C. A. Mey.), has attracted much attention due to its significant antioxidant and anti-inflammatory activities; however, its systemic role and mechanism in protecting against photodamage remain unclear. In this study, a UVB-induced rat photodamage model was established to evaluate the protective effect of ginsenoside Re through histopathological staining, biochemical assay, and immunohistochemical analysis. Furthermore, an integrated transcriptomic and metabolomic approach was applied to elucidate the molecular mechanism of G-Re protection and to establish the association between the photodamage phenotype, metabolic pathways, and gene functions. Following their identification via integrated multi-omics analysis, the key targets were subjected to verification via Western blotting. The results showed that G-Re could effectively alleviate UVB-induced pathological injury and reduce the level of oxidative stress and inflammatory factors, which could reverse regulate the abnormal expression of 265 differential genes and 30 metabolites. The glutathione metabolism pathway was proven as a key pathway mediating the protective effects of ginsenoside Re against skin photodamage via integrated analysis, WB verification, and molecular docking. The current study indicated that G-Re could be a promising natural sunscreen additive in cosmetical products. Full article
(This article belongs to the Section Bioactives and Nutraceuticals)
Show Figures

Graphical abstract

26 pages, 27909 KB  
Article
Vine Tea (Ampelopsis grossedentata) Extract Mitigates High-Salt-Diet-Induced Hypertension by Remodeling the Gut Microbiota–Metabolite Axis in Mice
by Yuxuan Gu, Qiling Li, Lu Cao and Huabing Yang
Int. J. Mol. Sci. 2026, 27(2), 709; https://doi.org/10.3390/ijms27020709 (registering DOI) - 10 Jan 2026
Abstract
Hypertension is a major global health challenge, with excessive dietary salt intake recognized as a key environmental factor contributing to its pathogenesis. However, safe and effective dietary interventions for salt-sensitive hypertension remain limited. Vine tea (Ampelopsis grossedentata), a traditional herbal tea [...] Read more.
Hypertension is a major global health challenge, with excessive dietary salt intake recognized as a key environmental factor contributing to its pathogenesis. However, safe and effective dietary interventions for salt-sensitive hypertension remain limited. Vine tea (Ampelopsis grossedentata), a traditional herbal tea widely consumed for centuries in southern China, has been reported to exhibit antioxidant, anti-inflammatory, and hepatoprotective activities, yet its antihypertensive efficacy and underlying mechanisms remain unclear. In this study, the chemical profile of vine tea aqueous extract (VTE) was characterized by UPLC–Q–TOF–MS, identifying dihydromyricetin, isoquercitrin, and myricetin as the predominant flavonoids. The protective effects of VTE were evaluated in C57BL/6J mice with high-salt-diet (HSD)-induced hypertension. VTE treatment significantly lowered systolic blood pressure and ameliorated cardiac and renal injury, accompanied by reduced inflammation, fibrosis, and cardiac stress-related gene expression. Gut microbiota analysis using 16S rRNA gene sequencing revealed that VTE restored microbial richness and diversity, enriching short-chain fatty acid-producing taxa while suppressing pathogenic Desulfovibrio and Ruminococcus torques. Untargeted plasma metabolomic profiling based on UPLC–Q–TOF–MS further showed that VTE normalized tryptophan, bile acid, and glycerophospholipid metabolism, decreasing the uremic toxin indoxyl sulfate while increasing tauroursodeoxycholic acid. Notably, these protective effects were abolished under antibiotic-induced microbiota depletion, confirming that VTE acts through a gut microbiota-dependent mechanism. Collectively, VTE mitigates salt-induced hypertension and cardiorenal injury by remodeling the gut microbiota–metabolite axis, supporting its potential as a natural dietary intervention for managing hypertension. Full article
(This article belongs to the Section Bioactives and Nutraceuticals)
Show Figures

