Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (357)

Search Parameters:
Keywords = production of plants growing in containers

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 1967 KiB  
Article
Optimizing Growth Regulator Concentrations for Cannabis sativa L. Micropropagation
by Gabrielle A. Johnson, Carissa L. Jackson, Antonio Timoteo, Papaiah Sardaru, Michael H. Foland, Purushothaman Natarajan and Sadanand A. Dhekney
Plants 2025, 14(16), 2586; https://doi.org/10.3390/plants14162586 - 20 Aug 2025
Viewed by 250
Abstract
In this study, the effect of growth regulators on shoot proliferation and rooting were evaluated to develop an efficient micropropagation protocol for the Cannabis sativa L. cultivars ‘Cherry Soda’ and ‘Purple’. Apical meristems were isolated from actively growing shoots of stock plants and [...] Read more.
In this study, the effect of growth regulators on shoot proliferation and rooting were evaluated to develop an efficient micropropagation protocol for the Cannabis sativa L. cultivars ‘Cherry Soda’ and ‘Purple’. Apical meristems were isolated from actively growing shoots of stock plants and transferred to Driver and Kuniyuki Walnut (DKW) culture medium containing either 0.0, 0.5, 1.0, 2.0, or 5.0 μM meta-Topolin to study their shoot proliferation response. Resulting shoot cultures were transferred to medium containing varying levels of Indole Acetic Acid (IAA), Indole Butyric Acid (IBA), or Naphthalene Acetic Acid (NAA), solely or in combination, and were subjected to a 10-day dark incubation followed by a 16 h/8 h light/dark period to identify the best treatment for root production. Among the different shoot proliferation treatments studied, the maximum number of shoots was produced on the control medium that was devoid of any meta-Topolin. Cultures grown on medium containing 5.0 μM meta-Topolin exhibited hyperhydricity, where shoots appeared translucent and pale green in color; were characterized by water-soaked lesions; and leaves appeared curled and brittle in contrast to healthy looking cultures. Among the various rooting treatments studied, shoots grown in the dark for 10 days exhibited the highest frequency of rooting on medium containing 4.0 μM NAA or 6.0 μM IBA + 1.0 μM NAA. Full developed plants with a robust shoot and root system were transferred to soil, acclimatized under conditions for high humidity, and then transferred to ambient conditions in 4 weeks. The micropropagation protocol developed here allows for rapid multiplication of disease-free plants in C. sativa cultivars. Full article
(This article belongs to the Special Issue Plant Tissue Culture and Plant Regeneration—2nd Edition)
Show Figures

Figure 1

16 pages, 1669 KiB  
Article
Effects of Container Substrate Composition on the Growth and Performance of Garberia heterophylla (W. Bartram) Merr. & F. Harper: A Native Xeric Species
by Grace Carapezza, Sandra B. Wilson, Mica McMillan and Mack Thetford
Horticulturae 2025, 11(8), 982; https://doi.org/10.3390/horticulturae11080982 - 19 Aug 2025
Viewed by 215
Abstract
Container production of landscape plants requires reliably consistent and affordable substrates with properties suitable for a wide range of species. Native plant production often requires additional considerations when determining ideal substrates for species found in precise ecosystems. Thus, the introduction of novel native [...] Read more.
Container production of landscape plants requires reliably consistent and affordable substrates with properties suitable for a wide range of species. Native plant production often requires additional considerations when determining ideal substrates for species found in precise ecosystems. Thus, the introduction of novel native species, such as garberia [Garberia heterophylla (W. Bartram) Merrill & F. Harper] requires research insight into discerning which type of substrate provides the greatest plant quality in the least amount of time. In this greenhouse study, garberia was container-grown for six months in five substrates. These included two different pine bark-based media (Atlas 3000 and ‘Native mix’) typically used for native plant production, a commercial standard of peat-based medium (ProMix BX), and compost-based medium (COMANDscape) by itself or at a 1:1 compost/native mix ratio. All substrates varied from each other in terms of pH and electroconductivity (EC), with ProMix BX having the most acidic pH (5.3) and COMANDscape having the highest EC (5.2 dS/m). The ProMix BX had the greatest water-holding capacity, while the Atlas 3000 had the greatest bulk and particle densities. After six months, plant heights and widths were similar between treatments. The ProMix BX yielded the greatest shoot and root dry matter values and well-developed root systems that held the substrate the best. Plants grown in ProMix BX or COMANDscape had the greatest SPAD values and very good to excellent shoot visual quality ratings, compared to other substrates evaluated. While garberia was found to be a slow-growing species regardless of substrate, these results demonstrate its tolerance of diverse substrates that are non-characteristic of the soil where it thrives naturally. This knowledge can be useful for nursery practitioners; ultimately contributing to expanded production and the widened use of garberia in landscapes. Full article
(This article belongs to the Section Plant Nutrition)
Show Figures

