Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (5,757)

Search Parameters:
Keywords = product platform

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 2141 KiB  
Article
Enhancing Efficiency in Sustainable IoT Enterprises: Modeling Indicators Using Pythagorean Fuzzy and Interval Grey Approaches
by Mimica R. Milošević, Miloš M. Nikolić, Dušan M. Milošević and Violeta Dimić
Sustainability 2025, 17(15), 7143; https://doi.org/10.3390/su17157143 - 6 Aug 2025
Abstract
“The Internet of Things” is a relatively new idea that refers to objects that can connect to the Internet and exchange data. The Internet of Things (IoT) enables novel interactions between objects and people by interconnecting billions of devices. While there are many [...] Read more.
“The Internet of Things” is a relatively new idea that refers to objects that can connect to the Internet and exchange data. The Internet of Things (IoT) enables novel interactions between objects and people by interconnecting billions of devices. While there are many IoT-related products, challenges pertaining to their effective implementation, particularly the lack of knowledge and confidence about security, must be addressed. To provide IoT-based enterprises with a platform for efficiency and sustainability, this study aims to identify the critical elements that influence the growth of a successful company integrated with an IoT system. This study proposes a decision support tool that evaluates the influential features of IoT using the Pythagorean Fuzzy and Interval Grey approaches within the Analytical Hierarchy Process (AHP). This study demonstrates that security, value, and connectivity are more critical than telepresence and intelligence indicators. When both strategies are used, market demand and information privacy become significant indicators. Applying the Pythagorean Fuzzy approach enables the identification of sensor networks, authorization, market demand, and data management in terms of importance. The application of the Interval Grey approach underscores the importance of data management, particularly in sensor networks. The indicators that were finally ranked are compared to obtain a good coefficient of agreement. These findings offer practical insights for promoting sustainability in enterprise operations by optimizing IoT infrastructure and decision-making processes. Full article
Show Figures

Figure 1

21 pages, 1368 KiB  
Article
Liquid-Phase Hydrogenation over a Cu/SiO2 Catalyst of 5-hydroximethylfurfural to 2,5-bis(hydroxymethyl)furan Used in Sustainable Production of Biopolymers: Kinetic Modeling
by Juan Zelin, Hernán Antonio Duarte, Alberto Julio Marchi and Camilo Ignacio Meyer
Sustain. Chem. 2025, 6(3), 22; https://doi.org/10.3390/suschem6030022 - 6 Aug 2025
Abstract
2,5-bis(hydroxymethy)lfuran (BHMF), a renewable compound with extensive industrial applications, can be obtained by selective hydrogenation of the C=O group of 5-hydroxymethylfurfural (HMF), a platform molecule derived from lignocellulosic biomass. In this work, we perform kinetic modeling of the selective liquid-phase hydrogenation of HMF [...] Read more.
2,5-bis(hydroxymethy)lfuran (BHMF), a renewable compound with extensive industrial applications, can be obtained by selective hydrogenation of the C=O group of 5-hydroxymethylfurfural (HMF), a platform molecule derived from lignocellulosic biomass. In this work, we perform kinetic modeling of the selective liquid-phase hydrogenation of HMF to BHMF over a Cu/SiO2 catalyst prepared by precipitation–deposition (PD) at a constant pH. Physicochemical characterization, using different techniques, confirms that the Cu/SiO2–PD catalyst is formed by copper metallic nanoparticles of 3–5 nm in size highly dispersed on the SiO2 surface. Before the kinetic study, the Cu/SiO2-PD catalyst was evaluated in three solvents: tetrahydrofuran (THF), 2-propanol (2-POH), and water. The pattern of catalytic activity and BHMF yield for the different solvents was THF > 2-POH > H2O. In addition, selectivity to BHF was the highest in THF. Thus, THF was chosen for further kinetic study. Several experiments were carried out by varying the initial HMF concentration (C0HMF) between 0.02 and 0.26 M and the hydrogen pressure (PH2) between 200 and 1500 kPa. In all experiments, BHMF selectivity was 97–99%. By pseudo-homogeneous modeling, an apparent reaction order with respect to HFM close to 1 was estimated for a C0HMF between 0.02 M and 0.065 M, while when higher than 0.065 M, the apparent reaction order changed to 0. The apparent reaction order with respect to H2 was nearly 0 when C0HMF = 0.13 M, while for C0HMF = 0.04 M, it was close to 1. The reaction orders estimated suggest that HMF is strongly absorbed on the catalyst surface, and thus total active site coverage is reached when the C0HMF is higher than 0.065 M. Several Langmuir–Hinshelwood–Hougen–Watson (LHHW) kinetic models were proposed, tested against experimental data, and statistically compared. The best fitting of the experimental data was obtained with an LHHW model that considered non-competitive H2 and HMF chemisorption and strong chemisorption of reactant and product molecules on copper metallic active sites. This model predicts both the catalytic performance of Cu/SiO2-PD and its deactivation during liquid-phase HMF hydrogenation. Full article
Show Figures