Figure 1

43 pages, 28071 KB  
Article
Wildfire Probability Mapping in Southeastern Europe Using Deep Learning and Machine Learning Models Based on Open Satellite Data
by Uroš Durlević, Velibor Ilić and Bojana Aleksova
AI 2026, 7(1), 21; https://doi.org/10.3390/ai7010021 - 9 Jan 2026
Abstract
Wildfires, which encompass all fires that occur outside urban areas, represent one of the most frequent forms of natural disaster worldwide. This study presents the wildfire occurrence across the territory of Southeastern Europe, covering an area of 800,000 km2 (Greece, Romania, Serbia, [...] Read more.
Wildfires, which encompass all fires that occur outside urban areas, represent one of the most frequent forms of natural disaster worldwide. This study presents the wildfire occurrence across the territory of Southeastern Europe, covering an area of 800,000 km2 (Greece, Romania, Serbia, Slovenia, Croatia, Bosnia and Herzegovina, Montenegro, Albania, North Macedonia, Bulgaria, and Moldova). The research applies geospatial artificial intelligence techniques, based on the integration of machine learning (Random Forest (RF), XGBoost), deep learning (Deep Neural Network (DNN), Kolmogorov–Arnold Networks (KAN)), remote sensing (Sentinel-2, VIIRS), and Geographic Information Systems (GIS). From the geospatial database, 11 natural and anthropogenic criteria were analyzed, along with a wildfire inventory comprising 28,952 historical fire events. The results revealed that areas of very high susceptibility were most prevalent in Greece (10.5%), while the smallest susceptibility percentage was recorded in Slovenia (0.2%). Among the applied models, RF demonstrated the highest predictive performance (AUC = 90.7%), whereas XGBoost, DNN, and KAN achieved AUC values ranging from 86.7% to 90.5%. Through a SHAP analysis, it was determined that the most influential factors were global horizontal irradiation, elevation, and distance from settlements. The obtained results hold international significance for the implementation of preventive wildfire protection measures. Full article
(This article belongs to the Special Issue AI Applications in Emergency Response and Fire Safety)
25 pages, 2088 KB  
Review
A Review of Oil–Water Separation Technology for Transformer Oil Leakage Wastewater
by Lijuan Yao, Han Shi, Wen Qi, Baozhong Song, Jun Zhou, Wenquan Sun and Yongjun Sun
Water 2026, 18(2), 180; https://doi.org/10.3390/w18020180 - 9 Jan 2026
Abstract
The oily wastewater produced by transformer oil leakage contains pollutants such as mineral oil, metal particles, aged oil and additives, which can disrupt the dissolved oxygen balance in water bodies, pollute soil and endanger human health through the food chain, causing serious environmental [...] Read more.
The oily wastewater produced by transformer oil leakage contains pollutants such as mineral oil, metal particles, aged oil and additives, which can disrupt the dissolved oxygen balance in water bodies, pollute soil and endanger human health through the food chain, causing serious environmental pollution. Effective oil–water separation technology is the key to ecological protection and resource recovery. This paper reviews the principles, influencing factors and research progress of traditional (gravity sedimentation, air flotation, adsorption, demulsification) and new (nanocomposite adsorption, metal–organic skeleton materials, superhydrophobic/superlipophilic modified films) transformer oil–water separation technologies. Traditional technologies are mostly applicable to large-particle-free oil and are difficult to adapt to complex matrix wastewater. However, the new technology has significant advantages in separation efficiency (up to over 99.5%), selectivity and cycling stability (with a performance retention rate of over 85% after 20–60 cycles), breaking through the bottlenecks of traditional methods. In the future, it is necessary to develop low-cost and efficient separation technologies, promote the research and development of intelligent responsive materials, upgrade low-carbon preparation processes and their engineering applications, support environmental protection treatment in the power industry and encourage the coupling of material innovation and processes. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
17 pages, 2799 KB  
Article
Development and Multi-Scale Evaluation of a Novel Polyfluorosilicone Triple-Layer Anti-Seepage Coating for Hydraulic Concrete
by Nazim Hussain, Guoxin Zhang, Songhui Li, Xunan Liu, Xiangyu Luo and Junhua Hu
Coatings 2026, 16(1), 85; https://doi.org/10.3390/coatings16010085 - 9 Jan 2026
Abstract
The deterioration of concrete hydraulic structures caused by chemical factors, seepage, and environmental stress necessitates advanced protective coatings that enhance durability, flexibility, and environmental sustainability. Conventional protective systems often exhibit limited durability under combined hydraulic, thermal, and chemical stress. In this study, a [...] Read more.
The deterioration of concrete hydraulic structures caused by chemical factors, seepage, and environmental stress necessitates advanced protective coatings that enhance durability, flexibility, and environmental sustainability. Conventional protective systems often exhibit limited durability under combined hydraulic, thermal, and chemical stress. In this study, a novel polyfluorosilicone-based coating system is presented, which integrates a deep-penetrating nano-primer for substrate reinforcement, a crack-bridging polymer intermediate layer for impermeability, and a polyfluorosilicone topcoat providing UV and weather resistance. The multilayer architecture addresses the inherent trade-offs between adhesion, flexibility, and durability observed in conventional waterproofing systems. Informed by a mechanistic study of interfacial adhesion and failure modes, the coating exhibits outstanding high mechanical and performance characteristics, including a mean pull-off bond strength of 4.56 ± 0.14 MPa for the fully cured triple-layer coating system, with cohesive failure occurring within the concrete substrate, signifying a bond stronger than the material it protects. The system withstood 2.2 MPa water pressure and 200 freeze–thaw cycles with 87.2% modulus retention, demonstrating stable mechanical and environmental durability. The coating demonstrated excellent resilience, showing no evidence of degradation after 1000 h of UV aging, 200 freeze–thaw cycles, and exposure to alkaline solutions. This water-based formulation meets green-material standards, with low volatile organic compound (VOC) levels and minimal harmful chemicals. The results validate that a multi-scale, layered design strategy effectively decouples and addresses the distinct failure mechanisms in hydraulic environments, providing a robust and sustainable solution. Full article
(This article belongs to the Section Functional Polymer Coatings and Films)
Show Figures