Graphical abstract

16 pages, 1725 KiB  
Article
In Vitro Propagation of Variegated Cymbidium lancifolium Hooker
by Iro Kang and Iyyakkannu Sivanesan
Plants 2025, 14(16), 2551; https://doi.org/10.3390/plants14162551 - 16 Aug 2025
Viewed by 243
Abstract
Variegated Cymbidium lancifolium is a highly valued ornamental plant sought after in local and international markets. The commercial production of variegated C. lancifolium through traditional propagation methods faces significant challenges, such as low propagation rates and prolonged growth periods. This study aims to [...] Read more.
Variegated Cymbidium lancifolium is a highly valued ornamental plant sought after in local and international markets. The commercial production of variegated C. lancifolium through traditional propagation methods faces significant challenges, such as low propagation rates and prolonged growth periods. This study aims to develop effective in vitro propagation techniques for variegated C. lancifolium through asymbiotic seed germination to enhance production efficiency and meet market demand. We examined the effects of various plant growth regulators and coconut water (CW) on in vitro seed germination. The highest germination percentage (46.8%) was recorded in Murashige and Skoog (MS) medium supplemented with 50 mL/L CW, 4.0 µM α-naphthalene acetic acid (NAA), 2.3 µM kinetin (KN), and 2.9 µM gibberellic acid (GA3). Seed-derived rhizomes were placed on MS medium containing indole-3-acetic acid (IAA), indole-3-butyric acid (IBA), and NAA for proliferation. Among the auxins, NAA was the most effective, significantly increasing rhizome proliferation, with the highest number (17.4) and length (2.1 cm) observed at 5.0 µM. The rhizome explants were cultured in MS medium enriched with kinetin (KN), N6-(2-isopentenyl)adenine (2-IP), and N6-benzyladenine (BA) to promote plantlet regeneration. Of the cytokinins tested, BA at 10.0 µM resulted in the highest rate of plantlet regeneration (79.4%), the greatest number of plantlets (4.4 per culture), and notable plantlet height (8.5 cm). We obtained plantlets with dark green leaves, light green leaves, and distinct variegation patterns. They were transferred to three different substrate mixtures for acclimatization. The substrate made of orchid stone (30%), wood bark (30%), coconut husk chips (20%), and perlite (20%) supported the highest survival rate (95.9%). This study successfully established optimized in vitro propagation techniques for variegated C. lancifolium, enabling enhanced germination, rhizome proliferation, and plantlet regeneration to meet the growing market demand. Full article
(This article belongs to the Section Plant Development and Morphogenesis)
Show Figures

Figure 1

20 pages, 2073 KiB  
Article
Tomato Seed Inoculation with Bacillus subtilis Biofilm Mitigates Toxic Effects of Excessive Copper in the Substrate
by Gabriela Cristina Sarti, Antonio Paz-González, Josefina Ana Eva Cristóbal-Míguez, Gonzalo Arnedillo, Ana Rosa García and Mirta Esther Galelli
Processes 2025, 13(8), 2509; https://doi.org/10.3390/pr13082509 - 8 Aug 2025
Viewed by 366
Abstract
Accumulation of copper (Cu) in soils devoted to intensive agriculture due to anthropogenic additions is becoming a significant threat to plant productivity. Biological inoculants may play an important role in alleviating toxic effects of heavy metals on plants. The plant-growth-promoting rhizobacteria (PGPR) Bacillus [...] Read more.
Accumulation of copper (Cu) in soils devoted to intensive agriculture due to anthropogenic additions is becoming a significant threat to plant productivity. Biological inoculants may play an important role in alleviating toxic effects of heavy metals on plants. The plant-growth-promoting rhizobacteria (PGPR) Bacillus subtilis subsp. spizizenii has demonstrated the ability to reduce harmful impacts of heavy metals on crops. This study aimed to evaluate the suitability of seed inoculation with biofilm produced by this bacterium to mitigate the severity of Cu toxicity on tomato. In the laboratory, first, B. subtilis was cultivated under increased Cu concentrations. Then, germination of inoculated and non-inoculated tomato seeds was tested for Cu concentrations of 0, 50, 100, 150, and 200 ppm. Next, a greenhouse experiment was conducted for four months to assess the effects of both inoculation and excess 150 ppm Cu in the substrate. The studied treatments included control, no inoculation and Cu surplus, inoculation and no Cu surplus, and inoculation plus Cu surplus. In the laboratory, first, the bacterium’s ability to grow in a liquid medium containing Cu was confirmed. Thereafter, we verified that the germination of non-inoculated seeds was negatively affected by Cu, with higher concentrations leading to a more detrimental effect. However, seed inoculation with biofilm mitigated the adverse impact of Cu on germination. Under greenhouse conditions, excess Cu significantly reduced root dry weight, tomato number, and tomato yield compared with the control, whereas shoot dry weight, plant height, leaf area, and soluble solid concentration (Brix index) did not experience significant changes (p < 0.05). However, seed inoculation mitigated the toxic effects of excess Cu, significantly enhancing all the aforementioned plant parameters, except plant height. Seed inoculation also significantly reduced the Cu contents in the fruits of tomato plants growing in the metal contaminated substrate. The biofilm of the B. subtilis strain used demonstrated its effectiveness as a bioinoculant, attenuating the detrimental effects induced by a substrate with excess Cu. Full article
(This article belongs to the Special Issue Processes in 2025)
Show Figures