Graphical abstract

17 pages, 3157 KiB  
Article
Research on Online Traceability Methods for the Causes of Longitudinal Surface Crack in Continuous Casting Slab
by Junqiang Cong, Qiancheng Lv, Zihao Fan, Haitao Ling and Fei He
Materials 2025, 18(15), 3695; https://doi.org/10.3390/ma18153695 - 6 Aug 2025
Abstract
In the casting and rolling production process, surface longitudinal cracks are a typical casting defect. Tracing the causes of longitudinal cracks online and controlling the key parameters leading to their formation in a timely manner can enhance the stability of casting and rolling [...] Read more.
In the casting and rolling production process, surface longitudinal cracks are a typical casting defect. Tracing the causes of longitudinal cracks online and controlling the key parameters leading to their formation in a timely manner can enhance the stability of casting and rolling production. To this end, the influencing factors of longitudinal cracks were analyzed, a data integration storage platform was constructed, and a tracing model was established using empirical rule analysis, statistical analysis, and intelligent analysis methods. During the initial production phase of a casting machine, longitudinal cracks occurred frequently. The tracing results using the LightGBM-SHAP method showed that the relative influence of the narrow left wide inner heat flow ratio of the mold was significant, followed by the heat flow difference on the wide symmetrical face of the mold and the superheat of the molten steel, with weights of 0.135, 0.066, and 0.048, respectively. Based on the tracing results, we implemented online emergency measures. By controlling the cooling intensity of the mold, we effectively reduced the recurrence rate of longitudinal cracks. Root cause analysis revealed that the total hardness of the mold-cooling water exceeded the standard, reaching 24 mg/L, which caused scaling on the mold copper plates and uneven cooling, leading to the frequent occurrence of longitudinal cracks. After strictly controlling the water quality, the issue of longitudinal cracks was brought under control. The online application of the tracing method for the causes of longitudinal cracks has effectively improved efficiency in resolving longitudinal crack problems. Full article
(This article belongs to the Special Issue Advanced Sheet/Bulk Metal Forming)
Show Figures