Figure 1

13 pages, 1438 KB  
Article
Spirituality, Congruence, and Moral Agency in a Stigmatized Context: A Single-Case Study Using Satir Transformational Systemic Therapy (STST)
by Michael Argumaniz-Hardin, John Park, Johnny Ramirez-Johnson and Taralyn Grace DeLeeuw
Religions 2026, 17(1), 77; https://doi.org/10.3390/rel17010077 - 9 Jan 2026
Abstract
This qualitative single-case study examines how spirituality promotes mental health within a stigmatized occupation by analyzing an in-depth interview with “Perla,” a 62-year-old Mexican woman with decades of experience in sex work. Guided by Virginia Satir’s Transformational Systemic Therapy (STST), specifically the Self-Mandala [...] Read more.
This qualitative single-case study examines how spirituality promotes mental health within a stigmatized occupation by analyzing an in-depth interview with “Perla,” a 62-year-old Mexican woman with decades of experience in sex work. Guided by Virginia Satir’s Transformational Systemic Therapy (STST), specifically the Self-Mandala and Iceberg Metaphor, we conceptualize spirituality as a universal human dimension of meaning, moral orientation, and relational connection that may be expressed within or beyond formal religion. Narrative thematic analysis identifies processes through which Perla cultivates congruence (alignment of inner experience and outward conduct), safeguards dignity, and sustains hope amid systemic constraints. Her Catholic practices (prayer, ritual boundaries regarding Eucharist) coexist with a broader spiritual agency that supports self-worth, emotional regulation, boundary-setting, and coherent identity, factors associated with mental well-being. Interdisciplinary implications bridge marriage and family therapy, psychology, pastoral care, and cultural studies. Clinically, we translate Satir’s constructs (yearnings, perceptions, expectations, coping stances) into practical assessment and intervention steps that can be applied in secular settings without religious presuppositions. Analytic rigor was supported through reflective memoing, a structured three-level coding process, constant comparison, and verification by a second coder. The case challenges pathologizing frames of sex workers by demonstrating how spirituality can function as a protective, growth-oriented resource that fosters agency and moral coherence. Full article
Show Figures