Figure 1

18 pages, 1052 KiB  
Article
Impact of Kickxia elatine In Vitro-Derived Stem Cells on the Biophysical Properties of Facial Skin: A Placebo-Controlled Trial
by Anastasia Aliesa Hermosaningtyas, Anna Kroma-Szal, Justyna Gornowicz-Porowska, Maria Urbanska, Anna Budzianowska and Małgorzata Kikowska
Appl. Sci. 2025, 15(15), 8625; https://doi.org/10.3390/app15158625 - 4 Aug 2025
Viewed by 407
Abstract
The growing demand for natural and sustainable skincare products has driven interest in plant-based active ingredients, especially from in vitro cultures. This placebo-controlled study investigated the impact of a facial cream containing 2% Kickxia elatine (L.) Dumort cell suspension culture extract on various [...] Read more.
The growing demand for natural and sustainable skincare products has driven interest in plant-based active ingredients, especially from in vitro cultures. This placebo-controlled study investigated the impact of a facial cream containing 2% Kickxia elatine (L.) Dumort cell suspension culture extract on various skin biophysical parameters. The cream was applied to the cheek once daily for six weeks on 40 healthy female volunteers between the ages of 40 to 49. The evaluated skin parameters including skin hydration, transepidermal water loss (TEWL), erythema intensity (EI), melanin intensity (MI), skin surface pH, and skin structure, wrinkle depth, vascular lesions, and vascular discolouration. The results indicated that significant improvements were observed in skin hydration (from 40.36 to 63.00 AU, p < 0.001) and there was a decrease in TEWL score (14.82 to 11.76 g/h/m2, p < 0.001), while the skin surface pH was maintained (14.82 to 11.76 g/h/m2, p < 0.001). Moreover, the K. elatine cell extract significantly improved skin structure values (9.23 to 8.50, p = 0.028), reduced vascular lesions (2.72 to 1.54 mm2, p = 0.011), and lowered skin discolouration (20.98% to 14.84%, p < 0.001), indicating its moisturising, protective, brightening, and soothing properties. These findings support the potential use of K. elatine cell extract in dermocosmetic formulations targeting dry, sensitive, or ageing skin. Full article
Show Figures

Figure 1

19 pages, 3489 KiB  
Article
Impact of Nitrogen Fertilisation and Inoculation on Soybean Nodulation, Nitrogen Status, and Yield in a Central European Climate
by Waldemar Helios, Magdalena Serafin-Andrzejewska, Marcin Kozak and Sylwia Lewandowska
Agriculture 2025, 15(15), 1654; https://doi.org/10.3390/agriculture15151654 - 1 Aug 2025
Viewed by 385
Abstract
Soybean (Glycine max [L.] Merr.) cultivation is expanding in Central Europe due to the development of early-maturing cultivars and growing demand for plant-based protein produced without the use of genetically modified organisms. However, nitrogen (N) management remains a major challenge in temperate [...] Read more.
Soybean (Glycine max [L.] Merr.) cultivation is expanding in Central Europe due to the development of early-maturing cultivars and growing demand for plant-based protein produced without the use of genetically modified organisms. However, nitrogen (N) management remains a major challenge in temperate climates, where variable weather conditions can significantly affect nodulation and yield. This study evaluated the effects of three nitrogen fertilisation doses (0, 30, and 60 kg N·ha−1), applied in the form of ammonium nitrate (34% N) and two commercial rhizobial inoculants—HiStick Soy (containing Bradyrhizobium japonicum strain 532C) and Nitragina (including a Polish strain of B. japonicum)—on nodulation, nitrogen uptake, and seed yield. A three-year field experiment (2017–2019) was conducted in southwestern Poland using a two-factor randomized complete block design. Nodulation varied significantly across years, with the highest values recorded under favourable early-season moisture and reduced during drought. In the first year, inoculation with HiStick Soy significantly increased nodule number and seed yield compared to Nitragina and the uninoculated control. Nitrogen fertilisation consistently improved seed yield, although it had no significant effect on nodulation. The highest nitrogen use efficiency was observed with moderate nitrogen input (30 kg N·ha−1) combined with inoculation. These findings highlight the importance of integrating effective rhizobial inoculants with optimized nitrogen fertilisation to improve soybean productivity and nitrogen efficiency under variable temperate climate conditions. Full article
(This article belongs to the Special Issue Strategies to Enhance Nutrient Use Efficiency and Crop Nutrition)
Show Figures