Figure 1

16 pages, 2576 KiB  
Article
Modeling and Spatiotemporal Analysis of Actual Evapotranspiration in a Desert Steppe Based on SEBS
by Yanlin Feng, Lixia Wang, Chunwei Liu, Baozhong Zhang, Jun Wang, Pei Zhang and Ranghui Wang
Hydrology 2025, 12(8), 205; https://doi.org/10.3390/hydrology12080205 - 6 Aug 2025
Abstract
Accurate estimation of actual evapotranspiration (ET) is critical for understanding hydrothermal cycles and ecosystem functioning in arid regions, where water scarcity governs ecological resilience. To address persistent gaps in ET quantification, this study integrates multi-source remote sensing data, energy balance modeling, and ground-based [...] Read more.
Accurate estimation of actual evapotranspiration (ET) is critical for understanding hydrothermal cycles and ecosystem functioning in arid regions, where water scarcity governs ecological resilience. To address persistent gaps in ET quantification, this study integrates multi-source remote sensing data, energy balance modeling, and ground-based validation that significantly enhances spatiotemporal ET accuracy in the vulnerable desert steppe ecosystems. The study utilized meteorological data from several national stations and Landsat-8 imagery to process monthly remote sensing images in 2019. The Surface Energy Balance System (SEBS) model, chosen for its ability to estimate ET over large areas, was applied to derive modeled daily ET values, which were validated by a large-weighted lysimeter. It was shown that ET varied seasonally, peaking in July at 6.40 mm/day, and reaching a minimum value in winter with 1.83 mm/day in December. ET was significantly higher in southern regions compared to central and northern areas. SEBS-derived ET showed strong agreement with lysimeter measurements, with a mean relative error of 4.30%, which also consistently outperformed MOD16A2 ET products in accuracy. This spatial heterogeneity was driven by greater vegetation coverage and enhanced precipitation in the southeast. The steppe ET showed a strong positive correlation with surface temperatures and vegetation density. Moreover, the precipitation gradients and land use were primary controllers of spatial ET patterns. The process-based SEBS frameworks demonstrate dual functionality as resource-optimized computational platforms while enabling multi-scale quantification of ET spatiotemporal heterogeneity; it was therefore a reliable tool for ecohydrological assessments in an arid steppe, providing critical insights for water resource management and drought monitoring. Full article
(This article belongs to the Section Hydrological and Hydrodynamic Processes and Modelling)
Show Figures

Figure 1

24 pages, 3858 KiB  
Review
Emerging Strategies for Aflatoxin Resistance in Peanuts via Precision Breeding
by Archana Khadgi, Saikrisha Lekkala, Pankaj K. Verma, Naveen Puppala and Madhusudhana R. Janga
Toxins 2025, 17(8), 394; https://doi.org/10.3390/toxins17080394 - 6 Aug 2025
Abstract
Aflatoxin contamination, primarily caused by Aspergillus flavus, poses a significant threat to peanut (Arachis hypogaea L.) production, food safety, and global trade. Despite extensive efforts, breeding for durable resistance remains difficult due to the polygenic and environmentally sensitive nature of resistance. [...] Read more.
Aflatoxin contamination, primarily caused by Aspergillus flavus, poses a significant threat to peanut (Arachis hypogaea L.) production, food safety, and global trade. Despite extensive efforts, breeding for durable resistance remains difficult due to the polygenic and environmentally sensitive nature of resistance. Although germplasm such as J11 have shown partial resistance, none of the identified lines demonstrated stable or comprehensive protection across diverse environments. Resistance involves physical barriers, biochemical defenses, and suppression of toxin biosynthesis. However, these traits typically exhibit modest effects and are strongly influenced by genotype–environment interactions. A paradigm shift is underway with increasing focus on host susceptibility (S) genes, native peanut genes exploited by A. flavus to facilitate colonization or toxin production. Recent studies have identified promising S gene candidates such as AhS5H1/2, which suppress salicylic acid-mediated defense, and ABR1, a negative regulator of ABA signaling. Disrupting such genes through gene editing holds potential for broad-spectrum resistance. To advance resistance breeding, an integrated pipeline is essential. This includes phenotyping diverse germplasm under stress conditions, mapping resistance loci using QTL and GWAS, and applying multi-omics platforms to identify candidate genes. Functional validation using CRISPR/Cas9, Cas12a, base editors, and prime editing allows precise gene targeting. Validated genes can be introgressed into elite lines through breeding by marker-assisted and genomic selection, accelerating the breeding of aflatoxin-resistant peanut varieties. This review highlights recent advances in peanut aflatoxin resistance research, emphasizing susceptibility gene targeting and genome editing. Integrating conventional breeding with multi-omics and precision biotechnology offers a promising path toward developing aflatoxin-free peanut cultivars. Full article
(This article belongs to the Special Issue Strategies for Mitigating Mycotoxin Contamination in Food and Feed)
Show Figures