Figure 1

24 pages, 3734 KB  
Article
Probabilistic Analysis of Rainfall-Induced Slope Stability Using KL Expansion and Polynomial Chaos Kriging Surrogate Model
by Binghao Zhou, Kepeng Hou, Huafen Sun, Qunzhi Cheng and Honglin Wang
Geosciences 2026, 16(1), 36; https://doi.org/10.3390/geosciences16010036 - 9 Jan 2026
Abstract
Rainfall infiltration is one of the main factors inducing slope instability, while the spatial heterogeneity and uncertainty of soil parameters have profound impacts on slope response characteristics and stability evolution. Traditional deterministic analysis methods struggle to reveal the dynamic risk evolution process of [...] Read more.
Rainfall infiltration is one of the main factors inducing slope instability, while the spatial heterogeneity and uncertainty of soil parameters have profound impacts on slope response characteristics and stability evolution. Traditional deterministic analysis methods struggle to reveal the dynamic risk evolution process of the system under heavy rainfall. Therefore, this paper proposes an uncertainty analysis framework combining Karhunen–Loève Expansion (KLE) random field theory, Polynomial Chaos Kriging (PCK) surrogate modeling, and Monte Carlo simulation to efficiently quantify the probabilistic characteristics and spatial risks of rainfall-induced slope instability. First, for key strength parameters such as cohesion and internal friction angle, a two-dimensional random field with spatial correlation is constructed to realistically depict the regional variability of soil mechanical properties. Second, a PCK surrogate model optimized by the LARS algorithm is developed to achieve high-precision replacement of finite element calculation results. Then, large-scale Monte Carlo simulations are conducted based on the surrogate model to obtain the probability distribution characteristics of slope safety factors and potential instability areas at different times. The research results show that the slope enters the most unstable stage during the middle of rainfall (36–54 h), with severe system response fluctuations and highly concentrated instability risks. Deterministic analysis generally overestimates slope safety and ignores extreme responses in tail samples. The proposed method can effectively identify the multi-source uncertainty effects of slope systems, providing theoretical support and technical pathways for risk early warning, zoning design, and protection optimization of slope engineering during rainfall periods. Full article
(This article belongs to the Special Issue New Advances in Landslide Mechanisms and Prediction Models)
Show Figures

Figure 1

32 pages, 2273 KB  
Review
Fire Performance of FRP-Composites and Strengthened Concrete Structures: A State-of-the-Art Review
by Junhao Zhou, Yingwu Zhou, Menghuan Guo and Sheng Xiang
Polymers 2026, 18(2), 181; https://doi.org/10.3390/polym18020181 - 9 Jan 2026
Abstract
The structural application of Fiber-Reinforced Polymers (FRP) is significantly hindered by their inherent thermal sensitivity. This paper presents a comprehensive review of the fire performance of FRP materials and FRP-concrete systems, spanning from material-scale degradation to structural-scale response. Distinct from previous studies, this [...] Read more.
The structural application of Fiber-Reinforced Polymers (FRP) is significantly hindered by their inherent thermal sensitivity. This paper presents a comprehensive review of the fire performance of FRP materials and FRP-concrete systems, spanning from material-scale degradation to structural-scale response. Distinct from previous studies, this review explicitly distinguishes between the fire behavior of internally reinforced FRP-reinforced concrete members and externally applied systems, including Externally Bonded Reinforcement (EBR) and Near-Surface Mounted (NSM) techniques. The thermal and mechanical degradation mechanisms of FRP constituents—specifically reinforcing fibers and polymer matrices—are first analyzed, with a focused discussion on the critical role of the glass transition temperature Tg. A detailed comparative analysis of the pros and cons of organic (epoxy-based) and inorganic (cementitious) binders is provided, elaborating on their respective bonding mechanisms and thermal stability under fire conditions. Furthermore, the effectiveness of various fire-protection strategies, such as external insulation systems, is evaluated. Synthesis of existing research indicates that while insulation thickness remains the dominant factor governing the fire survival time of EBR/NSM systems, the irreversible thermal degradation of polymer matrices poses a primary challenge for the post-fire recovery of FRP-reinforced structures. This review identifies critical research gaps and provides practical insights for the fire-safe design of FRP-concrete composite structures. Full article
Show Figures