Figure 1

34 pages, 954 KiB  
Review
Insights into the Activities and Usefulness of Deoxynojirimycin and Morus alba: A Comprehensive Review
by Angela Fulvia Tricase, Maria Maddalena Cavalluzzi, Alessia Catalano, Michela De Bellis, Annalisa De Palma, Giovanna Basile, Maria Stefania Sinicropi and Giovanni Lentini
Molecules 2025, 30(15), 3213; https://doi.org/10.3390/molecules30153213 - 31 Jul 2025
Viewed by 870
Abstract
Deoxynojirimycin (DNJ), the first isolated iminosugar, is a natural alkaloid acting as a potent inhibitor of α-glucosidase with high nutritional value. It naturally occurs in plants (especially Morus spp.), microbes, and insects or can be synthesized. Diverse biological activities, such as antihyperglycemic, lipid-lowering, [...] Read more.
Deoxynojirimycin (DNJ), the first isolated iminosugar, is a natural alkaloid acting as a potent inhibitor of α-glucosidase with high nutritional value. It naturally occurs in plants (especially Morus spp.), microbes, and insects or can be synthesized. Diverse biological activities, such as antihyperglycemic, lipid-lowering, antitumor, antiviral, and anti-inflammatory, have been recognized for this compound. However, DNJ has not been approved as a food supplement until now. Several studies, also in clinics, are carried out on Morus spp. containing DNJ. Among Morus spp., Morus alba L. (white mulberry), Morus nigra L. (black mulberry), and Morus rubra L. (red mulberry) are the three main species that grow all over the world. Some spurious studies have been conducted on Reducose® and Glubloc™, two products that contain DNJ and Morus alba, respectively. However, mulberry allergy, including respiratory allergy, airborne contact urticaria, anaphylaxis, oral allergy syndrome, and food induced urticaria, may be observed. This review aims to explore a crucial and timely question: how DNJ exerts its biological effects and what role it may play in therapeutic applications. We provide a comprehensive summary of the current understanding of DNJ’s pharmacological potential and the methods used for its production. We also report recent developments in clinical studies on Morus alba, Reducose® and Glubloc™. Full article
(This article belongs to the Section Organic Chemistry)
Show Figures

Figure 1

12 pages, 2171 KiB  
Article
Use of Foliar Biostimulants in Durum Wheat: Understanding Its Potential in Improving Agronomic and Quality Responses Under Mediterranean Field Conditions
by Angelo Rossini, Roberto Ruggeri and Francesco Rossini
Plants 2025, 14(15), 2276; https://doi.org/10.3390/plants14152276 - 24 Jul 2025
Viewed by 429
Abstract
Foliar application of biostimulants can be a valid option to reach the goal of sustainable intensification in agriculture, especially in extensive crops such as durum wheat. However, due to the wide range of active ingredients and their mixtures available in the market, the [...] Read more.
Foliar application of biostimulants can be a valid option to reach the goal of sustainable intensification in agriculture, especially in extensive crops such as durum wheat. However, due to the wide range of active ingredients and their mixtures available in the market, the need to select the most efficient product in a specific growing environment is of dramatic importance to achieve remarkable results in yield and grain quality. To analyze the potential of different active ingredients, a field trial was performed in two consecutive growing seasons (2023 and 2024) under Mediterranean climatic conditions. A randomized block design with three replicates was used. Durum wheat cultivar “Iride” was treated with the following five foliar biostimulants in comparison with the untreated control (T0): seaweed and plant extracts (T1); micronized vaterite (T2); culture broth of Pseudomonas protegens (T3); humic and fulvic acids (T4); organic nitrogen fertilizer (N 5%) containing glycine betaine (T5). Biostimulant treatment was applied at the end of tillering and at heading. Root length, chlorophyll content, grain yield, yield components and grain quality were measured and subjected to a one-way analysis of variance. As compared to the control, seaweed and plant extracts as well as micronized vaterite showed the best results in terms of grain yield (29% and 24% increase, respectively), root length (120% and 77% increase, respectively) and grain protein content (one percentage point increase, from approx. 12% to 13%). The results from this study can help Mediterranean farmers and researchers to develop new fertilization protocols to reach the goals of the “Farm to Fork” European strategy. Full article
Show Figures