Figure 1

28 pages, 2129 KiB  
Article
Research on Pricing Strategies of Knowledge Payment Products Considering the Impact of Embedded Advertising Under the User-Generated Content Model
by Xiubin Gu, Yi Qu and Minhe Wu
Systems 2025, 13(8), 665; https://doi.org/10.3390/systems13080665 - 6 Aug 2025
Abstract
In UGC-based knowledge trading platforms, the abundance of personalized content often leads to varying quality levels. By incorporating embedded advertising, platforms can incentivize knowledge producers to produce high-quality content; however, the uncertainty in managing embedded advertisements increases the complexity of pricing knowledge products. [...] Read more.
In UGC-based knowledge trading platforms, the abundance of personalized content often leads to varying quality levels. By incorporating embedded advertising, platforms can incentivize knowledge producers to produce high-quality content; however, the uncertainty in managing embedded advertisements increases the complexity of pricing knowledge products. This paper examines the impact of embedded advertising on the pricing of knowledge products, aims to maximize the profits of both knowledge producer and the platform. Based on Stackelberg game theory, two pricing decision models are developed under different advertising management modes: the platform-managed mode (where the platform determines the advertising intensity) and the advertiser-managed mode (where the advertiser determines the advertising intensity). The study analyzes the effects of UGC product quality, consumer sensitivity to advertising, and power structure on knowledge product pricing, and derives threshold conditions for optimal pricing. The results indicate that (1) When the quality of UGC knowledge product exceeds a certain threshold, platform-managed advertising becomes profitable. (2) Under the platform-managed mode, both the platform and knowledge producer can adopt price-increasing strategies to enhance profits. (3) Under the advertiser-managed mode, the platform can leverage differences in power structure to optimize revenue, while knowledge producer can actively enhance his pricing power to achieve mutual benefits with the platform. This study provides theoretical support and practical guidance for advertising cooperation mechanisms and pricing strategies for knowledge products in UGC-based knowledge trading platforms. Full article
Show Figures

Figure 1

29 pages, 3400 KiB  
Article
Value-Added Service Pricing Strategies Considering Customer Stickiness: A Freemium Perspective
by Xuwang Liu, Biying Zhou, Wei Qi, Zhiwu Li and Junwei Wang
J. Theor. Appl. Electron. Commer. Res. 2025, 20(3), 201; https://doi.org/10.3390/jtaer20030201 - 6 Aug 2025
Abstract
Freemium, a popular business model in the digital economy, offers a basic product for free while charging for advanced features or value-added services. This pricing strategy enables platforms to attract a broad user base and then monetize through premium offerings. Customer characteristics and [...] Read more.
Freemium, a popular business model in the digital economy, offers a basic product for free while charging for advanced features or value-added services. This pricing strategy enables platforms to attract a broad user base and then monetize through premium offerings. Customer characteristics and service price are important factors affecting customer choice behavior in such a model. Based on consumption stickiness, we consider a monopoly that provides value-added services by incorporating a multinomial logit model into a two-stage dynamic pricing model. First, we analyze the optimal pricing of value-added services under a normal sales scenario. We then consider optimal pricing during the marketing period under two strategies—level improvement for value-added services and quality reduction for a basic product—and analyze the applicability of each. The results show that increasing the value-added service level has a positive effect on the optimal price of value-added services, whereas reducing the basic product quality has no effect on the optimal price. Furthermore, the numerical simulation shows that when the depth of consumer stickiness is low, the optimal marketing strategy reduces the quality of the basic product, the price of value-added services should be higher than that in the normal sales period but lower than the price under the level-improvement strategy for value-added services; otherwise, improving the level of the value-added services becomes the optimal approach. This study provides a theoretical basis and decision support for product quality design and service pricing that applies to freemium platforms. Full article
(This article belongs to the Topic Digital Marketing Dynamics: From Browsing to Buying)
Show Figures