Figure 1

31 pages, 5559 KB  
Review
Advances in Fabrication Technologies of Advanced Ceramics and High-Quality Development Trends in Catalytic Applications
by Weitao Xu, Peng Lv, Jiayin Li, Jing Yang, Liyun Cao and Jianfeng Huang
Catalysts 2026, 16(1), 79; https://doi.org/10.3390/catal16010079 - 9 Jan 2026
Abstract
Advanced ceramics are known for their lightweight, high-temperature resistance, corrosion resistance, and biocompatibility. They are crucial in energy conversion, environmental protection, and aerospace fields. This review highlights the recent advancements in ceramic matrix composites, high-entropy ceramics, and polymer-derived ceramics, alongside various fabrication techniques [...] Read more.
Advanced ceramics are known for their lightweight, high-temperature resistance, corrosion resistance, and biocompatibility. They are crucial in energy conversion, environmental protection, and aerospace fields. This review highlights the recent advancements in ceramic matrix composites, high-entropy ceramics, and polymer-derived ceramics, alongside various fabrication techniques such as three-dimensional printing, advanced sintering, and electric-field-assisted joining. Beyond the fabrication process, we emphasize how different processing methods impact microstructure, transport properties, and performance metrics relevant to catalysis. Additive manufacturing routes, such as direct ink writing, digital light processing, and binder jetting, are discussed and normalized based on factors such as relative density, grain size, pore architecture, and shrinkage. Cold and flash sintering methods are also examined, focusing on grain-boundary chemistry, dopant compatibility, and scalability for catalyst supports. Additionally, polymer-derived ceramics (SiOC, SiCN, SiBCN) are reviewed in terms of their catalytic performance in hydrogen evolution reaction, oxygen evolution reaction, oxygen reduction reaction, and CO2 reduction reaction. CeO2-ZrO2 composites are particularly highlighted for their use in environmental catalysis and high-temperature gas sensing. Furthermore, insights on the future industrialization, cross-disciplinary integration, and performance improvements in catalytic applications are provided. Full article
Show Figures

Graphical abstract

24 pages, 823 KB  
Review
Maternal–Fetal Exposure to Oncoelements and Their Oxidative and Epigenetic Impact on Pregnancy Outcomes
by Joanna Grzesik-Gąsior, Agnieszka Bień, Katarzyna Zalewska, Michał Nieszporek, Katarzyna Witkowska and Anna Merklinger-Gruchała
Int. J. Mol. Sci. 2026, 27(2), 669; https://doi.org/10.3390/ijms27020669 - 9 Jan 2026
Abstract
The proper course of pregnancy and fetal development depends, among other factors, on maintaining adequate levels of micronutrients in the maternal body. This integrative, concept-driven narrative review summarizes the current state of knowledge on the impact of selected elements, referred to as oncoelements, [...] Read more.
The proper course of pregnancy and fetal development depends, among other factors, on maintaining adequate levels of micronutrients in the maternal body. This integrative, concept-driven narrative review summarizes the current state of knowledge on the impact of selected elements, referred to as oncoelements, on placental function and obstetric outcomes. These include both potentially protective elements (selenium, zinc, copper) and toxic metals (cadmium, lead, arsenic), which, in excess may disrupt oxidative, hormonal, and epigenetic homeostasis. Rather than providing a quantitative synthesis, the article is structured around a four-level conceptual model integrating molecular mechanisms, placental protection, clinical outcomes, and umbilical cord blood as a biomarker of prenatal exposure. Mechanisms of toxicity include oxidative stress, mitochondrial dysfunction, DNA damage, and altered gene expression. Given the observational nature of most studies, clinical recommendations remain cautious. Micronutrient assessment may be useful in selected high-risk groups, but requires further validation. In environmentally burdened regions, screening for toxic metals may be considered. Future research should clarify dose–response relationships, define threshold concentrations, and explore molecular biomarkers of exposure. Umbilical cord blood offers a promising matrix for assessing fetal exposure, although interpretation is limited by methodological variability and the lack of reference values. Full article
(This article belongs to the Special Issue Metals and Metal Ions in Human Health, Diseases, and Environment)
Show Figures