Figure 1

17 pages, 2405 KiB  
Article
Development of Soy-Based Meat Analogues via Wet Twin-Screw Extrusion: Enhancing Textural and Structural Properties Through Whole Yeast Powder Supplementation
by Shikang Tang, Yidian Li, Xuejiao Wang, Linyan Zhou, Zhijia Liu, Lianzhou Jiang, Chaofan Guo and Junjie Yi
Foods 2025, 14(14), 2479; https://doi.org/10.3390/foods14142479 - 15 Jul 2025
Viewed by 507
Abstract
Amid growing global concerns about environmental sustainability and food security, plant-based meat substitutes have emerged as a promising alternative to conventional meat. However, current formulations, especially those based on soy protein isolate (SPI) often fail to replicate the desired texture and structural integrity. [...] Read more.
Amid growing global concerns about environmental sustainability and food security, plant-based meat substitutes have emerged as a promising alternative to conventional meat. However, current formulations, especially those based on soy protein isolate (SPI) often fail to replicate the desired texture and structural integrity. To address this limitation, this study aimed to evaluate the use of whole yeast powder (WYP) combined with SPI for producing plant-based meat analogues via high-moisture extrusion. Seven groups were designed: a control group with 0% WYP, five treatment groups with 5%, 10%, 20%, 30%, and 40% WYP, and one reference group containing 20% yeast protein powder (YPP). Although lower in protein content than yeast protein powder (YPP), whole yeast powder exhibits superior water-binding capacity and network-forming ability owing to its complex matrix and fiber content. At a 20% inclusion level, whole yeast powder demonstrated a higher fibrous degree (1.84 ± 0.02 vs. 1.81 ± 0.04), greater hardness (574.93 ± 5.84 N vs. 531.18 ± 17.34 N), and increased disulfide bonding (95.33 ± 0.92 mg/mL vs. 78.41 ± 0.78 mg/mL) compared to 20% YPP. Scanning electron microscopy (SEM) and low-field nuclear magnetic resonance (LF-NMR) revealed that whole yeast powder facilitated the formation of aligned fibrous networks and enhanced water binding. Fourier transform infrared spectroscopy (FTIR) confirmed an increase in β-sheet content (0.267 ± 0.003 vs. 0.260 ± 0.003), which contributed to improved protein aggregation. Increasing the WYP content to 30–40% led to a decline in these parameters, including a reduced fibrous degree (1.69 ± 0.06 at 40% WYP) and weakened molecular interactions (p < 0.05). The findings highlight 20% WYP as the optimal substitution level, offering superior textural enhancement and fibrous structure formation compared to YPP. These results suggest that WYP is not only a cost-effective and processing-friendly alternative to YPP but also holds great promise for scalable industrial application in the plant-based meat sector. Its compatibility with extrusion processes and ability to improve sensory and structural attributes supports its relevance for sustainable meat analogue production. Full article
(This article belongs to the Section Plant Foods)
Show Figures