Figure 1

17 pages, 3205 KiB  
Review
Microbiome–Immune Interaction and Harnessing for Next-Generation Vaccines Against Highly Pathogenic Avian Influenza in Poultry
by Yongming Sang, Samuel N. Nahashon and Richard J. Webby
Vaccines 2025, 13(8), 837; https://doi.org/10.3390/vaccines13080837 (registering DOI) - 6 Aug 2025
Abstract
Highly pathogenic avian influenza (HPAI) remains a persistent threat to global poultry production and public health. Current vaccine platforms show limited cross-clade efficacy and often fail to induce mucosal immunity. Recent advances in microbiome research reveal critical roles for gut commensals in modulating [...] Read more.
Highly pathogenic avian influenza (HPAI) remains a persistent threat to global poultry production and public health. Current vaccine platforms show limited cross-clade efficacy and often fail to induce mucosal immunity. Recent advances in microbiome research reveal critical roles for gut commensals in modulating vaccine-induced immunity, including enhancement of mucosal IgA production, CD8+ T-cell activation, and modulation of systemic immune responses. Engineered commensal bacteria such as Lactococcus lactis, Bacteroides ovatus, Bacillus subtilis, and Staphylococcus epidermidis have emerged as promising live vectors for antigen delivery. Postbiotic and synbiotic strategies further enhance protective efficacy through targeted modulation of the gut microbiota. Additionally, artificial intelligence (AI)-driven tools enable predictive modeling of host–microbiome interactions, antigen design optimization, and early detection of viral antigenic drift. These integrative technologies offer a new framework for mucosal, broadly protective, and field-deployable vaccines for HPAI control. However, species-specific microbiome variation, ecological safety concerns, and scalable manufacturing remain critical challenges. This review synthesizes emerging evidence on microbiome–immune crosstalk, commensal vector platforms, and AI-enhanced vaccine development, emphasizing the urgent need for One Health integration to mitigate zoonotic adaptation and pandemic emergence. Full article
(This article belongs to the Special Issue Veterinary Vaccines and Host Immune Responses)
Show Figures

Figure 1

36 pages, 1832 KiB  
Review
Enabling Intelligent Industrial Automation: A Review of Machine Learning Applications with Digital Twin and Edge AI Integration
by Mohammad Abidur Rahman, Md Farhan Shahrior, Kamran Iqbal and Ali A. Abushaiba
Automation 2025, 6(3), 37; https://doi.org/10.3390/automation6030037 - 5 Aug 2025
Abstract
The integration of machine learning (ML) into industrial automation is fundamentally reshaping how manufacturing systems are monitored, inspected, and optimized. By applying machine learning to real-time sensor data and operational histories, advanced models enable proactive fault prediction, intelligent inspection, and dynamic process control—directly [...] Read more.
The integration of machine learning (ML) into industrial automation is fundamentally reshaping how manufacturing systems are monitored, inspected, and optimized. By applying machine learning to real-time sensor data and operational histories, advanced models enable proactive fault prediction, intelligent inspection, and dynamic process control—directly enhancing system reliability, product quality, and efficiency. This review explores the transformative role of ML across three key domains: Predictive Maintenance (PdM), Quality Control (QC), and Process Optimization (PO). It also analyzes how Digital Twin (DT) and Edge AI technologies are expanding the practical impact of ML in these areas. Our analysis reveals a marked rise in deep learning, especially convolutional and recurrent architectures, with a growing shift toward real-time, edge-based deployment. The paper also catalogs the datasets used, the tools and sensors employed for data collection, and the industrial software platforms supporting ML deployment in practice. This review not only maps the current research terrain but also highlights emerging opportunities in self-learning systems, federated architectures, explainable AI, and themes such as self-adaptive control, collaborative intelligence, and autonomous defect diagnosis—indicating that ML is poised to become deeply embedded across the full spectrum of industrial operations in the coming years. Full article
(This article belongs to the Section Industrial Automation and Process Control)
Show Figures