Figure 1

16 pages, 3473 KB  
Article
Hybrid Phy-X/PSD–Geant4 Assessment of Gamma and Neutron Shielding in Lead-Free HDPE Composites Reinforced with High-Z Oxides
by Ahmed Alharbi, Nassar N. Asemi and Hamed Alnagran
Polymers 2026, 18(2), 179; https://doi.org/10.3390/polym18020179 - 9 Jan 2026
Abstract
This study evaluates lead-free high-density polyethylene (HDPE) composites reinforced with high-Z oxides (Bi2O3, WO3, Gd2O3, TeO2, and a Bi2O3/WO3 hybrid) as lightweight materials for gamma-ray and [...] Read more.
This study evaluates lead-free high-density polyethylene (HDPE) composites reinforced with high-Z oxides (Bi2O3, WO3, Gd2O3, TeO2, and a Bi2O3/WO3 hybrid) as lightweight materials for gamma-ray and fast-neutron shielding. A hybrid computational framework combining Phy-X/PSD with Geant4 Monte Carlo simulations was used to obtain key shielding parameters, including the linear and mass attenuation coefficients (μ, μ/ρ), half-value layer (HVL), mean free path (MFP), effective atomic number (Zeff), effective electron density (Neff), exposure and energy-absorption buildup factors (EBF, EABF), and fast-neutron removal cross section (ΣR). The incorporation of heavy oxides produced a pronounced improvement in gamma-ray attenuation, particularly at low energies, where the linear attenuation coefficient increased from below 1 cm−1 for neat HDPE to values exceeding 130–150 cm−1 for Bi- and W-rich composites. In the intermediate Compton-scattering region (≈0.3–1 MeV), all oxide-reinforced systems maintained a clear attenuation advantage, with μ values around 0.12–0.13 cm−1 compared with ≈0.07 cm−1 for pure HDPE. At higher photon energies, the dense composites continued to outperform the polymer matrix, yielding μ values of approximately 0.07–0.09 cm−1 versus ≈0.02 cm−1 for HDPE due to enhanced pair-production interactions. The Bi2O3/WO3 hybrid composite exhibited attenuation behavior comparable, and in some regions slightly exceeding, that of the single-oxide systems, indicating that mixed fillers can effectively balance density and shielding efficiency. Oxide addition significantly reduced exposure and energy-absorption buildup factors below 1 MeV, with a moderate increase at higher energies associated with secondary radiation processes. Fast-neutron removal cross sections were also modestly enhanced, with Gd2O3-containing composites showing the highest values due to the combined effects of hydrogen moderation and neutron capture. The close agreement between Phy-X/PSD and Geant4 results confirms the reliability of the dual-method approach. Overall, HDPE composites containing about 60 wt.% oxide filler offer a practical compromise between shielding performance, manufacturability, and environmental safety, making them promising candidates for medical, nuclear, and aerospace radiation-protection applications. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Figure 1

Back to TopTop