Figure 1

17 pages, 504 KiB  
Article
Yield, Phytonutritional and Essential Mineral Element Profiles of Selected Aromatic Herbs: A Comparative Study of Hydroponics, Soilless and In-Soil Production Systems
by Beverly M. Mampholo, Mariette Truter and Martin M. Maboko
Plants 2025, 14(14), 2179; https://doi.org/10.3390/plants14142179 - 14 Jul 2025
Viewed by 320
Abstract
Increased market demand for plant herbs has prompted growers to ensure a continuous and assured supply of superior nutritional quality over the years. Apart from the nutritional value, culinary herbs contain phytochemical benefits that can improve human health. However, a significant amount of [...] Read more.
Increased market demand for plant herbs has prompted growers to ensure a continuous and assured supply of superior nutritional quality over the years. Apart from the nutritional value, culinary herbs contain phytochemical benefits that can improve human health. However, a significant amount of research has focused on enhancing yield, frequently overlooking the impact of production practices on the antioxidant and phytonutritional content of the produce. Thus, the study aimed to evaluate the yield, phytonutrients, and essential mineral profiling in selected aromatic herbs and their intricate role in nutritional quality when grown under different production systems. Five selected aromatic herbs (coriander, rocket, fennel, basil, and moss-curled parsley) were evaluated at harvest when grown under three production systems: in a gravel-film technique (GFT) hydroponic system and in soil, both under the 40% white shade-net structure, as well as in a soilless medium using sawdust under a non-temperature-controlled plastic tunnel (NTC). The phytonutritional quality properties (total phenolic, flavonoids, β-carotene-linoleic acid, and condensed tannins contents) as well as 1,1-diphenyl-2-picrylhydrazyl (DPPH) were assessed using spectrophotometry, while vitamin C and β-carotene were analyzed using HPLC-PDA, and leaf mineral content was evaluated using ICP-OES (Inductively Coupled Plasma Optical Emission Spectrometry). The results show that the health benefits vary greatly owing to the particular culinary herb. The fresh leaf mass (yield) of coriander, parsley, and rocket was not significantly affected by the production system, whereas basil was high in soil cultivation, followed by GFT. Fennel had a high yield in the GFT system compared to in-soil and in-soilless cultivation. The highest levels of vitamin C were found in basil leaves grown in GFT and in soil compared to the soilless medium. The amount of total phenolic and flavonoid compounds, β-carotene, β-carotene-linoleic acid, and DPPH, were considerably high in soil cultivation, except on condensed tannins compared to the GFT and soilless medium, which could be a result of Photosynthetic Active Radiation (PAR) values (683 μmol/m2/s) and not favoring the accumulation of tannins. Overall, the mineral content was greatly influenced by the production system. Leaf calcium and magnesium contents were highly accumulated in rockets grown in the soilless medium and the GFT hydroponic system. The results have highlighted that growing environmental conditions significantly impact the accumulation of health-promoting phytonutrients in aromatic herbs. Some have positive ramifications, while others have negative ramifications. As a result, growers should prioritize in-soil production systems over GFT (under the shade-net) and soilless cultivation (under NTC) to produce aromatic herbs to improve the functional benefits and customer health. Full article
(This article belongs to the Topic Nutritional and Phytochemical Composition of Plants)
Show Figures

Figure 1

44 pages, 10756 KiB  
Review
The Road to Re-Use of Spice By-Products: Exploring Their Bioactive Compounds and Significance in Active Packaging
by Di Zhang, Efakor Beloved Ahlivia, Benjamin Bonsu Bruce, Xiaobo Zou, Maurizio Battino, Dragiša Savić, Jaroslav Katona and Lingqin Shen
Foods 2025, 14(14), 2445; https://doi.org/10.3390/foods14142445 - 11 Jul 2025
Viewed by 947
Abstract
Spice by-products, often discarded as waste, represent an untapped resource for sustainable packaging solutions due to their unique, multifunctional, and bioactive profiles. Unlike typical plant residues, these materials retain diverse phytochemicals—including phenolics, polysaccharides, and other compounds, such as essential oils and vitamins—that exhibit [...] Read more.
Spice by-products, often discarded as waste, represent an untapped resource for sustainable packaging solutions due to their unique, multifunctional, and bioactive profiles. Unlike typical plant residues, these materials retain diverse phytochemicals—including phenolics, polysaccharides, and other compounds, such as essential oils and vitamins—that exhibit controlled release antimicrobial and antioxidant effects with environmental responsiveness to pH, humidity, and temperature changes. Their distinctive advantage is in preserving volatile bioactives, demonstrating enzyme-inhibiting properties, and maintaining thermal stability during processing. This review encompasses a comprehensive characterization of phytochemicals, an assessment of the re-utilization pathway from waste to active materials, and an investigation of processing methods for transforming by-products into films, coatings, and nanoemulsions through green extraction and packaging film development technologies. It also involves the evaluation of their mechanical strength, barrier performance, controlled release mechanism behavior, and effectiveness of food preservation. Key findings demonstrate that ginger and onion residues significantly enhance antioxidant and antimicrobial properties due to high phenolic acid and sulfur-containing compound concentrations, while cinnamon and garlic waste effectively improve mechanical strength and barrier attributes owing to their dense fiber matrix and bioactive aldehyde content. However, re-using these residues faces challenges, including the long-term storage stability of certain bioactive compounds, mechanical durability during scale-up, natural variability that affects standardization, and cost competitiveness with conventional packaging. Innovative solutions, including encapsulation, nano-reinforcement strategies, intelligent polymeric systems, and agro-biorefinery approaches, show promise for overcoming these barriers. By utilizing these spice by-products, the packaging industry can advance toward a circular bio-economy, depending less on traditional plastics and promoting environmental sustainability in light of growing global population and urbanization trends. Full article
Show Figures