Figure 1

14 pages, 2709 KiB  
Article
Metagenomic Analysis of the Skin Microbiota of Brazilian Women: How to Develop Anti-Aging Cosmetics Based on This Knowledge?
by Raquel Allen Garcia Barbeto Siqueira, Ana Luiza Viana Pequeno, Yasmin Rosa Santos, Romualdo Morandi-Filho, Alexandra Lan, Edileia Bagatin, Vânia Rodrigues Leite-Silva, Newton Andreo-Filho and Patricia Santos Lopes
Cosmetics 2025, 12(4), 165; https://doi.org/10.3390/cosmetics12040165 - 5 Aug 2025
Abstract
Metagenomic studies have provided deeper insights into the complex interactions between the skin and its microbiota. However, limited research has been conducted on the skin microbiota of Brazilian women. Given that Brazil ranks as the fourth-largest consumer of cosmetics worldwide, the development of [...] Read more.
Metagenomic studies have provided deeper insights into the complex interactions between the skin and its microbiota. However, limited research has been conducted on the skin microbiota of Brazilian women. Given that Brazil ranks as the fourth-largest consumer of cosmetics worldwide, the development of new tools to analyze skin microbiota is crucial for formulating cosmetic products that promote a healthy microbiome. Skin samples were analyzed using the Illumina platform. Biometrology assessments were applied. The results showed pH variations were more pronounced in the older age group, along with higher transepidermal water loss values. Metagenomic analysis showed a predominance of Actinobacteria (83%), followed by Proteobacteria (7%), Firmicutes (9%) and Bacteroidetes (1%). In the older group (36–45 years old), an increase in Actinobacteria (87%) was observed and a decrease in Proteobacteria (6%). Moreover, the results differ from the international literature, since an increase in proteobacteria (13.9%) and a decrease in actinobacteria (46.7%) were observe in aged skin. The most abundant genus identified was Propionibacterium (84%), being the dominant species. Interestingly, previous studies have suggested a decline in Cutibacterium abundance with aging; although there is no significant difference, it is possible to observe an increasing trend in this genus in older skin. These studies can clarify many points about the skin microbiota of Brazilian women, and these findings could lead to the development of new cosmetics based on knowledge of the skin microbiome. Full article
(This article belongs to the Special Issue Feature Papers in Cosmetics in 2025)
Show Figures

Graphical abstract

25 pages, 15953 KiB  
Article
Land Use Change and Its Climatic and Vegetation Impacts in the Brazilian Amazon
by Sérvio Túlio Pereira Justino, Richardson Barbosa Gomes da Silva, Rafael Barroca Silva and Danilo Simões
Sustainability 2025, 17(15), 7099; https://doi.org/10.3390/su17157099 - 5 Aug 2025
Abstract
The Brazilian Amazon is recognized worldwide for its biodiversity and it plays a key role in maintaining the regional and global climate balance. However, it has recently been greatly impacted by changes in land use, such as replacing native forests with agricultural activities. [...] Read more.
The Brazilian Amazon is recognized worldwide for its biodiversity and it plays a key role in maintaining the regional and global climate balance. However, it has recently been greatly impacted by changes in land use, such as replacing native forests with agricultural activities. These changes have resulted in serious environmental consequences, including significant alterations to climate and hydrological cycles. This study aims to analyze changes in land use and land covered in the Brazilian Amazon between 2001 and 2023, as well as the resulting effects on precipitation variability, land surface temperature, and evapotranspiration. Data obtained via remote sensing and processed on the Google Earth Engine platform were used, including MODIS, CHIRPS, Hansen products. The results revealed significant changes: forest formation decreased by 8.55%, while agricultural land increased by 575%. Between 2016 and 2023, accumulated deforestation reached 242,689 km2. Precipitation decreased, reaching minimums of 772.7 mm in 2015 and 726.4 mm in 2020. Evapotranspiration was concentrated between 941 and 1360 mm in 2020, and surface temperatures ranged between 30 °C and 34 °C in 2015, 2020, and 2023. We conclude that anthropogenic transformations in the Brazilian Amazon directly impact vegetation cover and the regional climate. Therefore, conservation and monitoring measures are essential for mitigating these effects. Full article
(This article belongs to the Section Sustainable Forestry)
Show Figures

Figure 1

51 pages, 4099 KiB  
Review
Artificial Intelligence and Digital Twin Technologies for Intelligent Lithium-Ion Battery Management Systems: A Comprehensive Review of State Estimation, Lifecycle Optimization, and Cloud-Edge Integration
by Seyed Saeed Madani, Yasmin Shabeer, Michael Fowler, Satyam Panchal, Hicham Chaoui, Saad Mekhilef, Shi Xue Dou and Khay See
Batteries 2025, 11(8), 298; https://doi.org/10.3390/batteries11080298 - 5 Aug 2025
Abstract
The rapid growth of electric vehicles (EVs) and new energy systems has put lithium-ion batteries at the center of the clean energy change. Nevertheless, to achieve the best battery performance, safety, and sustainability in many changing circumstances, major innovations are needed in Battery [...] Read more.
The rapid growth of electric vehicles (EVs) and new energy systems has put lithium-ion batteries at the center of the clean energy change. Nevertheless, to achieve the best battery performance, safety, and sustainability in many changing circumstances, major innovations are needed in Battery Management Systems (BMS). This review paper explores how artificial intelligence (AI) and digital twin (DT) technologies can be integrated to enable the intelligent BMS of the future. It investigates how powerful data approaches such as deep learning, ensembles, and models that rely on physics improve the accuracy of predicting state of charge (SOC), state of health (SOH), and remaining useful life (RUL). Additionally, the paper reviews progress in AI features for cooling, fast charging, fault detection, and intelligible AI models. Working together, cloud and edge computing technology with DTs means better diagnostics, predictive support, and improved management for any use of EVs, stored energy, and recycling. The review underlines recent successes in AI-driven material research, renewable battery production, and plans for used systems, along with new problems in cybersecurity, combining data and mass rollout. We spotlight important research themes, existing problems, and future drawbacks following careful analysis of different up-to-date approaches and systems. Uniting physical modeling with AI-based analytics on cloud-edge-DT platforms supports the development of tough, intelligent, and ecologically responsible batteries that line up with future mobility and wider use of renewable energy. Full article
Show Figures

Figure 1

14 pages, 379 KiB  
Essay
Is Platform Capitalism Socially Sustainable?
by Andrea Fumagalli
Sustainability 2025, 17(15), 7071; https://doi.org/10.3390/su17157071 - 4 Aug 2025
Abstract
This theoretical essay aims to analyze some of the socio-economic innovations introduced by Platform Capitalism Specifically, it focuses on two main aspects: first, the digital platform as a radical organizational innovation. Digital platforms represent a structural novelty in the market economy, signaling a [...] Read more.
This theoretical essay aims to analyze some of the socio-economic innovations introduced by Platform Capitalism Specifically, it focuses on two main aspects: first, the digital platform as a radical organizational innovation. Digital platforms represent a structural novelty in the market economy, signaling a new organization of production and labor. Second, the essay examines the role of platforms in directly generating value through the concept of “network value”. To this end, it explores the function of “business intelligence” as a strategic and competitive tool. Finally, the paper discusses the key issues associated with platform capitalism, which could threaten its social sustainability and contribute to economic and financial instability. These issues include the increasing commodification of everyday activities, the devaluation of paid labor in favor of free production driven by platform users (the so-called prosumers), and the emergence of proprietary and financial monopolies. Hence, digital platforms do not inherently ensure comprehensive social and environmental sustainability unless supported by targeted economic policy interventions. Conclusively, it is emphasized that defining robust social welfare frameworks—which account for emerging value creation processes—is imperative. Simultaneously, policymakers must incentivize the proliferation of cooperative platforms capable of fostering experimental circular economy models aligned with ecological sustainability. Full article
(This article belongs to the Section Economic and Business Aspects of Sustainability)
Show Figures