Figure 1

14 pages, 6659 KiB  
Article
The Development of a Micropropagation System for a Rare Variety of an Agricultural and Medicinal Elderberry Plant Sambucus nigra ‘Albida’
by Jiří Sedlák, Martin Mészáros, Matěj Semerák and Pavel Pech
Agronomy 2025, 15(7), 1588; https://doi.org/10.3390/agronomy15071588 - 29 Jun 2025
Viewed by 379
Abstract
Black elder (Sambucus nigra L.) is a temperate shrub with flowers and fruits that are edible after processing. This species is not yet widely known in the global agricultural sector, but its adaptability and drought tolerance may generate more interest in this [...] Read more.
Black elder (Sambucus nigra L.) is a temperate shrub with flowers and fruits that are edible after processing. This species is not yet widely known in the global agricultural sector, but its adaptability and drought tolerance may generate more interest in this crop. Our study aimed to find suitable micropropagation techniques for the black elder ‘Albida’ and compare suitable statistical methods for evaluating multiplication and rooting. For micropropagation, we tested the Murashige and Skoog (MS) growth medium with selected auxins and cytokinins. Five proliferation MS media containing 1, 2, and 4 mg/L BAP or 0.5 and 1 mg/L TDZ were tested. To induce root formation, three types of auxins were tested at a concentration of 1 mg/L in a 50% MS medium: IBA, IAA, and NAA. Data analysis was performed using different parametric and nonparametric tests to robustly capture the effects of treatments across varying distributional scenarios in developing explants subjected to the interactions of internal native and externally added plant growth regulators. The average multiplication rate ranged from 1.6 to 2.0 shoots per explant. High multiplication was recorded on the MS medium with 1 mg/L 6-benzylaminopurine. The root number per rooted explant was highly variable, ranging from 3.0 to 12.0 roots per explant. The highest average root number result was observed when 1 mg/L α-naphthalenacetic acid was used. All rooted plants were successfully acclimated to normal growing conditions. This in vitro propagation protocol allows for the production of hundreds to thousands of rooted plants from one initial explant within one year, enabling faster introduction to the agronomic sector. Full article
Show Figures

Figure 1

20 pages, 2544 KiB  
Article
The Possibilities of Using Non-Traditional Raw Materials for Fertilizing Products
by Goda Gudinskaitė and Rasa Paleckienė
Sustainability 2025, 17(13), 5710; https://doi.org/10.3390/su17135710 - 20 Jun 2025
Viewed by 564
Abstract
In recent years, the Green Deal has become a cornerstone of the European Union’s development strategy, aiming to establish a sustainable, innovative and environmentally friendly economy. One of its primary goals is to reduce the negative impact of intensive farming by promoting sustainable [...] Read more.
In recent years, the Green Deal has become a cornerstone of the European Union’s development strategy, aiming to establish a sustainable, innovative and environmentally friendly economy. One of its primary goals is to reduce the negative impact of intensive farming by promoting sustainable agricultural practices. These practices include replacing synthetic fertilizers with more natural alternatives and substituting chemical plant protection products with biological solutions. A noteworthy prospect in this context is the growing insect farming industry, which opens up new possibilities for the food industry via waste processing. In Lithuania, insect farming is also expanding rapidly, with companies producing several hundred tons of frass (insect excrement and residues from growing media) every year. As insect farming is projected to increase rapidly over the next decade, the amount of frass produced will also increase. Therefore, it is necessary to find sustainable ways to use this byproduct. Frass is emerging as an important area of research and practical innovation with great potential for fertilizer production. Initial studies show that frass can contain up to 6% nitrogen, 2% phosphorus and 3% potassium, making it a valuable alternative to synthetic fertilizers. The chitin content (nearly 14%) in frass not only improves the soil but also improves plant resistance to disease. In addition, its organic composition improves soil structure and microbiological activity, contributing in the long term to increasing soil fertility. This paper analyses different samples of frass, assesses their physical and chemical properties and discusses the possible applications of these products in the context of sustainable agriculture. The studies show that frass can be a valuable raw material for fertilizer production, potentially reducing the need for synthetic fertilizers and contributing to the reduction in agricultural waste. By combining economic benefits with ecological sustainability, this research contributes to wider sustainable agricultural innovation. Full article
Show Figures

Figure 1

21 pages, 576 KiB  
Article
A Comprehensive Study on the Nutritional Profile and Shelf Life of a Custom-Formulated Protein Bar Versus a Market-Standard Product
by Corina Duda-Seiman, Liliana Mititelu-Tartau, Simona Biriescu, Alexandra-Loredana Almășan, Bianca-Oana Bitu, Adina-Ioana Bucur, Andrei Luca, Bogdan Hoinoiu and Teodora Hoinoiu
Foods 2025, 14(12), 2141; https://doi.org/10.3390/foods14122141 - 19 Jun 2025
Cited by 1 | Viewed by 2706
Abstract
Background: With growing interest in healthy lifestyles, protein bars have gained popularity. However, many commercial bars contain excessive calories, sugar, and artificial additives that undermine their health benefits. This study aimed to develop a protein bar using natural ingredients with a balanced macronutrient [...] Read more.
Background: With growing interest in healthy lifestyles, protein bars have gained popularity. However, many commercial bars contain excessive calories, sugar, and artificial additives that undermine their health benefits. This study aimed to develop a protein bar using natural ingredients with a balanced macronutrient profile. Method: The protein bar formulation used soy protein extract, a plant-based protein source, known for its complete amino acid profile but limited in methionine, which was complemented by oats to nutritionally balance this deficiency. A database was created to evaluate the cost-effectiveness of commercially available protein bars based on consumer feedback. The experimental bar was tested for nutritional value, shelf life, and physiological impact, using only natural ingredients for texture, flavor, and stability. Results: The experimental protein bar had higher protein and fiber content than a selected commercial bar but a shorter shelf life (7 days vs. 90 days) due to the absence of preservatives. The database helped identify target consumer groups and ensure the product was affordable and nutritionally effective. Conclusion: This study demonstrates that using natural, complementary ingredients can create a protein bar with a more balanced nutrient profile while avoiding harmful additives. The final product supports muscle protein synthesis through its high-quality protein content and promotes glycemic control and satiety via its fiber-rich, low-sugar formulation and metabolic processes, offering a healthier alternative to commercial options, with a focus on consumer health and cost-effectiveness. Full article
(This article belongs to the Special Issue Advances in Improvement and Fortification of Cereal Food)
Show Figures

Figure 1

14 pages, 760 KiB  
Article
Hydroculture Cultivation of Strawberries as Potential Reference Material for Microcystin Analysis: Approaches and Pitfalls
by Wannes Hugo R. Van Hassel, Benoît Guillaume and Julien Masquelier
Toxins 2025, 17(6), 285; https://doi.org/10.3390/toxins17060285 - 6 Jun 2025
Viewed by 585
Abstract
Toxic cyanobacterial blooms are prevalent in surface waters. Depending on several conditions, these blooms produce cyanotoxins. Human exposure to these toxins can occur through multiple routes, including contaminated crops through irrigation with contaminated water. Analytical methods have been developed for cyanotoxin quantification to [...] Read more.
Toxic cyanobacterial blooms are prevalent in surface waters. Depending on several conditions, these blooms produce cyanotoxins. Human exposure to these toxins can occur through multiple routes, including contaminated crops through irrigation with contaminated water. Analytical methods have been developed for cyanotoxin quantification to investigate these exposures. Yet, proper comparisons between different labs via proficiency tests or interlaboratory comparison tests, as well as method quality assurance, are impossible. Developing reference materials for cyanotoxins in plants would help resolve these problems. Therefore, a novel liquid hydroculture setup was optimized to grow and contaminate strawberries. During fruit ripening, these plants were exposed to growth medium contaminated with pure microcystin-LR or freeze-dried cyanobacterial biomass containing different microcystin congeners. Afterwards, fruits, greens, and roots were harvested. Validated UHPLC-MS/MS methods were used to quantify the microcystin congeners in the growth medium and the plants. Furthermore, both contamination conditions resulted in the accumulation of toxin(s) in the roots and the greens. Yet in the contamination models, no toxin(s) accumulated in the fruits. Therefore, this contamination approach, combined with strawberries as a berry plant model, is only suitable for reference material production for limited matrices. Our cultivation model to produce reference material could be evaluated for other berry producers. Full article
(This article belongs to the Section Marine and Freshwater Toxins)
Show Figures

Figure 1

Back to TopTop