Figure 1

29 pages, 1895 KiB  
Article
How Does Sharing Economy Advance Sustainable Production and Consumption? Evidence from the Policies and Business Practices of Dockless Bike Sharing
by Shouheng Sun, Yiran Wang, Dafei Yang and Qi Wu
Sustainability 2025, 17(15), 7053; https://doi.org/10.3390/su17157053 - 4 Aug 2025
Viewed by 64
Abstract
The sharing economy is considered to be a potentially efficacious approach for promoting sustainable production and consumption (SPC). This study utilizes dockless bike sharing (DBS) in Beijing as a case study to examine how sharing economy policies and business practices advance SPC. It [...] Read more.
The sharing economy is considered to be a potentially efficacious approach for promoting sustainable production and consumption (SPC). This study utilizes dockless bike sharing (DBS) in Beijing as a case study to examine how sharing economy policies and business practices advance SPC. It also dynamically quantifies the environmental and economic performance of DBS practices from a life cycle perspective. The findings indicate that effective SPC practices can be achieved through the collaborative efforts of multiple stakeholders, including the government, operators, manufacturers, consumers, recycling agencies, and other business partners, supported by regulatory systems and advanced technologies. The SPC practices markedly improved the sustainability of DBS promotion in Beijing. This is evidenced by the increase in greenhouse gas (GHG) emission reduction benefits, which have risen from approximately 35.81 g CO2-eq to 124.40 g CO2-eq per kilometer of DBS travel. Considering changes in private bicycle ownership, this value could reach approximately 150.60 g CO2-eq. Although the economic performance of DBS operators has also improved, it remains challenging to achieve profitability, even when considering the economic value of the emission reduction benefits. In certain scenarios, DBS can maximize profits by optimizing fleet size and efficiency, without compromising the benefits of emission reductions. The framework of stakeholder interaction proposed in this study and the results of empirical analysis not only assist regulators, businesses, and the public in better understanding and promoting sustainable production and consumption practices in the sharing economy but also provide valuable insights for achieving a win-win situation of platform profitability and environmental benefits in the SPC practice process. Full article
Show Figures

Figure 1

22 pages, 858 KiB  
Article
Dual-Pathway Effects of Product and Technological Attributes on Consumer Engagement in Augmented Reality Advertising
by Peng He and Jing Zhang
J. Theor. Appl. Electron. Commer. Res. 2025, 20(3), 196; https://doi.org/10.3390/jtaer20030196 - 4 Aug 2025
Viewed by 81
Abstract
As augmented reality (AR) advertising becomes increasingly prevalent across digital platforms, understanding how its unique features influence consumer responses is critical for both theory and practice. Based on the elaboration likelihood model (ELM), this study develops and validates a dual-dimension content–dual-route processing model [...] Read more.
As augmented reality (AR) advertising becomes increasingly prevalent across digital platforms, understanding how its unique features influence consumer responses is critical for both theory and practice. Based on the elaboration likelihood model (ELM), this study develops and validates a dual-dimension content–dual-route processing model to investigate how different features of AR advertising influence consumer engagement. Specifically, it examines how product-related attributes (attractiveness, informativeness) and technology-related attributes (interactivity, augmentation) shape attitudes toward the ad and purchase intentions through cognitive (information credibility) and affective (enjoyment) pathways. Using data from an online survey (N = 299), the study applies partial least squares structural equation modeling (PLS-SEM) to test the proposed model. The results show that informativeness and augmentation significantly enhance information credibility, while attractiveness primarily influences emotional responses. Interactivity and augmentation positively influence cognitive and affective responses. Mediation analysis confirms the simultaneous activation of central and peripheral processing routes, with flow experience emerging as a significant moderator in selected pathways. By introducing a structured framework for AR advertising content, this study extends the applicability of the ELM in immersive media contexts. It underscores the combined impact of rational evaluation and emotional engagement in shaping consumer behavior and offers practical insights for designing effective AR advertising strategies. Full article
Show Figures

Figure 1

Back to TopTop